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Abstract— In this paper, we investigate achievable rates for
data transmission from sources to sinks through multiple relay
networks. We consider myopic coding, a constrained communi-
cation strategy in which each node has only a local view of the
network, meaning that nodes can only transmit to and decode
from neighboring nodes. We compare this with omniscient coding,
in which every node has a global view of the network and
all nodes can cooperate. Using Gaussian channels as examples,
we find that when the nodes transmit at low power, the rates
achievable with two-hop myopic coding are as large as that
under omniscient coding in a five-node multiple relay channel
and close to that under omniscient coding in a six-node multiple
relay channel. These results suggest that we may do local
coding and cooperation without compromising much on the
transmission rate. Practically, myopic coding schemes are more
robust to topology changes because encoding and decoding at a
node are not affected when there are changes at remote nodes.
Furthermore, myopic coding mitigates the high computational
complexity and large buffer/memory requirements of omniscient
coding.

I. INTRODUCTION

A. Multiple Relay Channels and Channel Constraints

The relay channel was first introduced by van der Mue-
len [1] in his work on three terminal networks. The capacity
of a special class (known as the degraded relay channel) of the
relay channel was found by Cover and El Gamal [2]. In that
paper, two coding strategies were proposed for the general re-
lay channel, which were subsequently termed decode-forward
strategy and compress-forward strategy. Gupta and Kumar [3]
extended the relay channel to the multiple relay channel,
where there is more than one relay node in the channel.
The decode-forward and the compress-forward strategies were
extended to the multiple relay channel by Xie and Kumar [4]
and Kramer et al. [5] respectively. In these strategies, block
Markov encoding (see [2] for irregular block Markov and
[6] for regular block Markov) is used. In decoding, forward
decoding [2] can be used for irregular Markov encoding and
backward decoding [7] or window decoding [8] can be used
for regular block Markov encoding.

Consider the five-node Gaussian multiple relay channel
depicted in Fig. 1. Using the decode-forward strategy, node
1 splits its power to send different messages to nodes 2-5
during each transmission. In decoding, each node decodes
messages from the transmissions of all nodes behind it. As
the effect of all nodes’ transmissions is being considered in
the coding design, a node needs to be aware of the presence
of all other nodes and to have knowledge of their codebooks.

Fig. 1. Omniscient coding in a five-node Gaussian multiple relay channel.

We see that encoding and decoding can get complicated, e.g.,
more processing and buffering, as the network size grows.
We call this unconstrained communication on the multiple
relay channel with a global view and complete cooperation
omniscient coding.

The simplest approach to data transmission is for a node
to communicate with only one node at a time. This leads
naturally to multi-hop routing, in which each node sends data
to the next node in the route and decodes data from the
previous node in the route. The transmissions of the other
nodes are treated as noise. We term this highly constrained
communication point-to-point coding.

In this paper, we look at the compromise between om-
niscient coding and point-to-point coding. We study how
encoding and decoding are done when a node sees only a
few other nodes. We term this constrained communication
with a local view and limited cooperation myopic coding.
We determine achievable rates of multiple relay channels
under myopic coding, using regular block Markov encoding
and window decoding. However, the encoding and decoding
techniques differ from that found in the literature (in [4] and
[8]) as the nodes have limited view. We note that point-to-point
coding and omniscient coding are limiting cases of myopic
coding.

B. Practical Advantages of Myopic Coding

Under omniscient coding, any topology change in the net-
work, for example node failure or mobility, requires reconfig-
uration of coding and decoding at every node in the network.
This is due to the fact that a node considers the transmission
of all other nodes in its encoding and decoding processes.
Myopic coding, however, does not suffer from this problem.
Using the five-node multiple relay channel as an example,
Fig. 2 depicts two-hop myopic coding, where a node only



Fig. 2. Two-hop myopic coding in a five-node multiple relay channel.

sees nodes within two hops away. Under this coding, when
node 4 fails, no change is required at node 1, which is three
hops away.

Besides being robust to topology changes, myopic coding
offers additional practical advantages over omniscient coding.
Since a node only needs to send signals to a few neighboring
nodes, less computation is required at that node. Also, a node
needs less memory for data buffering and codebook storage
as decoding is done over a smaller decoding window size.

C. Contributions

We fist derive achievable rate regions for the multiple relay
channel under two myopic coding constraints, namely one-hop
coding and two-hop coding. We use the concept of regular
block Markov encoding to construct encoding methods for
each node under one-hop coding and two-hop coding. For
decoding, we use the concept of window decoding, where the
decoding of a message symbol is done over a few transmission
blocks.

