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Abstract 

In this paper, we show that the zeros of sampled-data 
systems resulting from rapid sampling of continuous- 
time systems preceded by a zero-order hold (ZOH) are 
the roots of the Euler-Frobenius polynomials, the prop- 
erties of which have been studied in the context of car- 
dinal spline interpolation and, more recently, wavelets. 
Using known properties of the Euler-Frobenius poly- 
nomials, we prove two conjectures of Hagiwara and co- 
workers, the first of which concerns the simplicity, neg- 
ative realness and interlacing properties of the sampling 
zeros of ZOH- and first-order hold (FOH-) sampled sys- 
tems. To prove the second conjecture, we show that 
in the fast sampling limit, and as the continuous-time 
relative degree increases, the largest sampling zero for 
FOH-sampled systems approaches l/e, where e is the 
base of the natural logarithm. 

1 Introduction 

The zeros of discrete-time systems obtained via zero- 
order hold (ZOH) sampling of continuous-time sys- 
tems play an important role in the design of digi- 
tal controllers. For single-input, single-output (SISO) 
continuous-time systems having relative degree p ,  the 
corresponding discrete-time system obtained by ZOH 
sampling has unity relative degree for all but a finite 
set of sampling periods. The additional p - 1 discrete- 
time zeros are an artefact of the sampling process, and 
are called the sampling zeros. 

When a continuous-time system is ZOH-sampled 
with sampling period T ,  it is well known that the 
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continuous-time poles X i  are transformed as [l] 

+ eXiT. (1) 

For zeros, the situation is considerably more compli- 
cated, and no simple transformation is known which 
shows how continuous-time zeros are mapped to the 
zeros of the corresponding discrete-time model under 
ZOH-sampling. In the fast and slow sampling limits 
(namely, as T -+ 0 and T -+ 00, respectively), it is 
possible to make more precise statements about the lo- 
cation of the corresponding discrete-time zeros; see, for 
example [2, 3, 4, 51. In particular, for continuous-time 
systems having relative degree p and ZOH-sampled 
with sampling period T -+ 0, it is known that all fi- 
nite continuous-time zeros are mapped to the point 
z = 1, while the remainingp-1 zeros are mapped to the 
roots of a symmetric polynomial whose integer-valued 
coefficients depend only on p [2, 31. It is these latter 
zeros-the so-called limiting sampling zeros-which we 
consider in this paper. 

Recently, Hagiwara let al. [4] have shown that simi- 
lar conclusions conerning the limiting sampling zeros 
are possible if the zero-order hold is replaced by a 
first-order hold (FOII); see Theorem 2.2 for a precise 
statement. In particiilar, the sampling zeros of FOH- 
sampled systems in the fast sampling limit can be ob- 
tained as the roots of integer-valued polynomials whose 
coefficients depend only on the continuous-time relative 
degree. Moreover, the polynomials concerned can be 
readily obtained from two of the ZOH-sampling zeros 
of successive degrees Based on strong numerical evi- 
dence (see the table on page 1334 of [4]), Hagiwara and 
co-workers made a three part conjecture concerning the 
properties of the limiting zeros arising from ZOH- and 
FOH-sampling. The first two parts of the conjecture 



concern the simplicity and negative realness (realness) 
of the roots of ZOH-sampled (FOH-sampled) systems, 
and the interlacing properties of these roots. In the 
third part of the conjecture, the authors of [4] made 
the intriguing observation that, as the continuous-time 
relative degree increases, the largest root of the FOH- 
sampling polynomial appears to converge to l / e ,  where 
e is the base of the natural logarithm. 

Hagiwara et al. [4] showed that the second part of the 
conjecture followed from the first, but left unresolved 
the first and third parts. In this paper, we establish 
the remaining two parts of the Hagiwara conjecture. 

This paper is organized as follows. In Section 2, we 
review the notion of sampling zeros for both ZOH- and 
FOH-sampled systems, and recall a two part conjec- 
ture of Hagiwara, Yuasa and Araki [4], the first part of 
which concerns the simplicity, negative realness, and in- 
terlacing properties of sampling zeros of ZOH-sampled 
systems. We also establish a differential recurrence re- 
lation satisfied by the polynomials shown by i!.strom, 
Hagander and Sternby [2] to have as roots the sam- 
pling zeros of ZOH-sampled systems. In Section 3, 
we show that the polynomials appearing in [2] are in 
fact the Euler-Frobenius polynomials, the properties 
of which have been studied in the context of cardinal 
spline interpolation [6, 71 and, more recently, wavelets 
181. The simplicity and negative realness of the sam- 
pling zeros then follows from known properties of the 
Euler-Frobenius polynomials, while the conjectured in- 
terlacing of sampling zeros associated with continuous- 
time systems of progressively higher relative degrees 
can be established using the differential recurrence rela- 
tion satisfied by the polynomials. In Section 4, we prove 
the second component of the conjecture of Hagiwara 
and co-workers, namely that as the continuous-time rel- 
ative degree increases without bound, the largest (i.e. 
most positive) sampling zero of FOH-sampled systems 
tends to l / e ,  where e is the base of the natural loga- 
rithm. 

