
Chapter 1

Introduction

1.1 Perspectives in smart structures

The field of smart structures has been an emerging area of research for the last

few decades. Smart structures (also called smart material structures) can be

defined as structures that are capable of sensing and actuating in a controlled

manner in response to a stimulus [BSW96]. The development of this field is

supported by the development in the field of materials science and in the field

of control. In materials science, new smart materials are developed that allow

them to be used for sensing and actuation in an efficient and controlled manner.

These smart materials are to be integrated with the structures so they can be

employed as actuators and sensors effectively. It is also clear that the field

of smart structures also involves the design and implementation of the control

systems on the structures. A well designed and implemented controller for smart

structures is thus desirable.

In this thesis, we consider the case of vibration of smart structures. The

stimulus to a structure may originate from external disturbances or excitations

that cause structural vibrations. A smart structure would be able to sense the

vibration and generate a controlled actuation to itself so the vibration can be

minimized. For vibration control purposes, a number of smart materials can be

used as actuators and sensors such as piezoelectric, shape memory, electrostric-
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tive and magnetostrictive materials. Here, we concentrate on using piezoelectric

materials because they have good broadband sensing and actuation properties.

In 1880, Pierre and Paul-Jacques Curie discovered the direct piezoelectric

effect on various crystals such as tourmaline, Rouchelle salt and quartz. The

crystals generated electrical charges on their surfaces when they were mechan-

ically strained in certain directions. In the following year, they also discovered

the converse piezoelectric effect, that the shape of crystals would change when

an electric field was applied to them.

The ability of the piezoelectric materials to exchange electrical and mechani-

cal energy opens up the possibility of employing them as actuators and sensors.

If the piezoelectric materials are bonded properly to a structure, structural de-

formations can be induced by applying a voltage to the materials, employing

them as actuators. On the other hand, they can be employed as sensors since

deformations of a structure would cause the deformed piezoelectric materials

to produce an electric charge. The extent of structural deformation can be ob-

served by measuring the electrical voltage the materials produce. Unfortunately,

the piezoelectric effect in natural crystals is rather weak so they cannot be used

effectively as actuators or sensors.

However, recent developments in the field of materials science has provided

piezoelectric materials that have sufficient coupling between electrical and me-

chanical domains. Two of the commonly used piezoelectric materials are poly-

vinylidene fluoride (PVDF), a semicrystalline polymer film, and lead zirconate

titanate (PZT), a piezoelectric ceramic material. PZT has larger electromechan-

ical coupling coefficients than PVDF so PZT can induce larger forces or moments

on structures. However, PZT is relatively brittle while PVDF is flexible and can

be easily cut into any desired shape. PVDF also has good sensing properties so

it is commonly used for sensors. In this thesis, we concentrate on using PZT as

actuators and sensors. Our experiments show that PZT can be effectively used

as a transducer for vibration control of flexible structures.
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The linear relationship that governs the direct and converse piezoelectric

effects can be expressed as [BSW96, GT92]:

D = eT S + αs E

σ = cE S − e E (1.1)

where D, E, S and σ are the electric displacement, electric field, strain and stress

vectors respectively. Further, e, αs and cE are the dielectric permittivity matrix,

dielectric matrix at constant mechanical strain and elastic coefficient matrix at

constant electric field respectively. However, for piezoelectric laminate structures

that are used in our research, it is sufficient to use the simplified form of the

formulation.

In smart structures, there are several issues that need to be addressed such

as the modelling, placement of actuators and sensors, and controller design.

The modelling of smart structures does not just involve the modelling of flex-

ible structures, but also includes the modelling of the smart materials used as

actuators and sensors. For piezoelectric laminate structures, the derivations

of equations of motion involve the modelling of forces or moments generated

by the bonded piezoelectric actuators. Tzou [Tzo89], Lee [Lee87] and Lee and

Moon [LM90] provide comprehensive electromechanical properties of piezoelec-

tric materials. The modelling of such structures has been explored by a number

of researchers [Lee90, DFR91, FEN96, CSG98, PA95, LM89, CdL87]. In some

cases, it can be reasonably assumed that the piezoelectric patches do not change

the original structural mass and stiffness properties. This is due to the fact that

many piezoelectric patches used are relatively thin and lightweight compared

to the main structure. Hence, a sufficient model of a piezoelectric laminate

structure can still be achieved based on the assumption.

More complex modellings of piezoelectric laminate structures are discussed

in [BSW96, Yu96], where they include the change in structural properties due

to the piezoelectric patches. Banks et al. [BSW96] discuss the modellings of

beams, plates and shells, while Yu [Yu96] concentrates on linear and non-linear
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vibrations of plates. When the dimensions of the patches are considerable rela-

tive to those of the main structure, these modelling methods would be useful to

obtain a more accurate model of the structure (see [TT90, TY96], for example).

The equations of motion of the structures can then be solved using a variety of

modelling methods such as the modal analysis, Rayleigh-Ritz, assumed-modes,

and finite element (FE) methods [CSG98, Mei75, Ros91, CL91]. For a struc-

ture with non-uniform structural properties, approximate methods like the FE

method may be necessary to obtain the model of the system.

Alternatively, if the structure is already built, we can obtain its model directly

from the structure via system identification . For instance, the information about

the modal properties of the system can be obtained using the experimental modal

analysis method, i.e. modal testings [SM99, Ewi84]. The results from the modal

testings can be used to update the FE model of a structure using updating

methods [Fri95, Fla98]. For example, the mass and stiffness matrices of the FE

model can be updated by minimizing the norm of the error in modal properties.

Hence, a realistic model can be obtained from such methods, although this can

only be done when the structure already exists.

However, since the model of a flexible structure originally consists of a large

number of resonant modes, a model reduction is often required. A number of

approaches for model reduction have been developed, such as model reduction

via balanced realization [GL95, SP96, MPP99]. However, since the approaches

are generally based on the order reduction of a finite-dimensional model, there

is a limit on how many high frequency modes can be included when a resonant

system with a spatially distributed nature is considered.

The model order can also be reduced by direct truncation where higher fre-

quency modes, i.e. out-of-bandwidth modes, are truncated. However, the re-

moval of the out-of-bandwidth modes may affect the zero-frequency (DC) con-

tent and locations of the in-bandwidth zeros of the system, leading to truncation

errors. The truncation errors can be minimized by adding a feedthrough term

to the truncated model. The technique is known in the aeroelasticity literature
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as the mode acceleration method [BA75]. In the mode acceleration method

[Cla97, BA75], the feedthrough term only reduces the DC error to zero, while

the error may increase with frequency. Moheimani [Moh00a, Moh00b] and Mo-

heimani and Heath [MH00] suggest alternative approaches for finding the opti-

mal feedthrough terms for models that are obtained from modal analysis. The

optimal feedthrough terms are found by minimizing the norms of the error be-

tween the full-order model and truncated model. However, assuming the system

damping is small, the effect of damping is not considered in the approaches. For

systems with considerable damping, the obtained feedthrough terms may not be

close to optimal anymore.