We compare achievable rates under myopic coding to that
under omniscient coding. We show that when nodes transmit
at low power, the achievable rate region under two-hop coding
is the same as (in a five-node multiple relay channel) and close
to (in a six-node multiple relay channel) that achievable under
omniscient coding. The achievable rate region under one-hop
coding is close to that achievable under omniscient coding in a
five-node channel but far below that under omniscient coding
in a six-node channel.

We then extend the analysis to k-hop myopic coding, where
k > 2 is a positive integer. We construct encoding and
decoding algorithms for k-hop coding and derive an achievable
rate region. We also show that achievable rates under myopic
coding are bounded away from zero even as the total number
of nodes in the network grows large.

II. CHANNEL MODEL AND NOTATIONS

Fig. 3 depicts a T -node multiple relay channel, with node
1 being the source node and node T being the destination
node. Nodes 2 to T − 1 are relay nodes. The message W
is generated at node 1 and is to be sent to the sink at node
T . A memoryless multiple relay channel can be completely
described by the channel distribution

p∗(y2, y3, . . . , yT |x1, x2, . . . , xT−1) (1)

Fig. 3. A T -node multiple relay channel.

on Y2 × Y3 × · · · × YT , for each (x1, x2, . . . , xT−1) ∈ X1 ×
X2 ×· · ·×XT−1. In this paper, we only consider memoryless
channels, which means

p∗(yn
2 ,yn

3 , . . . ,yn
T |xn

1 ,xn
2 , . . . ,xn

T−1)

=
n∏

i=1

p∗(y2,i, y3,i, . . . , yT,i|x1,i, x2,i, . . . , xT−1,i) (2)

where xn
j = (xj,1, xj,2, . . . , xj,n) is an ordered vector of xj

of size n.
Standard terms, such as codebook, error probability, typical

sequences, and achievable rates, are the same as those defined
in [9]. When the terms carry different meanings, they will be
explicitly defined. We define myopic coding as follows.

Definition 1: k-hop myopic coding is defined as con-
strained communication among nodes in the multi-terminal
network satisfying the following:

• In encoding, a node can only transmit messages that it
has decoded or compressed from the past k blocks of
received signal.

• A node can only store a decoded message in its memory
over at most k blocks.

• In decoding, a node can only decode/process one message
using only k blocks of received signal.

We note that the notion of the “view” of a node, meaning
how many other nodes a node can see, is embedded in the
definition itself. This definition allows myopic coding to be
easily extended to other types of channels, for instance, the
broadcast multiple relay channel and the multiple access relay
channel [10]. Also, the rationale of myopic coding stems from
the advantage of having less processing and less storage at a
node.

III. ACHIEVABLE RATES UNDER DIFFERENT CODING

Let R be the set of all relay nodes, R = {2, 3, . . . , T − 1},
and let π(·) be a permutation on R. Define π(1) = 1, π(T ) =
T and π(i : t) = {π(i), π(i + 1), . . . , π(t)}.

A. One-Hop Myopic Coding

Under one-hop coding, each node only sends signals to the
node in front of it and decodes signals from the node behind
it. We assume perfect echo cancellation, which means that a
node is able to cancel the effect of its own transmission in its
received signals. Using non-constructive coding [11], node t
can receive information up to the following rate.

Rt ≤ max I(Xt−1; Yt|Xt) (3)

for t ∈ {2, . . . , n} and XT = 0. The maximization is over
the distribution p(x1)p(x2) · · · p(xT−1). Since all information



Fig. 4. A two-hop encoding strategy.

must pass through all nodes in order to reach the destination,
the overall rate is constrained by

R ≤ max
π(·)

max
p(·)

min
t∈{2,...,T}

I(Xt−1; Yt|Xt). (4)

B. Two-Hop Myopic Coding

Instead of just transmitting to one node in front, a node
might want to help the node in front to transmit to the node that
is two hops away. The nodes can do that in two-hop myopic
coding. Equivalently, in block i, a node transmits data that it
has decoded in blocks i−1 and i−2. In decoding, it decodes
one message using only two blocks of received signals. We
consider B + T − 2 transmission blocks, each of n uses of
the channel. A sequence of independent B indices, w(b) ∈
{1, 2, . . . , 2nR}, b = 1, 2, . . . , B will be sent over n(B+T−2)
uses of the channel. As B → ∞, the rate RnB/n(B + T −
2) → R for any n.

1) Codebook Generation: In this section, we describe how
codebooks at each node are generated.

• First, fix the probability distribution

p(u1, u2, . . . , uT−1, x1, x2, . . . , xT−1)
= p(u1)p(u2) · · · p(uT−1)p(x1|u1, u2)p(x2|u2, u3)
· · · p(xT−1|uT−1), (5a)

for each ui ∈ Ui.
• For each t ∈ {1, . . . , T − 1}, generate 2nR independent

and identically distributed (i.i.d.) n-sequences in Un
t , each

drawn according to p(ut) =
∏n

i=1 p(ut,i). Index them as
ut(wt), wt ∈ {1, . . . , 2nR}.