2 Sampling zeros 

It is well known that when the input of a continuous- 
time dynamical system described by a rational transfer 
functions G ( s )  is generated by the piecewise constant 
output of a zero-order hold (ZOH), the system output 
at instants of time (appropriately synchronized with 
the ZOH) can be found using the z-transform [l]. In 
particular, the discrete-time transfer function (or pulse- 
transfer function) providing the link between input and 
output samples with sampling period T is given by 

where Z[.] denotes the z-transform. Likewise, when 
the system input is generated by a first-order causal 
extrapolation of sampled values, the sampled inputs 
and outputs are linked via the first-order hold (F0H)- 
equivalent transfer function [4] 

1 + T s  
G i ( z )  = [ ~ ( 1  - e-".)'G(s)] . (3) 

While the mapping of poles of G(s)  under (2) and (3) 
is readily established, it is difficult to say much about 
the mapping of finite zeros other than in the limit of 
fast (T -+ 0) or slow (T -+ 00) sampling [a, 3, 41. The 
following two Theorems summarize the behaviour of 
the sampled-data models arising from the ZOH- and 
FOH-sampling of G ( s )  in the fast sampling limit. 

Theorem 2.1 (&krom et al. [2]) Suppose 
G ( s )  is a strictly proper rational function 

that 

where X i  E C (i = 1 , 2 , . .  .,n), yi E C (i = 
1 , 2  ,..., m), and K # 0. Then, for almost every 
sampling period T ,  the discrete-time transfer function 
Go(z) arising from ZOH-sampling of (4) has n - 1 ze- 
ros. Furthermore, Go ( z )  approaches 

( 5 )  
( z  - l )mBn-m(z)  

( z  - 1)" 

Tn-m 
K- 

(n - m)! 

as T -+ 0,  where B,-,(z) is the reciprocal polynomial 
given b y  

BP(z)  = qzp-l  + Gzp-' + . . . + 6, p 2 1, (6)  

where 

Theorem 2.2 (Hagiwara et al. [4]) Suppose that 
G ( s )  is a strictly proper rational function given b y  
(4). Then, for almost every sampling period T ,  the 
discrete-time transfer function G1(z)  arising from 
FOH-sampling of (4) has n - 1 zeros. Furthermore, 
G1(z)  approaches 

(8) 
( z  - l)mCn-m(z) 

z ( z  - 1)" 

Tn-m 

(n - m + I ) !  
K 

as T -+ 0 ,  where Cn-m(z) is given by 
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These Theorems suggest that the m so-called limiting 
zeros approaching z = 1 correspond to the mapping 
of the finite zeros 7 1 , 7 2 , .  . . , ym, while the remaining 
n - m - 1 (or n - m) zeros arise via the ZOH (or FOH) 
sampling process. Hagiwara et al. [4] have justified 
this assertion, and the m limiting zeros approaching 
z = 1 are therefore referred to as the in t r ins ic  ze- 
ros, while the zeros approaching the roots of B p ( z )  or 
C,(z), where p = n - m is the continuous-time relative 
degree, are the limiting sampling zeros, also known as 
discretization zeros. 

By evaluating the roots of the polynomials Bp(z) and 
C,(z) for p = 1 ,2 , .  . . ,50, Hagiwara and co-workers 
produced compelling numerical evidence to support the 
following conjecture: 

Conjecture 2.1 (Hagiwara et al. [4]) 

(a) All roots of Bp(z) are single and nega- 
tive real f o r  any p .  Furthermore, the roots 
of Bp(z) interlace the roots of B,+l(z) on 
the negative real axis. 

(b) All  roots of C,(z) are single and real f o r  
any p .  Furthermore, the k t h  smallest root 
of Cp( z )  lies between the k t h  smallest root of 
B p ( z )  and the k t h  smallest root of B,+l(z). 

(c) The largest root of C,(z) approaches 
z = l / e  ( M  0.3679) as p + 00, where e 
is the base of the natural logarithm. 

Hagiwara et al. [4] established that property (a) implies 
property (b). In sections 3 and 4 of the present paper 
we establish properties (a) and (c) respectively, thereby 
completing the proof of the conjecture. 