Apart from the modelling issue, the issue of optimal placement of actuators

and sensors is also of considerable interest in the field of smart structures. It

is important to place actuators or sensors on a structure at locations where

they have sufficient authority to control or sense structural vibrations. Given

the importance of optimal placement, a number of researchers have addressed

this issue in the past. For instance, Gawronski [Gaw98, Gaw97] and Smith and

Clark [SC01] address the problem of actuator and sensor placement based on

Hankel singular values of the system. However, the approach depends on the

assumption that the system damping is small, where the controllability and ob-

servability Gramians of the system can be shown to be diagonally dominant.

For piezoelectric actuators and sensors, a variety of modal sensitivity or con-

trollability/observability measures can also be used to determine their optimal

placement on a flexible structure [CdL87, HCSL97, SWW98]. The optimal lo-

cations generally correspond to the locations of high average strain for each

desired mode shape (see [SR96, BL96], for example). Other optimal placement

approaches that exploit the controllability and observability Gramians of a sys-

tem have also been explored [DMPB92, LAKB01].

Moheimani and Ryall [MR99] optimize the placement of piezoelectric actu-

ators on beams using a spatial controllability measure. For this purpose, they

define the spatial controllability and modal controllability measures. The modal
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controllability measure defined here differs from those that are used in other ref-

erences. The measure is based on the spatial H2 norm of a spatially distributed

system introduced by Moheimani and Fu [MF98] that reflects on the total energy

of the system. The concept of spatial H2 norm would be useful when dealing

with spatially distributed systems such as flexible structures.

An alternative optimal placement approach is by integrating the placement

of actuators and sensors with the controller design, for instance, by using the

optimization of quadratic performance indexes [FW97, Dem00, DMPB92]. This

means that the actuator and sensor locations would depend on the choice of

controllers. However, when more than one controller are to be tested on the

structure, it may not be practical to change the locations of actuators and sensors

on the structure.

Another important issue in smart structures is the controller design for min-

imizing vibration of smart structures. A variety of control design frameworks

for active control of flexible structures have been explored. Meirovitch [Mei87]

discusses the Independent Modal-Space Control (IMSC) where each mode is con-

trolled independently. However, this requires modal state estimation that may

create spillover problem, as mentioned by Balas [Bal78b, Bal78a]. Balas [Bal79]

discusses the use of direct velocity feedback control, where the closed-loop system

is unconditionally stable in the absence of actuator dynamics. But instability

may arise if the actuator dynamics is taken into account as pointed out by Goh

and Caughey [GC85]. In general, position and velocity feedback control design

(see [GC85, BKFK91, Cau95], for example) have been used for vibration control

of piezoelectric laminate structures [SW97, WSBS92, YB96, GR89, Tzo91].

In modern control, the H2 and H∞ control frameworks are well-known. The

H∞ control framework is particularly useful for robust control design since un-

certainties in the model can be conveniently accounted for. The work of Doyle

et al. [DGKF89] and Glover and Doyle [GD88] for obtaining state-space solu-

tions to standard H2 and H∞ control problems have been instrumental since

optimal H2 and H∞ controllers can be simply obtained from the solutions of
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algebraic Riccati equations. Another alternative approach for solving H2 and

H∞ control problems is via a convex optimization, using the so-called Linear

Matrix Inequality (LMI) approach [BEGFB94, GA93, Gah94, IS93].

However, spatially distributed systems have theoretically an infinite num-

ber of modes and are represented by infinite-dimensional models. To design

a controller using the standard H2 and H∞ control design frameworks, finite-

dimensional models are required. Model order reduction is thus needed to ob-

tain such finite-dimensional models. In addition, the problem of H∞ control

for spatially distributed systems has been addressed in the literature (such as

in [LÖT+91, LÖT+89, LÖ93, ÖT90, ÖT91, SCF94]). For example, Lenz et al.

[LÖT+91, LÖT+89] and Lenz and Özbay [LÖ93] suggest infinite-dimensional

controllers that are obtained from the infinite-dimensional models.

Finite-dimensional controllers are then approximated from the

infinite-dimensional controllers.

In general, such as in [LÖT+91, LÖT+89, LÖ93, SCF94], the models used

for control design describe vibrations at one or several locations along the struc-

tures, i.e. pointwise models. Thus, the controller is designed based only on the

information of one or a few locations along the structure. However, vibration

characteristics at other locations along the structure are not accounted for. This

may cause problems if vibration reduction over the entire structure is needed.

To deal with such problems, Moheimani and Fu [MF98] use the concept of

spatial H2 norm of a spatially distributed system. This is done by employing the

spatial information embedded within the models of structures that result from

the modal analysis. The spatial H∞ norm of a spatially distributed system is also

proposed in [MPP99, MPP98]. Both norms can be seen as natural extensions of

H2 norm and H∞ norm for spatially distributed systems. The optimal spatial

H2 and H∞ controllers can be conveniently obtained by finding the equivalent

standard H2 and H∞ control problems respectively. The spatial controllers

obtained ensure vibration reduction over entire structures in a spatially-averaged
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sense. However, the concepts have not been implemented on real systems in a

thorough manner.

In relation to stability and robustness of closed-loop systems, the concept of

passivity is well-known. Here, a passive system can be stabilized by a stable

and strictly passive controller as suggested by Desoer and Vidyasagar [DV75].

For linear time-invariant (LTI) systems, a positive-real system would be pas-

sive. In general, many unconditionally stable closed-loop systems can be de-

rived from this passivity theory. Other work in this area has also been done

by Moylan and Hill [MJ78, DM80]. Later, Joshi and Gupta [JG96] discuss

the stability of closed-loop systems using less restrictive definition of passivity.

Other researchers have used this passivity approach to design feedback con-

trollers [LLJ88, SS96, HBW94]. The requirement for a positive-real system can

be obtained by collocating the actuators and sensors. For instance, the direct

velocity feedback control mentioned previously can also be shown to make the

closed-loop system passive [Bal82]. For a non-collocated system, a passification

method may be applied to make the system passive (see [KJ97], for example).

1.2 Aims of the thesis

Considering the amount of research that have been done, this thesis is aimed at

further exploring some issues in vibration analysis and control of smart struc-

tures, in particular piezoelectric laminate structures. In the area of vibration

analysis, we wish to develop an efficient model correction approach for reso-

nant systems that are obtained from modal analysis and approximate methods.

