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Abstract —

We investigate the achievable rate of data transmis-

sion from sources to sinks through a multiple-relay

network. We study achievable rates for omniscient

coding, in which all nodes are considered in the coding

design at each node. We find that, when maximizing

the achievable rate, not all nodes need to “cooperate”

with all other nodes in terms of coding and decod-

ing. This leads us to suggest a constrained network,

whereby each node only considers a few neighboring

nodes during encoding and decoding. We term this

myopic coding and calculate achievable rates for my-

opic coding. We show by examples that, when nodes

transmit at low SNR, these rates are close to that

achievable by omniscient coding, when the network

is unconstrained . This suggests that a myopic view

of the network might be as good as a global view.

In addition, myopic coding has the practical advan-

tage of being more robust to topology changes. It

also mitigates the high computational complexity and

large buffer/memory requirements of omniscient cod-

ing schemes.

I. Introduction

Wireless networks have been receiving much attention re-
cently by both researchers and industry. The main advantage
to users of wireless technology is the seamless access to the
network whenever and wherever they are. The main advan-
tage to providers of wireless technology is easier deployment
as no cable laying is required. These advantages come at the
expense of other problems. Data transmission in peer-to-peer
wireless networks is done over a shared medium. Hence direct
transmission from the source node to a far situated destination
node is not desirable as it consumes high transmission power
(due to path loss) and creates much interference to other users.
Hence data is usually transmitted via multiple-hop routing.

In multiple-hop routing, the common approach in existing
works is that the wireless network is abstracted into a com-
munication graph, essentially turning it into a collection of
point-to-point links. However, this approach ignores the in-
herent broadcast nature of the wireless channel, namely that
other nodes can hear (and thus can act as relays) transmis-
sions meant for other nodes. To understand how functions
such as medium access, routing and transport should be done
in “true” wireless networks, we need to understand how to
communicate on these wireless networks. This is the aim of
this work, to understand how to efficiently communicate data
from sources to sinks through a network of wireless relays via
cooperation among the nodes.

Figure 1: Omniscient coding on a five-node Gaussian
multiple-relay channel.

I.A Coding for the Multiple-Relay Channel

As described, multi-hop routing is desirable in the wireless
network. When only one source node and one destination
node is being considered, and for a pre-defined fixed route,
the scenario reduces to a multiple-relay channel [1]. A five-
node multiple-relay channel is depicted in Figure 1, where the
leftmost node is the source, the rightmost node is the sink and
nodes in the middle relay information for the source.

Clearly, the best thing to do is for all nodes to cooperate to
help the source send its data to the sink. This requires a node
to be aware of the presence of other nodes and to have knowl-
edge of the processing they do. We call this unconstrained
communication on the multiple-relay channel with a global
view and complete cooperation omniscient coding.

In the literature [2][3], various strategies, including amplify-
forward (AF), decode-forward (DF) and compress-forward
(CF), for communication on the multiple relay channel are
proposed and corresponding achievable rate regions are found.
A common characteristic of these strategies is that the coding
and decoding at each node takes into account the transmission
of all other nodes. Consider a 5-node Gaussian multiple-relay
channel, as depicted in Figure 1. Using DF, a node splits its
transmission power and sends a fraction of its transmission to
each node in front of it (towards the destination). For decod-
ing, a node decodes signals from all nodes behind (towards the
source). At the same time, it cancels interfering transmission
from nodes in front. This is possible since it knows what those
nodes send, by the direction of information flow. Clearly, the
achievable rates for AF, DF and CF are all lower bounds to
the best possible rate with omniscient coding.

We discover that in Gaussian multiple-relay channels, using
the DF strategy, some of the power splits in omniscient coding
are optimum (in the sense of maximizing rate) when set to
zero. Details will be given in section III. This suggests that
nodes should not transmit to all other nodes. In other words,
not all nodes need to “cooperate” with all other nodes to help
the source send efficiently to the sink. We call this constrained
communication on the multiple-relay channel with a local view



Figure 2: Two-hop myopic coding on a five-node multiple-
relay channel.

and limited cooperation myopic coding. To investigate myopic
coding, we start by studying achievable rates when a node
only transmits to or cooperates with a few neighboring nodes.
For example, a two-hop myopic coding scheme is depicted in
Figure 2, whereby a node only transmit to two nodes in front.

