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Abstract— In this paper, we derive the capacity of a special
class of mesh networks. A mesh network is defined as a
heterogeneous wireless network in which the transmission among
power limited nodes is assisted by powerful relays, which use the
same wireless medium. We find the capacity of the mesh network
when there is one source, one destination, and multiple relays. We
call this channel the single source multiple relay single destination
(SSMRSD) mesh network. Our approach is as follows. We first
look at an upper bound on the information theoretic capacity of
these networks in the Gaussian setting. We then show that the
bound is achievable asymptotically using the compress-forward
strategy for the multiple relay channel. Theoretically, the results
indicate the value of cooperation and the utility of carefully
deployed relays in wireless ad-hoc and sensor networks. The
capacity characterization quantifies how the relays can be used
to either conserve node energy or to increase transmission rate.

I. INTRODUCTION

Wireless networks have been finding more applications
and capturing much research attention in recent years. The
prevalence of mobile devices makes the wireless network
an attractive solution for home and enterprise users. Un-
fortunately, the analysis of these multi-terminal networks is
difficult. To date, the capacity of even the simple three-node
channel [1] is not known, except for special cases, for example,
the multiple access channel [2][3], the degraded relay channel
[4], the degraded broadcast channel [5]. However, this did not
hinder research in channels with more nodes.

A natural extension of the single source single destination
three-node channel to the multiple node channel is the multiple
relay channel [6][7][8][9][10]. The multiple relay channel
captures the scenario where the transmission from the source
to the destination is aided by relay nodes, which themselves
have no data to send. One can also treat this as an excerpt of a
general multi-terminal network, where we consider just one of
the source-destination pairs. The capacity of the multiple relay
channel has not been found except for the degraded multiple
relay channel [6]. In this paper, we investigate the capacity of
another class of multiple relay channels – the single source
multiple relay single destination (SSMRSD) mesh network .

The mesh network (see [11] and the references therein) is
a multi-terminal channel with powerful relays. One practical
setup of the mesh network is depicted in Fig. 1. Mesh
routers (powerful relay nodes connected to power supplies)
are installed on top of houses and buildings. These routers

Fig. 1. A mesh network.

communicate with various mesh clients (source nodes with
average power constraint or destination nodes) in their prox-
imity and connect to other mesh routers. The area between
buildings are covered and any two mesh clients can send data
to each other which might not have been possible without the
mesh routers. The routers are able to help the source to send
data at a higher rate to the destination. We note that even
though the mesh routers are not bounded by restricted battery
lifetime as they are connected to the power line, their transmit
power is often restricted by regulations. However, the study
of mesh network is still interesting as it gives insights on how
nodes should cooperate when the relays can transmit at higher
power (which might not be infinity) compared to the sources.

In this paper, we consider the SSMRSD mesh network, in
which there is only one source and one destination but any
number of relays. We note that the SSMRSD mesh network is
not a degraded multiple relay channel [6, Theorem 3.2]. The
capacity of these channels has not been found.

Gupta and Kumar [12] considered a general wireless net-
work model, in which every node has data to send to a
random destination. In this scenario, they determined the
scaling behavior of the transport capacity of the network with
respect to the number of nodes in the network. The mesh
network differs from their model as mesh routers in the mesh
network do not generate data.

In [13] and [14], the authors found the practical “capacity”
of the mesh network with the following assumptions:

• All nodes send data to a common gateway.
• Each node is given a fair amount of bandwidth.
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• The physical layer and the MAC layer is assumed to
follow the 802.11 standard.

• A proper transmission scheduling scheme is used to avoid
node interference.

Our work attempts to find the capacity (in an information
theoretic sense) of the mesh network without any constraints
on the physical and the MAC layers.

Our approach is as follows. First we study an upper bound
on the capacity of the SSMRSD mesh network, which is
derived from the max-flow min-cut theorem. Then we study
an achievable rate of the compress-forward non-constructive
coding strategy on the multiple relay channel. The technique
was first introduced in [4] for the single relay channel and later
extended to the multiple relay channel in [7], where it is called
the compress-and-forward strategy. We show that when the
transmit powers of the relays increase, the compress-forward
technique approaches the capacity upper bound asymptotically.