Model correction for pointwise and spatial models of resonant systems would be

considered. We wish to include the effect of damping in the resonant system,

which are assumed to be negligible in other approaches. The developed model

correction approaches would be able to be implemented on smart structure sys-

tems.
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Moreover, we also explore the issue of optimal placement of actuators and

sensors on flexible structures. We wish to develop an optimal placement method-

ology that works for general actuators and sensors. The methodology should be

able to be implemented on a structure whose model can be obtained from a

variety of modelling methods, such as from modal analysis and approximate

methods. This would allow a realistic structure with complicated properties

and boundary conditions to be considered. Consequently, we would also use

this optimal placement methodology to optimally place piezoelectric actuators

and sensors over a structure.

Finally, in vibration control of smart structures, we wish to investigate dif-

ferent types of active controllers for minimizing vibration of smart structures.

We wish to develop controllers that are capable of minimizing vibration of the

entire structure in a spatially-averaged sense. The proposed spatial controllers

should also have sufficient robustness properties and can be implemented on

real systems effectively. For these reasons, the spatial controllers would need to

be implemented on real smart structure systems such as piezoelectric laminate

beams.

1.3 Organization of the thesis

We organize the chapters in this thesis as follows:

Chapter 2: Modelling of smart structures

We consider the derivations of equations of motions for axial, torsional and

flexural vibrations of beams and plates. We review some of common modelling

methods: modal analysis, Rayleigh-Ritz, assumed-modes and FE methods. The

modelling of piezoelectric laminate beams using modal analysis and FE methods

are considered.
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Chapter 3: Spatial norms

We discuss the concept of spatial norms for LTI spatially distributed systems.

This concept will be used in the later chapters for model correction, optimal

placement of actuators and sensors, and vibration control design. The spatial

H2 norm and spatial H∞ norm for such systems are defined in this chapter.

Chapter 4: Model correction

We consider several model correction approaches to compensate for the errors

that arise from truncating high frequency dynamics from models of resonant

systems. Optimal feedthrough terms are added to the truncated models to com-

pensate for the truncation errors. We review the analytical solutions for optimal

feedthrough terms for models that assume no damping in the systems. For sys-

tems with considerable damping, we propose an alternative approach for finding

the optimal feedthrough terms numerically via a convex optimization. We also

extend the previous analytical approach for models that include damping. Fi-

nally, we extend the proposed model correction approaches to include models

that are obtained from approximate methods, such as from the FE method.

Chapter 5: Optimal placement of actuators and sensors

The optimal placement of actuators and sensors are discussed here. We ex-

tend the methodology for the actuator placement to reduce the effect of control

spillover. A new method for optimal placement of sensors is proposed in this

chapter. We consider the optimal placement of a collocated piezoelectric actu-

ator/sensor pair on a thin plate and experimentally test the optimal placement

results. We extend the optimal placement methodology to include models that

are obtained from experimental modal analysis and approximate methods. As

an illustrative example, we consider the optimal placement of a collocated piezo-

electric actuator/sensor pair on a wing model.

Chapter 6: Resonant control

We propose a class of resonant controllers that can be implemented on struc-

tures with compatible pairs of collocated actuators and sensors. We introduce
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a special class of robust resonant controllers that ensure closed-loop stability

against parametric uncertainties and unmodelled dynamics in the model. An

optimization procedure is developed to obtain the controller damping ratios so

the spatial H2 norm of the closed-loop system is minimized. We design and

experimentally implement the resonant controller on a piezoelectric laminate

beam.

Chapter 7: Spatial H2 control

We extend the concept of spatial H2 norm for vibration control of smart struc-

tures. The spatial H2 controller is designed such that the spatial H2 norm of the

closed-loop system is minimized. This ensures the structural vibration reduction

in a spatially-averaged sense. The design and experimental implementation of

the spatial H2 controller on a piezoelectric laminate beam are discussed.

Chapter 8: Spatial H∞ control

We use the concept of spatial H∞ norm to design and implement a spatial H∞

controller for smart structures. We design the spatial H∞ controller such that

the spatial H∞ norm of the closed-loop system is minimized. In this chapter,

we discuss the design and experimental implementation of the controller to a

piezoelectric laminate beam.

Chapter 9: Conclusions

We conclude the thesis by stating the main contributions of our research. Rec-

ommendations for further research in this area are also included.



Chapter 2

Modelling of smart structures

Before we can design a controller for minimizing structural vibration, we need

to understand the vibration mechanism of the structure. Once the physical

mechanism of vibration is understood, a good performance controller can be de-

signed and implemented. This issue necessitates obtaining a sufficiently accurate

physical model of a structure. The robustness of the controller can be affected

considerably by the accuracy of the model in estimating the actual system.

Considering the significant role of modelling in control design of smart struc-

tures, we will discuss the modelling issue in this chapter. Smart structures

considered in this thesis are flexible structures with smart material transduc-

ers attached to them. We concentrate on the use of piezoelectric materials as

actuators and sensors due to their good performances as transducers.

Here, we will focus on LTI systems by considering that the structural vibra-

tions are sufficiently small and the systems are assumed to be stationary. The

piezoelectric transducers used are also operated in their linear operating region.

We will review some common modelling methods such as modal analysis,

Rayleigh-Ritz, assumed-modes, and FE methods. However, smart structures

that we deal with can be sufficiently modelled using the modal analysis method,

although other modelling methods can also be used. Therefore, a greater pro-

portion of this chapter will be reserved for the modelling of smart structures

via modal analysis. The last three methods discussed here are approximate
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methods, which are useful for modelling complicated systems with general bound-

ary conditions and non-uniform structural properties.

Another alternative modelling is the system identification. Modal testings

[SM99, Ewi84] have been commonly practised by engineers to determine the

modal properties of flexible structures from experiments. This method is only

available if the structures concerned are already built. When it is important to

integrate the control system on the design stages of structures, it is necessary

to use other modelling methods such as approximate methods. System identi-

fication will not be discussed here although some issues in relation to optimal

placement of actuators and sensors will be discussed briefly in Chapter 5.

Modelling of smart structures is not solely about modelling of ordinary flexi-

ble structures. We also have to consider how smart actuators and sensors can be

integrated to the structures. Since we concentrate on using piezoelectric trans-

ducers, this chapter will also include the modelling of smart structures with

piezoelectric actuators and sensors.

2.1 Dynamics of flexible structures

This section discusses the derivations of equations of motion for LTI spatially

distributed systems. It is important to understand the limitations of the equa-

tions of motion in describing the physical behaviour of systems. An important

assumption for the systems is that the deformations of the systems are suffi-

ciently small. In other words, the angle or slope that a structure makes during

vibration with respect to its undisturbed position, is relatively small. Thus, a

small angle approximation can be employed to simplify the overall derivation by

allowing the equations of motion to be linearized. In more complicated systems

with multiple components, such as flexible link manipulators or structures with

changing configurations, the results from linear vibration analysis can also be

used. This is because in many cases, the structural vibration of each component

can still be considered small. In this thesis, we will focus on flexural vibration
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of smart structures. However, it is also important to mention other types of

vibration such as axial and torsional vibrations. The reason is that our results

can be readily extended to deal with those types of vibration.