I.B Practical Advantages of Myopic Coding

Myopic coding trades performance (though not significantly
as we will see later) for some clear practical advantages. In
a large network, constructing a coding scheme that takes into
account all nodes can be complicated and optimizing the code
is more difficult compared to a coding scheme in which a node
only transmits to neighboring nodes. This technique of uti-
lizing local knowledge (or limited cooperation) is prevalent
in other wireless network problems, e.g., cluster-based rout-
ing [4], whereby nodes are split into clusters and routes are
optimized locally.

With omniscient coding, any topology change in the net-
work, for example node failure or node mobility, requires re-
configuration of the coding and decoding processes at every
node. However, with myopic coding, the failure of one node
will only affect its neighboring nodes, thus limiting the recon-
figuration required.

Besides being robust to topology changes, myopic coding
enjoys several complexity advantages. Since a node only needs
to transmit to and decode from a few nodes, there is less
computation required in the encoding and decoding processes.
Furthermore, since nodes need to buffer data for data trans-
mission and interference cancellation, there is also less mem-
ory required for buffering and codebook storage.

I.C Contributions

First, we study omniscient coding in multiple-relay channels
in Section III. We consider a five-node Gaussian multiple-
relay channel and calculate an achievable rate under omni-
scient coding. We maximize the achievable rate (when the
DF strategy is used) with respect to power splits and show
that some power splits can be zero, which means that a node
should not transmit to all nodes but only to a few nodes.

Next, we derive achievable rates for one-hop and two-hop
myopic coding in multiple-relay channels in Sections IV and
V respectively. We show how the rates can be achieved
in Shannon-sense via non-constructive coding using the DF
strategy. We also extend the achievable rate to that of k-hop
myopic coding in Section VI.

In Section VII, we compare the achievable rates under om-
niscient coding and myopic coding. We show that in the five-
node Gaussian multiple-relay channel, when the nodes operate

Figure 3: A five-node Gaussian multiple-relay channel.

in the low transmit signal-to-noise (SNR) region, the achiev-
able rate region under myopic coding is close to that achievable
under omniscient coding. This suggests that, in practice, local
cooperation is good enough in a large network.

II. System Model

In this paper, we investigate omniscient coding and myopic
coding on a T -node multiple-relay channel, with node 1 be-
ing the source node and node T being the destination node.
Nodes 2 to T − 1 are purely relay nodes. Message W is gen-
erated at node 1 and is to be transferred to the sink at node
T . A memoryless multiple-relay channel can be completely
described by the channel distribution

p∗(y2, y3, . . . , yT |x1, x2, . . . , xT−1) (1)

on Y2×Y3×· · ·×YT , for each (x1, x2, . . . , xT−1) ∈ X1×X2×
· · · × XT−1.

In this paper, we only consider memoryless channels which
means

p∗(yn
2 ,yn

3 , . . . ,yn
T |xn

1 ,xn
2 , . . . ,xn

T−1)

=

n∏
i=1

p∗(y2,i, y3,i, . . . , yT,i|x1,i, x2,i, . . . , xT−1,i) (2)

where xn
j = (xj,1, xj,2, . . . , xj,n) is an ordered vector of xj of

size n.
For comparison, we calculate achievable rates under differ-

ent coding schemes on a one-dimensional five-node Gaussian
multiple-relay channel. The setup is depicted in Figure 3.
Node 1 is the source node, nodes 2, 3, 4 are the relay nodes
and node 5 is the destination node. Node i, i ∈ {1, 2, 3, 4},
sends Xi and node t, t ∈ {2, 3, 4, 5}, receives

Yt =

4∑
i=1
i6=t

√
kd−η

it Xi + Zt, (3)

where Xi is a random variable with E[X2] ≤ Pi, Pi is the
power constraint of node i, and Zt is the receiver noise, which
is a zero mean Gaussian random variable with variance Nt.
We assume Xi to be Gaussian. We use a simplified path loss
model for signal propagation, in which η is the path loss expo-
nent (η ≥ 2 with equality for free space transmission), k is a
positive constant, and dit is the distance between node i and
node t.

III. Achievable Rates with Omniscient Coding

Coding based on DF and windowed decoding was proposed
by Xie and Kumar [1], whereby a node splits its power and
transmits a portion of its power to every node in front. It gets
new data from nodes behind itself. Let R be the set of all
relay nodes, R = {2, 3, . . . , T − 1}. Let π(·) be a permutation



Figure 4: Achievable rates under omniscient coding in
a five-node multiple-relay channel, with equal distance
among nodes.

on R. Define π(1) = 1, π(T ) = T and π(i : j) = {π(i), π(i +
1), . . . , π(j)}. [1] shows that the following rate, which is higher
than that in [2], is achievable:

R ≤ max
π(·)

max
p(·)

min
t∈{1,...,T−1}

I(Xπ(1:t); Yπ(t+1)|Xπ(t+1;T−1)).