The rest of the paper is organized as follows. Section II
introduces the channel models and definitions. In Section III,
we establish several useful theorems that we will need in later
sections. In Section IV, we investigate an upper bound on
the capacity of the SSMRSD mesh network. This is followed
by studying achievable rates on the multiple relay channel
in Section V. By looking at the special channel, i.e., when
the relays have no power constraint, we show in Section VI
that the achievable rate of the Gaussian SSMRSD mesh
network approaches the capacity of the channel asymptotically.
Section VII concludes the paper.

II. CHANNEL MODEL

Fig. 2. The multiple relay channel.

Fig. 2 depicts the multiple relay channel. The multiple relay
channel can be completely described by the channel distribu-
tion p∗(y2, y3, . . . , yT |x1, x2, . . . , xT−1) on Y2×Y3×· · ·×YT ,
for each (x1, x2, . . . , xT−1) ∈ X1 ×X2 × · · · × XT−1. In this
paper, we only consider memoryless channels. Node 1 is the
source node and node T is the destination node. Nodes 2 to
T −1 are purely relay nodes. Message W is generated at node
1 and is to be transferred to the sink at node T . We follow
the definitions of capacity, achievable rate (RW ) used in [7,
Section III.A].

In a Gaussian multiple relay channel, node j receives

Yj =
∑

i=1,...,T−1
i �=j

√
λijXi + Zj , j = 2, . . . , T, (1)

where Xi, input to the channel form node i, is a random
variable with power constraint E[X2

i ] ≤ Pi. Yj is the received
signal at node j. Zj , the receiver noise at node t, is an inde-
pendent zero mean Gaussian random variable with variance
Nj . λij = κd−η

ij is the path loss function. dij is the distance
between node i and node j, η is the path loss exponent, and

η ≥ 2 with equality for free space transmission. κ is a positive
constant.

The T -node Gaussian SSMRSD mesh network is defined
as the T -node Gaussian multiple relay channel where Pi

P1
� 1

for all i ∈ R. We define R � {2, 3, . . . , T−1} as the set of all
relay nodes. We use the notation X{1,...,m} � (X1, . . . , Xm).

III. A CUT-SET BOUND IS ATTAINED BY INDEPENDENT

GAUSSIAN INPUTS

In this section, we establish a useful theorem which we
will need in later sections. In brief, we consider the Gaussian
relay channel where the relay(s) and the destination can
cooperate. The following theorems establish that the optimal
input distribution to maximize the mutual information between
the source node, and the relays plus the destination is such
that the the source and the relays send independent Gaussian
inputs.

We consider a T -node multiple relay channel where nodes
1, . . . , T −1 send X1, . . . , XT−1 into the channel respectively.
The channel inputs are subject to power constraints E[X2

i ] ≤
Pi for i = 1, . . . , T − 1. Without loss of generality, nodes
2, . . . , T receive the following signals from the channel.

Yj =
∑

i∈{1}∪R\{j}
Xi + Zj , (2)

where Zj ∼ N (0, Nj), j = 2, 3, . . . , T are independent
Gaussian noise. Here, we ignore the path loss component for
simplicity. The results hold for channels with the path loss
component.

Theorem 1: Consider a T -node Gaussian multiple relay
channel. A sufficient condition on the input distribution that
achieves

max
p(x1,x2,...,xT−1)

I(X1; YR, YT |XR) (3)

is that the inputs are Gaussian and X1 is independent of XR. It
follows that independent Gaussian inputs X1, . . . , XT−1 also
achieve (3).

Proof: First, we consider the case T = 3, which means
there is one relay. We want to show that

max
p(x1,x2)

I(X1; Y2, Y3|X2) (4)

is achieved when X1 and X2 are independent Gaussian inputs.
From [7, Proposition 2], we know the optimal input distri-

bution is Gaussian. We let

X1 = αX2 + W, (5)

where W and X2 are independent Gaussian random variables,
such that E[W 2] = PW and P1 = α2P2 + PW .

Now,

H(Y2, Y3|X1, X2) =
1
2

log(2πe)2N2N3, (6)
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and

H(Y2, Y3|X2) =
1
2

log(2πe)2
∣∣∣∣PW + N2 PW

PW PW + N3

∣∣∣∣ (7a)

=
1
2

log(2πe)2(PW N2 + PW N3 + N2N3).