2.1.1 Axial vibration of rods

In smart structures, the axial vibration can be excited by piezoelectric actua-

tors. For example, two piezoelectric patches can be bonded on both sides of

the structure. A pure axial deformation can be generated by applying in-phase

voltages to both patches as depicted in Figure 2.1 [BSW96].
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Figure 2.1: Piezoelectric patches for axial vibration
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ρ(r), EA(r)

r r + dr

L

r

Figure 2.2: A beam in axial vibration

Consider a rod of length L as depicted in Figure 2.2. The distributed axial

force, density, cross-sectional area, and Young’s modulus of elasticity at point

r are defined as f, ρ, A and E respectively. The longitudinal displacement at

point r is denoted by u. The main assumptions used are:
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r

f(t, r)dr

r + dr

A(r)

u(t, r)

T + ∂T
∂r

drT

Figure 2.3: A small element of the beam

(i) The material follows Hooke’s law , i.e. σ(r) = ε(r)E(r), where σ and ε are

the longitudinal stress and strain at point r respectively [GT91, Pop76,

TY68]. This amounts to having a linear relationship between stress and

strain.

(ii) The lateral dimensions of the rod are sufficiently smaller than its longitu-

dinal dimension. As a consequence, the radial motion can be neglected.

The free-body diagram of an element dr is shown in Figure 2.3. Applying

Newton’s second law to the force components in r direction gives
(
T +

∂T

∂r
dr

)
− T + f(t, r)dr = ρA(r)dr

∂2u(t, r)

∂t2
(2.1)

which is equivalent to

∂T

∂r
+ f(t, r) = ρA(r)

∂2u(t, r)

∂t2
. (2.2)

From Hooke’s law, the tension T is related to the longitudinal strain by

T (t, r) = EA(r)
∂u(t, r)

∂r
(2.3)

where ∂u/∂r is the longitudinal strain at point r.

Substituting (2.3) into (2.2), the partial differential equation (PDE) that

governs the axial vibration of rods is obtained [Mei75, dS00]:

∂

∂r

(
EA(r)

∂u(t, r)

∂r

)
+ f(t, r) = ρA(r)

∂2u(t, r)

∂t2
, 0 ≤ r ≤ L. (2.4)
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2.1.2 Torsional vibration of shafts
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Figure 2.4: A shaft in torsional vibration
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Figure 2.5: A small element of the shaft

Consider a shaft of length L as depicted in Figure 2.4. The density, torque, dis-

tributed torque, torsional modulus of elasticity (shear modulus), polar moment

of area, and angular displacement at point r are defined as ρ, T, f, G, Jp and θ

respectively.

The free-body diagram of an element dr is shown in Figure 2.5. Applying

Newton’s second law for rotatory motion to torque components in the direction

of the r axis gives
(
T +

∂T

∂r
dr

)
− T + f(t, r)dr = ρJp(r)dr

∂2θ

∂t2
(2.5)

which is equivalent to

∂T

∂r
+ f(t, r) = ρJp(r)

∂2θ

∂t2
. (2.6)
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The relationship between the torque and the angular displacement for circular

cross sections can be written as [dS00, GT91, Pop76, TY68]:

T = GJp

∂θ

∂r
(2.7)

where GJp is often called the torsional rigidity of the shaft. For the case of

a shaft with non-circular cross sections, the polar moment of area Jp in (2.7)

must be replaced by the torsional parameter Jt. Some examples for the torsional

parameter of non-circular cross sections [dS00, GT91, Pop76, BJ92] are:

• A thin closed section (a thin hollow section):

Jt =
4hA2

s

p
(2.8)

where As is the enclosed area of the hollow section, h is the section thick-

ness, and p is the perimeter of the section.

• A solid square section:

Jt = 0.1406d4 (2.9)

where d is the width (or height) of the square.

• A hollow circular section:

Jt =
π

2

(
r4
2 − r4

1

)
(2.10)

where r1 is the radius of the inner circle and r2 is the radius of the outer

circle.

Substituting (2.7) into (2.6) and re-arranging the equation gives [dS00]

∂

∂r

(
GJp(r)

∂θ(t, r)

∂r

)
+ f(t, r) = ρJp(r)

∂2θ(t, r)

∂t2
, 0 ≤ r ≤ L. (2.11)

For a more general case of shafts with non-circular cross sections:

∂

∂r

(
GJt(r)

∂θ(t, r)

∂r

)
+ f(t, r) = ρJp(r)

∂2θ(t, r)

∂t2
, 0 ≤ r ≤ L (2.12)

where Jt is the torsional parameter mentioned previously.
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2.1.3 Flexural vibration of beams

Flexural vibration can be observed in many structures such as aircraft wings,

bridges, buildings and robot manipulators. In some structures, axial and tor-

sional properties may be stiffer than their flexural properties. Hence, minimizing

the flexural vibration can be of considerable importance in vibration control of

structures. The flexural vibration can be induced by bonding two piezoelectric

patches and applying out-of-phase voltages to those patches as depicted in Fig-

ure 2.6 [BSW96]. However, it is also sufficient to use a single patch to induce

this type of vibration.

The research done in here is concentrated in controlling flexural vibration of

structures. However, as mentioned previously, the vibration analysis and control

approach discussed in this thesis can also be used for other types of vibrations.
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piezoelectric patch

piezoelectric patch

structure

Figure 2.6: Piezoelectric patches for flexural vibration

Consider a thin beam of length L as depicted in Figure 2.7, whose density

and flexural rigidity at point r are ρ and EI respectively. The flexural rigidity

depends on the Young’s modulus of elasticity E and the second moment of

area I. The distributed transverse force is f . The main assumptions are:

(i) The material follows Hooke’s Law.

(ii) The shear deformation is negligible compared to the bending deformation.