• Define xT−1(wT−1) = uT−1(wT−1).
• For each t ∈ {1, . . . , T − 2}, define a deterministic

function that maps (ut,ut+1) to xt:

xt(wt, wt+1) = ft

(
ut(wt),ut+1(wt+1)

)
. (6)

• Steps 2 to 4 are repeated to generate a new independent
set of codebooks. These two codebooks are used in
alternate transmission blocks.

We see that in each transmission block, node t, t ∈
{1, . . . , T − 2}, sends messages of two blocks wt (new data)
and wt+1 (old data). In the same block, node t + 1 sends
messages wt+1 and wt+2. Note that a node cooperates with
the node in front by repeating the transmission wt+1. Subscript
t represents new data that is being sent by node t.

2) Encoding: Fig. 4 shows the encoding process for two-
hop coding. The encoding steps are as follows:

• In the beginning of block 1, the information source emits
the first source letter w1. Here, we use superscript to
indicate the time index of the source letter. That is,
the source emits w1, w2, . . . , wb at the beginning of
block 1, 2, . . . , b respectively. Note that there is no new
information after block B. We define wB+1 = wB+2 =
· · · = wB+T−2 = 1.

• In block 1, node 1 transmits x1(w1, w0). Since the rest of
the nodes have not received any information, they send
the dummy letter xi(w2−i, w1−i), i ∈ {2, . . . , T − 1}.
We define wb = 1, for b ≤ 0.

• At the end of block 1, assuming that node 2 correctly
decodes the first signal w1, it transmits x2(w1, 1).

• Generalizing, in block b ∈ {1, . . . , B + T − 2}, node
t, t ∈ {1, . . . , T − 1}, would have decoded data
(w1, w2, . . . , wb−t+1) and it sends xt(wb−t+1, wb−t).

3) Decoding and Achievable Rates: All nodes except node
2 decode one message over two blocks of the received
signal. As depicted in Fig. 5, node t decodes the message
wb−t+2 over blocks (b − 1) and b. It can be shown that
the rate at which the message W is decodable at node
t is I(Ut−2, Ut−1; Yt|Ut, Ut+1). It can be shown that the
probability of error can indeed be made as small as desired
if the rate constraint above is satisfied. The proofs, given in
[10], are omitted due to space limitations.

Theorem 1: In a T -node memoryless multiple relay chan-
nel, under two-hop coding, the following rate is achievable,

R ≤ max
π(·)

max
p(·)

min
t∈{2,...,T}

I(Ut−2, Ut−1; Yt|Ut, Ut+1), (7)

where U0 = UT = UT+1 = 0 and the maximization is taken
over all joint distributions of the form

p(x1, x2 . . . , xT−1, u1, u2 . . . , uT−1, y2, y3 . . . , yT )
= p(u1)p(u2) · · · p(uT−1)p(x1|u1, u2)p(x2|u2, u3) · · ·

p(xT−1|uT−1)p∗(y2, . . . , yT |x1, . . . , xT−1). (8a)

C. Omniscient Coding

Omniscient coding was considered by Xie and Kumar [4].
Using the decode-forward strategy, they showed that the
following rate is achievable,

R ≤ max
π(·)

max
p(·)

min
1≤t≤T−1

I(Xπ(1:t); Yπ(t+1)|Xπ(t+1;T−1)).

(9)
The first maximization allows us to arrange the order of
the relay nodes in which the data flows through them.
The second maximization is over all possible distributions
p(x1, x2, . . . , xT−1). The minimization is on the rate at which
each relay node receives. This is because each node needs to
fully decode every message.



Fig. 5. Decoding at node t of message wb−t+2.

Fig. 6. Achievable rates under different coding constraints in a five-node
multiple relay channel.

IV. PERFORMANCE COMPARISON ON GAUSSIAN

CHANNELS

For the purpose of comparison, we study the performance
of the different schemes on Gaussian channels of the form,

Yt =
T−1∑
i=1
i�=t

√
κd−η

it Xi + Zt, t = 2, 3, . . . , T (10)

where Xi is a random variable with power constraint E[X2
i ] ≤

Pi and Zt is the receiver noise, which is a zero mean Gaussian
random variable with variance Nt. We use the standard path
loss model for signal propagation, where dit is the distance
between node i and node t, κ is a positive constant, η is the
path loss exponent, and η ≥ 2 with equality for free space

Fig. 7. Achievable rates under different coding constraints in a six-node
multiple relay channel.

transmission. Also, we consider networks where the nodes are
arranged in a straight line.