(7b)

Hence,

I(X1; Y2, Y3|X2) = H(Y2, Y3|, X2) − H(Y2, Y3|X1, X2)

(8a)

=
1
2

log
[
1 +

P1 − α2P2

N2
+

P1 − α2P2

N3

]
.

(8b)

Setting α = 0 maximizes the mutual information. This
completes the proof for T = 3.

Now, we extend this result to T = 4 or the two-relay
channel. The generalization from the two-relay channel to the
multiple-relay channel is straight forward. We need to show
that a sufficient condition on the input distribution function to
achieve

max
p(x1,x2,x3)

I(X1; Y2, Y3, Y4|X2, X3) (9)

is that X1 and (X2, X3) are independent Gaussian inputs.
From [7, Proposition 2], (9) is achieved by Gaussian inputs

X1, X2, and X3. From the single relay case T = 3, we know
that choosing X1 to be independent of (X2, X3) is optimal.
Certainly, choosing independent X1, X2, and X3 maximizes
the mutual information term. This proves the case of T = 4.

Now, we demonstrate that (9) can indeed be achieved
with any correlation between X2 and X3, as long as X1 is
independent of (X2, X3). We let X2 = βX3 +W , where X1,
X3 and W are independent Gaussian inputs. Here, E[W 2] =
PW and P2 = β2P3 + PW .

Now,

H(Y2, Y3, Y4|X1, X2, X3) =
1
2

log(2πe)3N2N3N4. (10)

Also,

H(Y2, Y3, Y4|X2, X3)

=
1
2

log(2πe)3

∣∣∣∣∣∣
P1 + N2 P1 P1

P1 P1 + N3 P1

P1 P1 P1 + N4

∣∣∣∣∣∣ (11a)

=
1
2

log(2πe)3 [P1(N2N3 + N2N4 + N3N4) + N2N3N4] .

(11b)

Hence,

I(X1; Y2, Y3, Y4|X2, X3)

=
1
2

log
[
1 + P1

(
1

N2
+

1
N3

+
1

N4

)]
. (12)

We note that this is independent of β. This means that (9) can
be achieved with any correlation between X2 and X3.

We can easily generalize this result to any T > 4 and hence
obtain Theorem 1.

IV. AN UPPER BOUND ON THE CAPACITY OF THE

MULTIPLE TERMINAL NETWORK

A. In the Multi-Terminal Network

Fig. 3. A cut in the multi-terminal network.

Consider a T-node multi-terminal network where node
i transmits Xi and node j receives Yj . The chan-
nel is characterized by the channel transition probability
p(y1, . . . , yT |x1, . . . , xT ). [15, Theorem 14.10.1] states that
if the rate from node i to node j, Rij , is achievable, then the
following must be satisfied∑

i∈T ,j∈T c

Rij ≤ max
p(x1,...,xT )

I(XT ; YT c |XT c), (13)

for some joint probability function p(x1, . . . , xT ) for all T ⊂
{1, . . . , T} where i ∈ T and j /∈ T . T c is the complement of
T in {1, . . . , T}.

We can interpret this theorem as follows. The achievable
rate from node i to node j must be smaller than the rate of
all possible cuts separating nodes i and j. Fig. 3 depicts a
possible cut. We define the cut rate for the cut separating T
and T c as the right side of (13). It is the maximum achievable
rate from nodes in T to nodes in T c when all nodes on the
same side of the cut are allowed to cooperate.

B. In the SSMRSD Mesh Network

Consider a T -node Gaussian SSMRSD mesh network where

• Node 1 is the source node with power constraint E[X2
1 ] ≤

P1, which can only transmit.
• Node T is the destination node, which can only receive

signals from the network.
• Nodes 2 to T − 1 are powerful relays with large power

constraint, which can transmit and receive at the same
time.

• None of the relays or the destination is close to the source.

We note that any cut rate with 1 ∈ T and T ∈ T c is an
upper bound of the rate from the source to the destination.
Since the relays have large power, if we include any relay
node in set T , the cut rate (defined as (13)) is large. Hence
the minimum cut rate occurs when the cut separates T = {1}
and T c = {2, . . . , T}. So the upper bound of the capacity of
the SSMRSD reduces to

CSSMRSDMesh ≤ max
p(x1,...,xT−1)

E[X2
1 ]≤P1

I(X1; YR, YT |XR), (14)

for some joint probability function p(x1, . . . , xT−1). From
Theorem 1, independent Gaussian inputs maximize this upper
bound in the Gaussian channel.
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Λ(D) =

∣∣∣∣∣∣∣
λ1s(1)P1 + Ns(1) + Qs(1) · · ·

√
λ1s(1)λ1s(D)P1

...
. . .