(iii) The rotation of the element is negligible compared to the vertical/transverse

translation.
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f(t, r)
y

ρ(r), EI(r)

r r + dr

L

r

Figure 2.7: A beam in flexural vibration

y(t, r)

y

M

Q + ∂Q
∂r dr

M + ∂M
∂r

dr

r r + dr

Q

r

f(t, r)dr

Figure 2.8: A small element of the beam
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The free-body diagram of an element dr is shown in Figure 2.8, where Q

denotes the shearing force and M the bending moment. Applying Newton’s

second law to vertical force components (y direction) gives
(
Q(t, r) +

∂Q(t, r)

∂r
dr

)
− Q(t, r) + f(t, r)dr = ρA(r)dr

∂2y(t, r)

∂t2
(2.13)

which is equivalent to

∂Q(t, r)

∂r
+ f(t, r) = ρA(r)

∂2y(t, r)

∂t2
. (2.14)

Furthermore, considering the moment about the axis normal to r and y (out-of-

page direction):
(
M(t, r) +

∂M(t, r)

∂r
dr

)
− M(t, r) +

(
Q(t, r) +

∂Q(t, r)

∂r
dr

)
dr

+ f(t, r)dr
dr

2
= 0. (2.15)

Simplifying the above equation and cancelling the higher order dr term, the

shearing force in terms of the bending moment is

Q(t, r) = −∂M(t, r)

∂r
. (2.16)

Substituting (2.16) into (2.14) gives

−∂2M(t, r)

∂r2
+ f(t, r) = ρA(r)

∂2y(t, r)

∂t2
. (2.17)

The bending moment can be related to the curvature of the element [Mei75,

GT91, TY68, Bor62]:

M(t, r) = EI(r)
∂2y(t, r)

∂r2
. (2.18)

Substituting this into (2.17) and re-arranging gives

∂2

∂r2

(
EI(r)

∂2y(t, r)

∂r2

)
+ ρA(r)

∂2y(t, r)

∂t2
= f(t, r), 0 ≤ r ≤ L (2.19)

which is the Bernoulli-Euler beam equation [Mei75, dS00]. When the beam is

relatively thick, the effects of shear deformation and rotational inertia need to

be considered. For this type of beam, the Timoshenko beam equation can be

used [dS00].
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Some common boundary conditions are listed below [Mei75, dS00]:

• Cantilevered (clamped) end at r = ro: The deflection and the slope of the

deflection curve are zero.

y(t, ro) = 0,
∂y(t, r)

∂r

∣∣∣∣∣
r=ro

= 0. (2.20)

• Simply-supported (hinged/pinned) end at r = ro: The deflection and

bending moment are zero.

y(t, ro) = 0, EI(r)
∂2y(t, r)

∂r2

∣∣∣∣∣
r=ro

= 0. (2.21)

• Free end at r = ro: The shearing force and bending moment are zero.

∂

∂r

(
EI(r)

∂2y(t, r)

∂r2

)∣∣∣∣∣
r=ro

= 0, EI(r)
∂2y(t, r)

∂r2

∣∣∣∣∣
r=ro

= 0. (2.22)

2.1.4 Flexural vibration of thin plates

The previous flexural beam case assumes a one-dimensional system. In this

section, we consider flexural vibration of a two-dimensional structure, a thin

plate. We include the derivation of strain and stress in the plate since we intend

to use it for modelling piezoelectric laminate plates in Chapter 5. In the same

chapter, we will also consider the optimal placement of actuators and sensors

over such structures.

Two main assumptions used are:

(i) The plate has a uniform thickness.

(ii) The thin plate assumption: the shear deformation, stress in vertical/transverse

direction and rotational inertia of the plate are ignored.

A thin plate with dimensions of a×b×h is shown in Figure 2.9. The Young’s

modulus of elasticity, density and Poisson’s ratio of the plate are denoted by E, ρ

and ν respectively. Consider the plate element in Figures 2.10 and 2.11. The

external moments per unit length are denoted by Mpx and Mpy, which may be
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Figure 2.9: A thin plate in flexural vibration
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Figure 2.10: A small element of the plate - shear forces
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Figure 2.11: A small element of the plate - moments

contributed by piezoelectric actuators. Further, pz is the pressure in z direction,

while Qx and Qy are the shearing forces per unit length on planes normal to x

and y respectively. The origin of z axis is located on the mid-plane of the plate,

i.e. the neutral plane. In pure bending cases, the neutral plane experiences

no longitudinal strain or stress. As a consequence, it can be conveniently used

as the reference axis for stress-strain calculation purposes. At this point, we

concentrate on the plane at a distance z from the neutral plane (mid-plane).

The deflections in x and y directions, u and v, could be expressed as [Jaw94,

Man64, Yu96]:

u = −z
∂w

∂x

v = −z
∂w

∂y
(2.23)

where w is the deflection in z direction.
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Using Hooke’s law [Jaw94, Man64, Yu96], the expression for the strains can

be obtained from (2.23):

εx =
∂u

∂x
= −z

∂2w

∂x2

εy =
∂v

∂y
= −z

∂2w

∂y2

γxy =
∂u

∂y
+

∂v

∂x
= −2z

∂2w

∂x∂y
(2.24)

where γxy is the shear strain, while εx and εy are the longitudinal strains in x

and y directions respectively.

From Hooke’s law, strains are related to stresses [Jaw94, Man64, Yu96]:

εx =
1

E
(σx − νσy)

εy =
1

E
(σy − νσx)

γxy =
1

G
τxy = 2

(1 + ν)

E
τxy (2.25)

where G is the shear modulus and can be related to Young’s modulus as de-

scribed above. Here, τxy is the shear stress, while σx and σy are the longitudinal

stresses in x and y directions respectively. Hence, the stresses can be determined

from (2.24) and (2.25):

τxy = − Ez

(1 + ν)

∂2w

∂x∂y

σx = − Ez

(1 − ν2)

(
∂2w

∂x2
+ ν

∂2w

∂y2

)

σy = − Ez

(1 − ν2)

(
∂2w

∂y2
+ ν

∂2w

∂x2

)
. (2.26)

The expressions relate stresses with the deflection/curvature of the plate. The

next task is to relate bending moments and forces to the stresses so the equations

of motion can be obtained.

The moment per unit length Mx is calculated by integrating the correspond-

ing stress across the plate thickness:

Mx =
∫ h

2

−h
2

zσxdz

= −D

(
∂2w

∂x2
+ ν

∂2w

∂y2

)
(2.27)
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where D is often called the flexural rigidity of the plate [Smi88, Yu96]:

D =
Eh3

12(1 − ν2)
. (2.28)

Similarly for My:

My =
∫ h

2

−h
2

zσydz

= −D

(
∂2w

∂y2
+ ν

∂2w

∂x2

)
. (2.29)

The torsional moment per unit length Mxy is

Mxy =
∫ h

2

−h
2

zτxydz

= −D(1 − ν)
∂2w

∂x∂y
. (2.30)

Applying Newton’s second law to vertical forces (in z direction, see Figure 2.10):

Qxdy −
(
Qx +

∂Qx

∂x
dx

)
dy + Qydx −

(
Qy +

∂Qy

∂y
dy

)
dx

+ pz(t, x, y)dx dy − ρ(x, y) h dx dy
∂2w

∂t2
= 0. (2.31)

Division by dx dy yields

−∂Qx

∂x
− ∂Qy

∂y
+ pz(t, x, y) − ρ(x, y)h

∂2w

∂t2
= 0. (2.32)

Taking moment equilibrium about x axis and ignoring the rotational inertia of

the plate (considering shear forces and moments in Figures 2.10 and 2.11):

pz(t, x, y)dx dy
dy

2
− ∂Qx

∂x
dxdy

dy

2
−
(
Qy +

∂Qy

∂y
dy

)
dx dy

− ∂My

∂y
dydx − ∂Mxy

∂x
dxdy − Mpy dx = 0. (2.33)

Division by dx dy and ignoring the higher order term dy gives

−Qy =
∂My

∂y
+

∂Mxy

∂x
+

∂Mpy

∂y
. (2.34)

A similar expression can be obtained when the moment equilibrium is taken

about y axis:

−Qx =
∂Mx

∂x
+

∂Mxy

∂y
+

∂Mpx

∂x
. (2.35)
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In this case, Mxy = Myx is assumed due to complementary shear stresses

τxy = τyx.