Figures 6 and 7 show achievable rates under one-hop
coding, two-hop coding, and omniscient coding in a five-node
and a six-node Gaussian multiple relay channels respectively.
We make the following observations.

• As expected, the achievable rates under myopic coding
are not more than that under omniscient coding. However,
at low SNR, we see that myopic coding is close to
omniscient coding.

• We note that achievable rates increase significantly from
one-hop to two-hop coding. This suggests that for a
multiple relay channel with many nodes, myopic coding
with ”short” view is sufficient.



• We define ρi = Rmyopic/Romniscient where i = 1, 2 for one-
hop and two-hop coding respectively. When the number
of nodes increases, ρ1 and ρ2 decrease. This is because
more nodes are ignored in myopic coding when the
channel size gets larger. However, in a six-node channel,
two-hop coding can still achieve ρ2 > 0.8 for transmit
SNR smaller than 1dB.

V. EXTENDING TO k-HOP CODING

Now, we generalize two-hop coding to k-hop coding where
k ∈ {1, . . . , T − 1}. The proof is given in [10] but omitted
here.

Theorem 2: In a T -node memoryless multiple relay chan-
nel, using k-hop coding, the following rate is achievable.

R ≤ max
π(·)

max
p(·)

min
t∈{2,...,T}

I(Ut−k, . . . , Ut−1; Yt|Ut, . . . , Ut+k−1)

(11)
where U2−k = U3−k = · · · = U0 = UT = UT+1 = · · · =
UT+k−1 = 0 and the maximization is taken over all joint
distributions of the form

p(x1, x2 . . . , xT−1, u1, u2 . . . , uT−1, y2, y3 . . . , yT )

=
T−1∏
i=1

p(ui)
k∏

i=1

p(xT−i|uT−i, . . . , uT−1)

×
T−k−1∏

i=i

p(xi|ui, . . . , ui+k−1)

× p∗(y2, . . . , yT |x1, . . . , xT−1). (12a)

VI. MYOPIC CODING IN LARGE NETWORKS

Since the transmission beyond the view of a node is treated
as noise, one concern with myopic coding is whether the rate
vanishes as the number of nodes grows. We analyze two-hop
coding in a T -node multiple relay channel, assuming that the
nodes are equally spaced at 1m apart and transmit at power
P ′. Considering the reception of node t, the signal power is
given by

Psig(t) =
(√

3−ηαt−3P +
√

2−η(1 − αt−2)P
)2

+
(√

2−ηαt−2P +
√

1−η(1 − αt−1)P
)2

> 0.

(13a)

where P = κP ′.
The noise power is Pnoise(t) = Nt < ∞ and the interfer-

ence power is given by

Pint(t)
P

= 3−ηαt−3 +
t−1∑
k=4

1
kη

+ 1−ηαt+1 +
T−t−1∑

k=2

1
kη

+ 2
t−2∑
k=3

√
(1 − αt−k)αt−(k+1)

kη(k + 1)η

+ 2
T−t−3∑

k=1

√
αt+k(1 − αt+k+1)

kη(k + 1)η
. (14a)

Noting that 0 ≤ αt ≤ 1,∀t and simplifying (14a), we get

Pint(t)
P

< 6
T∑

k=1

1
kη

< 6ζ(η). (15)

Here ζ(η) =
∑∞

k=1
1

kη is the Riemann zeta function, which
is a decreasing function of η. Since, the path loss exponent is
always greater than 2, Pint(t) < 6ζ(2)P = π2P . Hence, we
can always find set of {α1, . . . , αT−2} such that the reception
rate at every node t, ∀t ∈ {2, 3, . . . , T}, is

Rt =
1
2

log
[
1 +

Psig(t)
Pint(t) + Nt

]
> 0. (16)

When more nodes are included in the “view” in myopic
coding, Psig increases and Pint decreases. In general, assum-
ing that the nodes are roughly equally spaced, the achievable
rates under k-hop myopic coding (k ≥ 2) are bounded away
from zero even as the network size grows to infinity.

VII. CONCLUSION

In this paper, we compare myopic coding, i.e., local view
and limited cooperation, and omniscient coding, i.e., global
view and complete cooperation, on multiple relay channels.
We compute achievable rates for myopic coding in a T -
node multiple relay channel, using regular block Markov
encoding and window decoding. Our experiments with five-
node and six-node relay channels showed a significant rate
improvement from one-hop to two-hop coding and that two-
hop coding can be as good as omniscient coding. These
observations demonstrate the benefits of local cooperation and
that only a small fraction of the nodes need to cooperate. This
suggests that local coding design may be good enough without
compromising rate.
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