3 The Euler-Frobenius polynomials 

Using (7) and manipulations with binomial identities, 
it is a straightforward matter to establish that the co- 
efficients of the limiting zero polynomials {Bp(z)}Sl  
can be computed using the following recursive proce- 
dure [2]: 

by = % = 1, (10) 
k = 2 , .  . . , p -  1. 

(11) 
bi  = kb;-' + ( p  - k + l ) b i I i ,  

The following Lemma establishes a differential recur- 
rence relation satisfied by the polynomials { B,(z)}gl  
directly, rather than in terms of the individual coeffi- 
cients, as in (IO), (11). 

Lemma 3.1 The polynomials Bp(z), whose coeffi- 
cients are given by  (r), satisfy the following differential 

recurrence relation: 

Proof: The result is true by definition for p = 1. For 
p 2 2, the recursion can be verified by direct substitu- 
tion of (6) into (13:), equating coefficients of powers of 
z ,  and simplification using (1 1). 

In the following definition, we recall the Euler- 
Frobenius polynom:ials, which arise in the study of car- 
dinal spline interpolation [9, 6, 10, 81. 

Definition 3.1 The Euler-&obenius polynomials 
Ek(x),k = 1 , 2 , .  .. are defined by the following 
Rodriguez formula [9]: 

We are now in a position to state the first key result of 
the paper: 

Theorem 3.1 The limiting ZOH sampling zero poly- 
nomials are the Euiler-Frobenius polynomials. 

Proof: The idea 'of the proof is to  show that  polyno- 
mials satisfying the Rodriguez formula (14) simultane- 
ously satisfy the differential recurrence relation defining 
the limiting sampling zeros. Due to  the inconsistency 
between the numbering of the initial terms &(z)  and 
Eo(x) (cf. (12) and (14)), we work not with (12) and 
(13), but rather wit,h the recurrence 

B,(z) = (1 + n z )  B,-l(z) + z(1- z)Bk-,(z), 
n = '2,3, .  . . , (16) 

which leads to  the same sequence of polynomials as in 
[2], but with a numbering consistent with (14). 

Following Sobolev [9], we introduce the polynomials 
Kk(y)  related to &(x) as follows: 

a 4.7 



where the K k ( y )  satisfy the recurrence relation [9] 

(19) 
d 

& ( Y )  = - [ (?I2  - l W k - l ( Y ) l .  dY 
From (19), the change of variables y = (x + 1)/(x - 1) 
yields 

K k ( S )  =- --- (x - 1)2 d 
x - 1  2 dx ( l a  Kk-l (5)) 

d 
dx 

= - ~ x - K ~ - ~  (e) x - 1  + 

from which it follows that 

= -2-"'lx(x - 
dx 

From (18), 

so that the first term in (21) is given by 

d x + l  
-x(x - 1) 24+1(X - 1y-1 

(S) -x(x - 1) -E,&1(X) - 2-"lKk-l (A 
1 (k - 1)(x - 1 p - 2  

Substituting this expression into (21) gives 

- 
E k - i ( X )  

+&-1 (x) + X E k - 1  ( x )  

(1 + k X ) E k - I ( X )  + x ( 1 -  x)-Ek-l(x), 
d 

dx 
= 

and the result is proved. 

Corollary 3.1 I n  the fast sampling limit, the sampling 
zeros arising from the ZOH-sampling of continuous- 
t ime systems of relative degree 2 or greater are simple 
and negative real. 

Proof: These are known properties of the Euler- 
Frobenius polynomials; see [9], for example. H 

Lemma 3.2 I n  the fast sampling limit, the sampling 
zeros arising f rom the ZOH-sampling of continuous- 
t ime systems having progressively higher relative de- 
grees are interlaced on the negative real axis. 

Proof: 
ated at any of the 0, - 2) roots za of Bp-l(z):  

Consider the recurrence relation (13) evalu- 

Bp(zf) = z f ( 1 -  z;)B;_,(z;). 

From Corollary 3.1, all roots of Bp-l(z) are negative 
real, so that zf(1-zf) < 0 and thus the sign of Bp(zf) is 
opposite that of B;-,(zf). Since Bp(z)  = 1 for all p 2 
1, it follows from the simplicity of the z t  and the Mean 
Value Theorem that the i th root of B p ( z )  lies strictly 
to the right of the corresponding root of Bp-l(z)  for 
i = 1 , 2 , .  . . , p  - 2. Since 

limz+-oo Bp(z)  and limz+--oo Bp-l (2) have opposite 
signs. From the Mean Value Theorem, there must exist 
a root of B p ( z )  to the left of the most negative root of 
Bp-l(z),  and the proof is completed. 