(4)
The outer maximization is over the order of the relay nodes
through which data flows. The second maximization is over all
possible distributions p(x1, x2, . . . , xT−1) on (X1, XR). The
minimization is on the rate at which each relay node receives.

III.A On Gaussian Channels
On Gaussian channels, the encoding method is as follows:

1. Node 4 sends X4 =
√

P4U4.

2. Node 3 sends X3 =
√

(1− α3)P3U3 +
√

α3P3U4.

3. Node 2 sends X2 =
√

(1− α2 − β2)P2U2 +
√

β2P2U3 +√
α2P2U4.

4. Node 1 sends X1 =
√

(1− α1 − β1 − γ1)P1U1 +√
γ1P1U2 +

√
β1P1U3 +

√
α1P1U4.

Here, U1, U2, U3, and U4 are independent Gaussian random
variables with unit variances, 0 ≤ α1 + β1 + γ1 ≤ 1, 0 ≤
α2 + β2 ≤ 1, and 0 ≤ α3 ≤ 1. For instance, node 1 allocates
α1 of its total power to transmit to node 5, β1 of its power to
node 4, γ1 of its power to node 3, and the remaining power to
node 2.

In one-dimensional Gaussian channels, we can show that
the achievable rate in (4) is

R = max
{αi,βi,γi}

min
t∈{2,...,T}

Rt, (5)

where Rt is the reception rate at node t given by

Rt ≤
1

2
log 2πe

k

t∑
j=2

(
j−1∑
i=1

√
d−η

it αi,jPi

)2

+ Nt


− 1

2
log 2πeNt (6a)

=
1

2
log

1 +
k

Nt

t∑
j=2

(
j−1∑
i=1

√
d−η

it αi,jPi

)2
 . (6b)

Figure 5: Achievable rates under omniscient coding in
a five-node multiple-relay channel, with node 2 closer to
node 1.

Figures 4 and 5 shows the achievable transmission rates
with omniscient coding. Two cases are studied: when all
nodes are separated equally and when node 2 is nearer to
node 1.

In Figure 4, with equal node spacing, we see that α1 =
β1 = γ1 = β2 = 0. This means node 2 only transmits to node
3 and 5; while node 1 only transmits to node 2. In Figure 5,
with unequal spacing, α1 = β1 = α2 = β2 = 0. This means
node 2 only transmits to node 3; while node 1 only transmits
to nodes 2 and 3. This selective transmission suggests that
a node should not cooperate with all nodes in its coding and
decoding.

The fact that a node need not cooperate with all other
nodes to maximize the achievable rate leads us to investigate
achievable rates when nodes can only transmit to a few other
nodes. A systematic way is to investigate a constrained net-
work where each node can only “see” a few neighboring nodes,
i.e., nodes are myopic, choosing only to interact with nodes
close to themselves. The motivation here is that if the achiev-
able rates of the constrained network are as good as the un-
constrained network, the simpler and more practical approach
of myopic coding may be good in large networks.

IV. One-Hop Myopic Coding

In one-hop myopic coding, each node only sends signals to the
node in front of it and decode signals from the node behind
it. With one-hop coding, node t can receive information up
to rate

Rt ≤ max I(Xt−1; Yt|Xt) (7)

for t ∈ {2, . . . , T} and XT = 0. The maximization is over
the distribution p(x1)p(x2) · · · p(xT−1). Since all information
must pass through all nodes in order to reach the destination,
the overall rate is constrained by

R = min
t∈{2,...,T}

Rt. (8)

V. Two-Hop Myopic Coding

Instead of just transmitting to one node in front, a node might
want to help the node in front to transmit to the node that is



Figure 6: Decoding at node t of message wb−t+2

two hops away. We term this two-hop myopic coding, where
a node transmits to nodes within two hops away. We consider
B + T − 2 transmission blocks, each of n uses of the channel.
A sequence of B independent indices, wb ∈ {1, 2, . . . , 2nR},
b = 1, 2, . . . , B will be sent over n(B + T − 2) uses of the
channel. As B → ∞, the rate RnB/n(B + T − 2) → R for
any n.

V.A Codebook Generation and Encoding

In this section, we see how codebooks at each node are
generated.

1. First, fix the probability distribution

p(u1, u2, . . . , uT−1, x1, x2, . . . , xT−1)

= p(u1)p(u2) · · · p(uT−1)p(x1|u1, u2)p(x2|u2, u3)

· · · p(xT−1|uT−1)

for each ui ∈ Ui.