...√
λ1s(1)λ1s(D)P1 . . . λ1s(D)P1 + Ns(D) + Qs(D)

∣∣∣∣∣∣∣ (25)

V. ACHIEVABLE RATES

A. In the General Multiple Relay Channel

In this section, we investigate achievable rates of the multi-
ple relay channel using the compress-forward strategy. Using
[7, Theorem 3] and setting Ut = Xt, ∀t ∈ R, the following
rate is achievable in the multiple relay channel using the
compress-forward strategy,

R = I(X1; ỸRYT |XR), (15)

where

I(ỸS ; YS |XR, ỸSc , YT ) ≤
M∑

m=1

I(XBm ; Yr(m)|XBc
m

), (16)

with the joint probability distribution function

p(x1)

[∏
t∈R

p(xt)p(ỹt|xR, yt)

]
p∗(yR, yT |x1, xR), (17)

for all S ⊆ R, all partitions {Bm}M
m=1 of S, and all r(m) ∈

{2, . . . , T}\Bm. Sc is the complement of S in R and Bc
m is the

compliment of Bm in R. U is the part which is to be decoded
by all relays. Setting Ut = Xt means each relay decodes all
other relays’ codewords. We note that in the compress-forward
strategy, all channel inputs X1, . . . , XT−1 are independent.

B. In the Gaussian Multiple Relay Channel

We consider the Gaussian multiple relay channel. By re-
laxing the power constraint on the relays, or nodes t ∈ R,
the multiple relay channel is equivalent to the SSMRSD mesh
network.

Now, using the compress-forward strategy with Uj = Xj ,
the received signal of node r(m) can be written as

Yr(m) =
√

λ1r(m)X1 +
∑
i∈R

i �=r(m)

√
λir(m)Xi + Zr(m) (18a)

=
√

λ1r(m)X1 +
∑

i∈Bm

i �=r(m)

√
λir(m)Xi

+
∑

i∈Bc
m

i �=r(m)

√
λir(m)Xi + Zr(m). (18b)

The term inside the summation on the right hand side of
(16) can be evaluated as

I(XBm
; Yr(m)|XBc

m
) =

1
2

log

⎡
⎣1 +

∑
i∈Bm

i �=r(m)
λir(m)Pi

λ1r(m)P1 + Nr(m)

⎤
⎦ .

(19)
We note that all Xi are independent, as seen from (17).

Using the compress-forward strategy, the node j’s quantized
received signal is

Ỹj = Yj + Wj =
∑

i=1,...,T−1
i �=j

√
λijXi + Zj + Wj , (20)

where Wj ∼ N (0, Qj) are independent quantization noise.
The left hand side of (16) is

I(ỸS ; YS |XR, ỸSc , YT ) ≤ I(ỸS ; YS |XR) (21a)

= H(ỸS |XR) − H(ỸS |YS , XR)
(21b)

The first term in (21b) is

H(ỸS |XR) =
1
2

log 2πeDΛ(D), (22)

where Λ(D) is defined in (25), s(i) are ordered elements in
S and D = |S|.

The second term in (21b) is

H(ỸS |YS , XR) =
1
2

log 2πeDQs(1) · · ·Qs(D). (24)

Now a sufficient condition for (16) is

I(ỸS ; YS |XR) ≤
M∑

m=1

I(XBm
; Yr(m)|XBc

m
), (25)

or in the Gaussian channel,

Qs(1) · · ·Qs(D) ≥
Λ(D)

∏M
m=1

⎡
⎣1 +

P
i∈Bm

i �=r(m)

λir(m)Pi

λ1r(m)P1+Nr(m)

⎤
⎦

. (26)

Hence, we have the following theorem on the T -node
Gaussian multiple relay channel.