Taken together, Corollary 3.1 and Lemma 3.2 consti- 
tute a proof of Conjecture 2.1 (a), and hence from [4], 
Conjecture 2.1 (b) is also proved. 

4 The largest zero of FOH-sampled systems 

In this section, we prove the third part of the Hagi- 
wara conjecture, namely that in the fast sampling limit, 
the largest sampling zero of FOH-sampled systems ap- 
proaches 1/e as the continuous-time relative degree in- 
creases. The proof does not rely heavily on the fact 
that the limiting sampling zeros of ZOH-sampled sys- 
tems are the roots of the Euler-F'robenius polynomials, 
but does use a key change of variables and a series ex- 
pansion introduced by Sobolev in his study of the roots 
of these polynomials [9]. 

Theorem 4.1 I n  the fast  sampling limit, the mostpos- 
itive sampling zero arising from the FOH-sampling of 
continuous-time systems having relative degree p ap- 
proaches 1/e as p t CO. 
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Proof: The sequence of polynomials of interest is 
generated by (9), where (from Theorem 3.1), the poly- 
nomials Bp(x) satisfy the Rodriguez formula (14). Fol- 
lowing Sobolev [9], a key ingredient is to  make the sub- 
stitution z = ex', leading to  

Define 
dk ( 7 ~ / 2 ) ~  
dek sinh2 n8/2 ' 

S k ( 6 )  = - 

so that the roots of Ck other than 0 correspond to  
solutions of - 

s k ( e )  = 0, (24) 
where 

We note that the Cauchy expansion of 1/ sinh2 d gives 

00 

(26) 
1 Sk(6) = -(k + l)!(-j)k 

( je  - 24k++2 n=-m 

The intuition behind the proof is that  for k sufficiently 
large, the central term 

(27) 

dominates the infinite sum (26), so that the solutions 
of (24) are approximately given by the roots of 

For k sufficiently large, the single root of fk(6) ap- 
proaches -1/7r, and thus since z = ex' = l/e, we are 
done. 

To make the argument rigourous, we use Rouch6's The- 
orem [ll, p.3001 to show that for k sufficiently large, the 
contribution to 31, (6) from the neglected (non-central) 
terms 

C k ( 8 )  = - hk(0) (29) 
is vanishingly small in the sense that f k ( 6 )  and gk(0)  
have the same number of zeros as k -+ CO. Consider 
the remainder term 

9 k ( Q )  = (k + 1 

Using (26) we have 

19k(O)l F 4(k + l)(k + 1) 
1 00 

Now use an Integral Test estimate €or the right hand 
side to obtain 

i 

rw 1 

I 
1 

4(k; + 2, (.2 + (2 - y)2)(k+2)/2 

1 5 4(k: + 2) 
( 9  + (2 - y)2)("/2 

du) I 

C(k + 2)! 
(.,E + (2 - €)2)W < 7  - 

for some constant Cy. Here we have 19 = x + j <  where 
= y 5 € < 2. 

Consider the value of f k  on a contour fl defined as the 
boundary of a square, centred on the point -1/7r, hav- 
ing sides of length 2c, and taken in the counterclockwise 
direction: 

Thus for any given e: we can find K such that  if k 2 K ,  

for 0 on contour Q. By Rouch6's Theorem, fk(8) and 
fk (8 )  + gk(8)  = &(e) have the same number of zeros 
inside Cl. Since f k  has exactly one zero for k sufficiently 
large, so does equation (24), and by taking E small we 
can show that for l.arge k the zero is close t o  -l/r. 
Thus as k -+ 00, there are no other real roots of CIE(Z) 
larger than l /e ,  and the result is proved. 

Ei Conclusions 

In this paper, we hlave established that  the sequence 
of polynomials whose roots are the limiting sampling 
zeros of ZOH-sampled systems are in fact the Euler- 
Frobenius polynomials. Several conjectured proper- 
ties of the limiting ,sampling zeros of ZOH- and FOH- 
sampled systems then follow immediately, or can be 
established from a (differential recurrence formula sat- 
isfied by the Euler-Frobenius polynomials. Finally, a 
conjecture by Hagiwara and co-workers that the largest 
limiting sampling zero of FOH-sampled systems ap- 
proaches l / e  as the continuous-time relative degree in- 
creases has been proved. Since ZOH-equivalent mod- 
els are approximations of a particular form, it is not 
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entirely surprising that a sequence of polynomials oc- 
curring in the study of interpolation problems should 
arise in the analysis of sampled-data systems. Further 
work is needed, however, to  clarify the nature of the 
connection. 
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