We differentiate (2.34) and (2.35) with respect to y and x respectively, and

substitute them into the vertical equilibrium equation (2.32):

(
∂2Mx

∂x2
+ 2

∂2Mxy

∂x∂y
+

∂2My

∂y2

)
+

(
∂2Mpx

∂x2
+

∂2Mpy

∂y2

)

+ pz(t, x, y) − ρ(x, y) h
∂2w

∂t2
= 0. (2.36)

The moments in (2.27), (2.29) and (2.30) can be differentiated twice to obtain

∂2Mx/∂x2, ∂2My/∂y2 and ∂2Mxy/∂x∂y. The PDE for the thin uniform plate is

obtained after substitution of these equations into (2.36):

ρ(x, y) h
∂2w

∂t2
+ D∇4w(t, x, y) =

∂2Mpx

∂x2
+

∂2Mpy

∂y2
+ pz(t, x, y) (2.37)

where

∇4w =
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4
. (2.38)

2.2 Modal analysis

We consider some modelling methods that can be used to solve previous PDE’s,

starting with the modal analysis method. The method is standard and also

can be found in [Mei75, dS00, CSG98]. Consider the typical PDE for spatially

distributed systems:

L{y(t, r)} + C
{

∂y(t, r)

∂t

}
+ M

{
∂2y(t, r)

∂t2

}
= f(t, r). (2.39)

This PDE may describe the axial, torsional and flexural vibrations that we have

discussed previously. Here, r is the spatial coordinate, which is defined over

a domain R. Also, L and M are linear homogeneous differential operators of

order 2p and 2q respectively and q ≤ p. The general arbitrary input is denoted

by f , which is spatially distributed over R.
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Furthermore, C is described as:

C = c1L + c2M (2.40)

where c1 and c2 are non-negative constants. This assumes a proportional damp-

ing in the system. In practice, it is not easy to model damping accurately, and

we may need to rely on experiments. Based on our experimental experience,

the proportional damping terms are sufficient to represent damping in flexible

structures.

The boundary conditions can be expressed as:

B` {y(t, r)} = 0, ` = 1, 2, . . . , p (2.41)

where B` are linear homogeneous differential operators of order up to 2p − 1.

The modal analysis assumes a solution for (2.39) in the form of

y(t, r) =
∞∑

i=1

φi(r)qi(t) (2.42)

where qi is the generalized coordinate.

Here, φi are the eigenfunctions that are obtained by solving the eigenvalue

problem associated with (2.39)

L{φi(r)} = λiM{φi(r)}

and its associated boundary conditions. This corresponds to the undamped

vibration case. The natural frequencies ωi are determined from the eigenvalues

λi = ω2
i , i = 1, 2, . . . .

Since L is self-adjoint for the majority of systems considered here, the nor-

malized eigenfunctions have the following orthogonality properties:

∫

R
φi(r)L{φj(r)}dr = δijω

2
i (2.43)

∫

R
φi(r)M{φj(r)}dr = δij (2.44)
∫

R
φi(r)C{φj(r)}dr = 2δijζiωi (2.45)
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where δij is the Kronecker delta function, where δij = 1 for i = j, and zero

otherwise. The damping factor is then

ζi =
c1ω

2
i + c2

2ωi

. (2.46)

Substituting (2.42) in (2.39), we obtain

L
{

∞∑

i=1

φi(r)qi(t)

}
+ C

{
∂

∂t

∞∑

i=1

φi(r)qi(t)

}
+ M

{
∂2

∂t2

∞∑

i=1

φi(r)qi(t)

}
= f(t, r).

(2.47)

The orthogonality of the eigenfunctions allows the PDE to be transformed

into a set of ordinary differential equations (ODE’s). Multiplying (2.47) by

φj and integrating over the domain R, taking advantage of the orthogonality

conditions (2.43), (2.44) and (2.45), we obtain

q̈i(t) + 2ζiωiq̇i(t) + ω2
i qi(t) = Qi(t), i = 1, 2, . . . (2.48)

where the generalized force is

Qi(t) =
∫

R
φi(r)f(t, r)dr. (2.49)

In control design, a frequency domain model is often required. To obtain

the model in frequency domain, the above equations can be solved by Laplace

transforms. The generalized force is related to the system input u as

Qi(t) = Piu(t) (2.50)

where Pi is the time-independent forcing term.

Then, the transfer function of the system can be shown to be

G(s, r) =
∞∑

i=1

φi(r)Pi

s2 + 2ζiωis + ω2
i

. (2.51)

In the following, we will discuss the modal analysis solution for simply-

supported beams and simply-supported thin plates that will be used in some

parts of the thesis.
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2.2.1 Simply-supported beams
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Figure 2.12: A simply-supported beam

Consider a simply-supported uniform beam of length L where a point force u

is acting at point r = r1 as depicted in Figure 2.12. The solution for a point

force here can provide information for systems with general excitation since the

systems are linear. The PDE that governs the beam is (2.19) and the boundary

conditions are as described in (2.21):

y(t, 0) = 0

y(t, L) = 0

EI
∂2y(t, r)

∂r2

∣∣∣∣∣
r=0

= 0

EI
∂2y(t, r)

∂r2

∣∣∣∣∣
r=L

= 0. (2.52)

Considering the general notations in (2.39) and (2.41):

L =
∂2

∂r2

(
EI

∂2

∂r2

)

M = ρA

B1 = 1

B2 = EI
∂2

∂r2

f(t, r) = u(t)δ(r − r1) (2.53)

and R = [0, L]. Further, C is defined as in (2.40) to include the effect of damping
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in the structure. The orthogonality conditions can be written as:

∫ L

0
φi(r)φj(r)ρAdr = δij (2.54)

∫ L

0
φi(r)φ

′′′′

j (r)EIdr = ω2
i δij (2.55)

where ωi and φi are the solutions to the eigenvalue problem

φ
′′′′

i (r) − λ4
i φi(r) = 0 (2.56)

and

λ4
i =

ρAω2
i

EI
. (2.57)