Theorem 2: Consider a memoryless T -node Gaussian mul-
tiple relay channel. Using independent Gaussian input Xi,
i = 1, . . . , T − 1, with power constraints E[X2

i ] ≤ Pi, the
following rate is achievable

R = max
independent Gaussian inputs

E[X2
i ]≤Pi

I(X1; ỸR, YT |XR), (27)

where Ỹj = Yj + Wj and Wj ∼ N (0, Qj) are independent
quantization noise. The rate equation is subject to the con-
straints

Qs(1) · · ·Qs(D) ≥
Λ(D)

∏M
m=1

⎡
⎣1 +

P
i∈Bm

i �=r(m)

λir(m)Pi

λ1r(m)P1+Nr(m)

⎤
⎦

, (28)

for all S ⊆ R, {s(1)...s(D)} = S, all partitions {Bm}M
m=1 of

S, and all r(m) ∈ {2, . . . , T} \Bm. R is the set of all relays.
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For (28) to hold, a sufficient condition is that Pj ,∀j ∈ R,
are large, Λ(D) not too large, λ1jP1,∀j ∈ R not too large.
With these extra conditions, we have the capacity theorem in
the next section.

We note that the achievability of (27) makes use of the
Markov lemma [16, Lemma 4.1], which requires strong typi-
cality. Though strong typicality does not extend to continuous
random variables, we can generalize the Markov lemma for
Gaussian inputs and thus show that (27) is achievable [7].

VI. THE CAPACITY OF THE GAUSSIAN SSMRSD MESH

NETWORK

By definition, mesh networks employ powerful relay nodes.
Now, we study the case when the relay power constraint grows
without bound and finite source transmit power, meaning,

P1 < ∞ (29a)

Pi → ∞, ∀i ∈ R. (29b)

While this may not be practical, it does allow us to characterize
the capacity and to study how the rates scale with power. We
also assume that the relays and the destination are not near
the source, meaning

λ1j = Ki, ∀j ∈ R ∪ {T}, (30)

for some Ki not large. Under this condition, we can set

Qi → 0, ∀i ∈ R, (31)

while (28) can still be satisfied for all S ⊆ R, all partitions
{Bm}M

m=1 of S, and all r(m) ∈ {2, . . . , T}\Bm. When Qi →
0, the quantized received signals approach the received signals,
that is

Ỹi = Yi + Wi → Y +
i , (32)

for all ∀i ∈ R. The achievable rate in (27) becomes

R → max
independent Gaussian inputs

E[X2
1 ]≤P1

I(X1; YRYT |XR). (33)

We see that (33) has the same form as the capacity upper
bound (14) of the SSMRSD mesh network. The upper bound
(14) is maximized over all possible input distributions but the
achievable rate (33) is achievable with independent Gaussian
inputs. However, Theorem 1 states that the cut-set upper bound
is maximized by using independent Gaussian inputs. Hence,
the compress-forward strategy approaches the cut-set upper
bound of the SSMRSD mesh network asymptotically. This is
summarized in the following theorem.

Theorem 3: The achievable rate of the compress-forward
strategy approaches the capacity of the Gaussian SSMRSD
mesh network (where no node is near the source), which is
equivalent to the Gaussian multiple relay channel (where the
relays and the destination are not near the source), asymptot-
ically as the relay power grows relays. The capacity is given
by

CSSMRSDMesh = max
independent Gaussian inputs

E[X2
1 ]≤P1

I(X1; YRYT |XR). (34)

We note that the capacity is achieved by driving Qi → 0
hence making Ỹi → Yi. This can also be achieved by driving

λijPi

λ1jP1+Nj
→ ∞,∀i, j ∈ R and Λ(D) finite.

VII. CONCLUSION

The deployment of wireless networks will likely include
mesh routers acting as relays. For that reason, it makes sense
to understand how these powerful relays should be used. In this
paper, we have taken a step in that direction using information
theoretic ideas. We have shown that the compress-forward
strategy achieves the capacity of the SSMRSD mesh network
asymptotically when the relays’ powers are unconstrained.

We note that when the relays can transmit at high power,
they can communicate almost noiselessly with each other and
the destination. A similar situation arises when the relays are
clustered at the destination. The best strategy (in an asymptotic
sense) for the nodes in this scenario is for them to cooperate to
form a receive antenna array [17] and use compress-forward.
While the capacity achieving strategy is the same, we have
observed that the convergence behaviors seem to be different.
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