2. For each t ∈ {1, . . . , T − 1}, generate 2nR independent
and identically distributed (i.i.d.) n-sequences in Un

t ,
each drawn according to p(ut) =

∏n
i=1 p(ut,i). Index

them as ut(wt), wt ∈ {1, . . . , 2nR}.
3. Define xT−1(wT−1) = uT−1(wT−1).

4. For each t ∈ {1, . . . , T − 2}, define a deterministic func-
tion that maps (ut,ut+1) to xt:

xt(wt, wt+1) = ft

(
ut(wt),ut+1(wt+1)

)
. (10)

Here, the subscript t for wt indicate the new message
transmitted by node t.

5. In block b ∈ {1, . . . , B + T − 2}, assuming node t, t ∈
{1, . . . , T − 1}, has decoded (w1, w2, . . . , wb−t+1), sends
xt(w

b−t+1, wb−t). Here, we use superscript to indicate
the time index of the source letter, meaning that the
source emits w1, w2, . . . , wB at the beginning of block
1, 2, . . . , B respectively. The encoding for the first few
block of nodes 1 to 4 is depicted in Figure 7.

Figure 7: A two-hop encoding scheme

We see that in each transmission block, node t, t ∈
{1, . . . , T − 2}, sends two message indices wt (new data) and
wt+1 (old data). In the same block, node t+1 sends messages
wt+1 and wt+2. Note that node t cooperates with the node
t + 1 by repeating the transmission wt+1.

V.B Decoding

The decoding of a source letter is carried out over two
blocks. Referring to Figure 6, in block b− 1, node t− 2 sends
xt−2(w

b−t+2, wb−t+1), node t − 1 sends xt−1(w
b−t+1, wb−t).

Knowing wb−t+1, wb−t, and wb−t−1, node t find a set of
wb−t+2 for which{

ut−2(w
b−t+2),ut−1(w

b−t+1),ut(w
b−t),ut+1(w

b−t−1),yt

}
∈ An

ε (Ut−2, Ut−1, Ut, Ut+1, Yt). (11)

Here, An
ε (S) represents the set of ε-typical n-sequence of

the random variables in the set S. We follow the definition
of ε-typical n-sequences defined in [5]. In block b, node t − 1
sends ut−1(w

b−t+2, wb−t+1). Knowing wb−t+1 and wb−t, node
t find a set of wb−t+2 for which{

ut−1(w
b−t+2),ut(w

b−t+1),ut+1(w
b−t),yt

}
∈ An

ε (Ut−1, Ut, Ut+1, Yt). (12)

Node t then finds the intersection of the two sets to de-
termine the value of wb−t+2. This can be done reliably if



Figure 8: Achievable rates comparison under the different
schemes in a five-node multiple-relay channel, with equal
distance among nodes.

R ≤ I(Ut−2, Ut−1; Yt|Ut, Ut+1). This is only the rate con-
straint at one node. In two-hop coding using the DF strategy,
each message must be fully decoded at each node. Hence the
overall rate is constrained by

R = min
t∈{2,...,T}

Rt (13)

where
Rt ≤ I(Ut−2, Ut−1; Yt|Ut, Ut+1) (14)

is the reception rate at node t. We fix U0 = UT = UT+1 = 0.
This gives us the following theorem.

Theorem 1 Consider a T -node multiple-relay channel with
transition probability

p∗(y2, . . . , yT |x1, . . . , xT−1).

Under two-hop coding where each node only transmits to two
nodes in front and decode a message over two blocks, the rate
R is achievable, where

R ≤ sup min
t∈{2,...,T}

I(Ut−2, Ut−1; Yt|Ut, Ut+1) (15)

where U0 = UT = UT+1 = 0 and the supremum is taken over
all joint distribution of the form

p(x1, x2 . . . , xT−1, u1, u2 . . . , uT−1, y2, y3 . . . , yT )

= p(u1)p(u2) · · · p(uT−1)p(x1|u1, u2)p(x2|u2, u3) · · ·
p(xT−1|uT−1)p

∗(y2, . . . , yT |x1, . . . , xT−1).

VI. k-Hop Myopic Coding

We define k-hop myopic coding as a constrained communi-
cation in the multiple-relay channel where a node can only
transmit to k neighboring nodes and decode a message sym-
bol over k blocks. We can show that the following rate is
achievable under k-hop myopic coding using the DF strategy.