The eigenfunctions φi have to satisfy the corresponding boundary conditions in

(2.52):

φi(0) = 0

φi(L) = 0

φ
′′

i (0) = 0

φ
′′

i (L) = 0. (2.58)

The general solution to the eigenvalue problem is of the form [Mei75, dS00]

φi(r) = Ai sin λir + Bi cos λir + Ci sinh λir + Di cosh λir. (2.59)

The first and third boundary conditions in (2.58) imply Bi = Di = 0. The

remainder of the boundary conditions imply that Ci = 0 and sin λiL = 0, where

λi =
iπ

L
, i = 1, 2, . . . (2.60)

Thus, φi can be written as φi = Ai sin λir. Substituting this expression into the

orthogonality condition, the expression for Ai can be found as Ai =
√

2
ρAL

. To

summarize, for the simply-supported beam in Figure 2.12, the eigenfunctions

are given by sinusoidal functions

φi(r) =

√
2

ρAL
sin

(
iπr

L

)
, i = 1, 2, . . . (2.61)
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and the corresponding natural frequencies are

ωi =
(

iπ

L

)2
√

EI

ρA
, i = 1, 2, . . . (2.62)

We introduce damping into the system, where ζi denotes the damping ratio

associated with mode i. Then, the transfer function from the applied force u(s)

to the transverse deflection of the beam y(s, r) is found to be:

y(s, r)

u(s)
=

∞∑

i=1

φi(r1)φi(r)

s2 + 2ζiωis + ω2
i

. (2.63)

2.2.2 Simply-supported rectangular thin plates

Consider a rectangular uniform thin plate whose edges are simply-supported.

The boundary conditions are:

w(t, x, y) = 0, Mx = −D

(
∂2w

∂x2
+ ν

∂2w

∂y2

)
= 0, ∀x = 0, a; 0 ≤ y ≤ b

w(t, x, y) = 0, My = −D

(
∂2w

∂y2
+ ν

∂2w

∂x2

)
= 0, ∀y = 0, b; 0 ≤ x ≤ a.

(2.64)

The procedure is similar to that of the beam, so it is not repeated here. The

difference is that the eigenfunctions are now functions of x and y. It can be

shown that the normalized eigenfunction associated with mode (m, n), where m

and n are the mode numbers in x and y directions respectively, is [dS00]

φmn(x, y) =
2√

abρh
sin

mπx

a
sin

nπy

b
. (2.65)

The natural frequency of mode (m, n) is

ωmn = π2

√
D

ρh

(
m2

a2
+

n2

b2

)
. (2.66)

Typical simply-supported mode shapes of a plate are shown in Figure 2.13.
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Figure 2.13: Mode shapes of a simply-supported plate
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2.3 Rayleigh-Ritz method

We can use the above modal analysis procedure to model systems with uniform

properties and relatively simple boundary conditions. However, the approximate

solutions are required when the systems have non-uniform properties or the

boundary conditions are complicated. In fact, when smart materials are bonded

to a structure, the system properties are no longer uniform due to changes in

stiffness and mass properties. This can be important when the contribution of

smart materials to the structural mass and stiffness properties are considerable.

Several methods can be used to model such systems, the Rayleigh-Ritz method

being one.

The Rayleigh-Ritz method is an extension of the Rayleigh’s energy method

that is used to determine the upper bound of the fundamental resonance fre-

quency of a system. The method is based on the Rayleigh’s principle which

states that the Rayleigh’s quotient is stationary in the neighbourhood of the

natural mode [Mei75]. The Rayleigh’s quotient R can be defined as:

ω2 = R =
Vmax

T ∗
. (2.67)

Here, Vmax and T ∗ are the maximum potential energy and the reference kinetic

energy respectively.

The method assumes the solution as a linear combination of a finite number

N of linearly independent admissible functions φi. The admissible functions only

need to satisfy the geometric boundary conditions of the system. The solution

is in the form of

y(r) =
N∑

i=1

φi(r)ai (2.68)

where coefficients ai are to be determined such that the Rayleigh’s quotient is

stationary. Here, φi are also called trial functions.

In this case, only admissible functions are required since the natural boundary

conditions are included in the potential and kinetic energy. The functions to

be chosen have to be differentiable to the order of the associated differential
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equation. The solutions yield the upper bounds of the exact natural frequencies

since the model is restricted to have only a finite number of discrete systems.

The more we have admissible functions used as trial functions, the closer the

upper bounds will be to the exact natural frequencies.

2.4 Assumed-modes method

Another approximate method for modelling flexible structures is the assumed-

modes method. The method also depends on the combinations of N admissible

(trial) functions φi but with time-dependent coefficients bi in the form of

y(t, r) =
N∑

i=1

φi(r)bi(t). (2.69)

The method incorporates Lagrange’s equation of motion to determine the

time-dependent coefficients. Since this method considers the time-dependent

response explicitly, it is convenient in dealing with systems with external forces

and initial excitation [Mei75].

The assumed-modes method yields the same eigenvalue problem as the

Rayleigh-Ritz method when the Rayleigh’s quotient is expressed in energies

[Mei75]. Both methods are useful when eigenfunctions satisfying the eigen-

value problem and boundary conditions do not exist. However, the accuracy of

the solutions depend greatly on the choice of the admissible functions and the

number of trial functions used.

2.5 Finite element method

The Rayleigh-Ritz and assumed-modes methods require an appropriate choice

of trial functions. However, selecting appropriate trial functions may be difficult

for complicated structures.

The FE method can be used for modelling general flexible structures with

non-uniform properties and complicated boundary conditions. In addition, ex-

perimental modal analysis can be integrated with the FE model to obtain a
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realistic model of a system [Ewi84, Fri95]. The disadvantage of the method is

that to obtain a sufficiently accurate model it may require a large number of

elements, although a model reduction can be done later on. An example of

modelling of piezoelectric laminate beam using the FE method will be discussed

in Section 2.7.

2.6 Modal analysis modelling of piezoelectric

laminate structures

In this section, we consider the modelling of piezoelectric laminate structures.

In particular, we will deal with the case of flexural vibration of piezoelectric

laminate beams.
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Figure 2.14: A beam with collocated piezoelectric actuators and sensors

Consider a homogeneous Euler-Bernoulli beam with a number of piezoelectric

actuator/sensor pairs attached to it (i.e. a piezoelectric laminate beam) as shown

in Figure 2.14. Suppose there are J actuators distributed along the structure.