Theorem 2 Consider a T -node memoryless multiple-relay
channel with channel with channel transition probability

Figure 9: Achievable rates comparison under different
schemes in a five-node multiple-relay channel, with node
2 closer to node 1

p∗(y2, . . . , yT |x1, . . . , xT−1).

Under k-hop coding where each node only transmits to k nodes
in front, the rate R is achievable, where

R ≤ sup min
t∈{2,...,T}

I(Ut−k, . . . , Ut−1; Yt|Ut, . . . , Ut+k−1) (17)

where U2−k = U3−k = · · · = U0 = UT = UT+1 = · · · =
UT+k−1 = 0 and the supremum is taken over all joint distri-
bution of the form

p(x1, x2 . . . , xT−1, u1, u2 . . . , uT−1, y2, y3 . . . , yT )

= p(u1)p(u2) · · ·
× p(uT−1)p(xT−1|uT−1)p(xT−2|uT−2, uT−1) · · ·
× p(xT−k|uT−k, uT−k+1 . . . , uT−1)

× p(xT−k−1|uT−k−1, uT−k . . . , uT−2) · · ·
× p(x1|u1, u2, . . . , uk)

× p∗(y2, . . . , yT |x1, . . . , xT−1).

VII. Comparison on Gaussian Channels

In this section, we compare achievable rates for one-hop my-
opic coding, two-hop myopic coding, and omniscient coding
on Gaussian multiple-relay channels. On Gaussian channels,
with two-hop myopic coding, node t, t = 1, 2, 3, allocate αt of
its power to transmit to node t + 2 and (1− αt) of its power
to node t + 1. Since there is only one node in front of node 4,
it transmits only to node 5. The transmission by each node is
listed as follows:

1. Node 4 sends X4 =
√

P4U4.

2. Node 3 sends X3 =
√

α3P3U4 +
√

(1− α3)P3U3.

3. Node 2 sends X2 =
√

α2P2U3 +
√

(1− α2)P2U2.

4. Node 1 sends X1 =
√

α1P1U2 +
√

(1− α1)P1U1.

Here, Ui, i = 1, 2, 3, 4 are independent Gaussian random vari-
ables with unit variances and 0 ≤ α1, α2, α3 ≤ 1.

Figures 8 and 9 show the achievable rate under one-hop
coding, two-hop coding and omniscient coding. Two node



configurations are studied, that is when all nodes are separated
equally and when node 2 is nearer to node 1.

When the nodes are equally spaced, the achievable rate
with omniscient coding is always larger than than that achiev-
able with two-hop coding. This is intuitive because in myopic
coding, interactions among the nodes are constrained and this
might restrict the achievable rate. However, when node 2 is
closer to node 1, the achievable rate with two-hop coding is
close, or even equal (in low SNR region), to that achievable
under omniscient coding.

It is noted the achievable rate region with two-hop cod-
ing is as large as that with omniscient coding only when the
overall transmission rates in both cases are constrained by the
reception rate at the same node and when the number of the
nodes in the channel is small, such that the node can cancel
all interference even with myopic view.

In Figure 9, the achievable rate with one-hop coding is low.
This is because as d23 is set to 1.5 m, the reception rate at node
3 is penalized and it constrains the overall achievable rate. By
adding just another node to the view (increasing from one-
hop coding to two-hop coding), we see an significant increase
in the achievable rate. Also, we should expect diminishing
returns as more nodes are added into the view as transmission
between two far away nodes are attenuated due to path-loss.
Our results suggest that coding with local view is good enough
in large networks.

VIII. Conclusion

We have found an achievable rate region for myopic cod-
ing on the multiple-relay channel, where cooperation among
the nodes is constrained. We have shown that in a five-node
Gaussian multiple-relay channel, when nodes transmit at low
SNR, the achievable rate region with two-hop myopic coding
is almost as large as that achievable under omniscient coding.

We also see a significant increase in achievable rates when
comparing one-hop myopic coding and two-hop myopic cod-
ing, meaning that we might not need to increase a node’s view
much farther than a few nodes. Hence, besides having prac-
tical advantages, myopic coding is potentially (as only non-
constructive coding is considered in this paper) as good or
close to omniscient coding. This means in a large network, we
could possibly limit the cooperation and perform local coding
design without compromising much on the transmission rate.

The analysis in this paper helps us to understand commu-
nication and cooperation in the multiple-relay channel bet-
ter. This work sheds light on how one might design practi-
cal and efficient transmission protocols in wireless networks,
where robustness, computational power, and storage memory
are important design considerations, in addition to transmis-
sion rate.
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