Suppose that the jth piezoelectric actuator has dimensions of Lpj × Wpj × hpj,

where hpj is the thickness of each patch, while the beam has dimensions of

L×W × h (see Figure 2.15). The applied voltages to the actuating patches are

denoted by Va = [Va1 . . . VaJ ]T .
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Figure 2.16: The strain distribution of a beam section
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The PDE for flexural vibrations of a beam is as in (2.19), assuming a uniform

beam:

EI
∂4y(t, r)

∂r4
+ ρA

∂2y(t, r)

∂t2
=

∂2Mpr(t, r)

∂r2
(2.70)

where the parameters are as defined in Section 2.1. The right-hand-side of the

equation represents the bending moment contribution by piezoelectric actua-

tors. It is assumed that the mass and stiffness contributions of the patches are

considerably smaller than those of the beam so they can be ignored. This is true

for the piezoelectric patches that are used in our experiments. This simplifies

the solution for the beam dynamics since a uniform beam can be considered.

Based on our experiments, this uniform beam assumption works sufficiently well

for the structures used in the experiments.

The approach presented below follows the procedures in [DFR91, FEN96].

Consider the jth piezoelectric actuator attached to the beam. Let us drop the

subscript j for the time being, realizing that the properties that we are about

to discuss belong to the jth actuator. The overall longitudinal strain inside the

actuator is contributed by the induced longitudinal strain due to bending εr and

the free strain εp. The free/unconstrained strain is the strain that is generated

in the patch due to the applied voltage only [DFR91, FEN96]. An expression for

the free strain (see Figure 2.16) of the piezoelectric material is [FEN96, BSW96]

εp =

(
d31

hp

)
Vaj(t). (2.71)

The piezoelectric charge constant d31 relates how much mechanical strain is

generated when a particular voltage Vaj is applied across the piezoelectric patch.

The strain distribution is assumed to be uniform across the patch. We ignore

the equilibrium conditions that require the strain at the patch boundary to be

zero, since the patch is thin relative to its length (see [DFR91]). Moreover, it

is assumed that the piezoelectric patches are used at room temperature and

the variation of properties with temperature is negligible. Using Hooke’s law to
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obtain an expression for stress in terms of strain:

σpr = Ep (εr − εp)

σr = Eεr (2.72)

where σpr and σr are the longitudinal stresses of the actuator and the beam

respectively, in r direction, and Ep is the Young’s modulus of elasticity of the

actuator.

The strain distribution across the beam thickness can be considered to be

linear for pure flexural case εr = α y as shown in Figure 2.16. The strain gradient

α is determined from the moment equilibrium equation about the neutral axis

of the beam:

∫ h
2

−h
2

y σr dy +
∫ h

2
+hp

h
2

y σpr dy = 0. (2.73)

where the neutral axis is the axis in which the beam longitudinal strain and

stress are zero for pure flexural case. It is assumed that the piezoelectric patch

is bonded to the beam perfectly. This amounts to having no shearing effect in

the patch-structure interface. The assumption of thin patches also implies that

the position of the neutral axis does not change with the addition of patches.

The moment equilibrium implies that the bending moment generated by the

patch is directly transferred to the structure. From (2.72) and (2.73), the free

actuator strain εp can be expressed and the bending strain gradient α is

α = κ εp (2.74)

where

κ =
12 Ep hp (hp + h)

2 E h3 + Ep [(h + 2 hp)3 − h3]
. (2.75)

Suppose that the ends of the jth piezoelectric patch are located at r1j and r2j

along r axis. Step functions H(·) are used to represent the placement of the

patch over the structure. The bending moment experienced by the beam Mprj

can be determined using (2.74) and the first integral term in (2.73):

Mprj = Kj [H(r − r1j) − H(r − r2j)] Vaj(t) (2.76)



Chapter 2. Modelling of smart structures 40

where

Kj =
κjEd31jh

3Wpj

12hpj

(2.77)

which depends on the properties of the beam and the j th piezoelectric patch.

Here, H(r − r1j) is zero for r < r1j and one for r ≥ r1j . The forcing term in

the PDE (2.70) can then be determined from the Mprj expression, using the

property of Dirac delta function [KS91]:

∫ ∞

−∞
δ(n)(t − θ) φ(t) dt = (−1)n φ(n)(θ) (2.78)

where δ(n) is the nth derivative of δ and φ is continuous at θ.

The modal analysis technique is used to solve the PDE (2.70) by assuming a

solution in the form of

y(t, r) =
∞∑

i=1

φi(r) qi(t). (2.79)

Using the orthogonality properties of φi and Dirac delta function property

(2.78), the generalized force can be found as in (2.49):

Qij =
∫ L

0
φi(r)

∂2Mprj

∂r2
dr

= KjΨij Vaj(t) (2.80)

where

Ψij =
∫ L

0
φi(r)

[
dδ(r − r1j)

dr
− dδ(r − r2j)

dr

]
dr

=
dφi(r2j)

dr
− dφi(r1j)

dr
. (2.81)

Then, by considering the bending moments generated by all J piezoelectric

actuators, the following decoupled second-order ODE’s are obtained:

q̈i(t) + 2ζi ωi q̇i(t) + ω2
i qi(t) =

J∑

j=1

KjΨij Vaj(t) (2.82)

where i = 1, 2, · · · and the subscript j denotes the jth actuator.
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Applying the Laplace transform to (2.82), assuming zero initial conditions,

the MIIO (Multiple-Input, Infinite-Output) transfer function from the applied

actuator voltage Va(s) = [Va1(s) . . . VaJ(s)]T to the beam deflection y(s, r) is

G(s, r) =
∞∑

i=1

φi(r) Pi

s2 + 2ζi ωi s + ω2
i

(2.83)

where

Pi = [K1Ψi1 . . .KJΨiJ ]. (2.84)

2.6.1 Piezoelectric sensors

Suppose J piezoelectric sensors are placed on a structure. Consider the kth

piezoelectric sensor patch attached to the beam. All properties described in the

following paragraphs belong to the kth piezoelectric patch. It is assumed that

the piezoelectric sensor is placed on the beam as shown in Figure 2.16.

When the beam experiences structural deformations, the piezoelectric sen-

sors generate electric charges due to piezoelectric effect. The electric charge

distribution qp, i.e. the charge per unit length, for a one-dimensional structure

is [PA95]

qp(t) =
k2

31

g31

Wp εr (2.85)

where k31 is the electromechanical coupling factor and g31 is the piezoelectric

voltage constant in r direction. Since the sensor is placed on the surface of the

structure as shown in Figure 2.16, the sensor strain is

εr = −yp

∂2y

∂r2
(2.86)

where yp = −h+hp

2
is the normal distance from the neutral axis to the mid-plane

of the sensor patch.

The overall electric charge generated can be obtained by integrating the

charge qp (2.85) over the length of the sensor. Substituting the modal anal-

ysis solution form (2.79), the induced sensor voltage Vsk for the kth sensor is

Vsk(t) = Ωk

∞∑

i=1

∫ r2k

r1k

d2φi(r)

dr2
dr qi(t) (2.87)
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where

Ωk =
Wpk k2

31k

Ck g31k

(
h + hpk

2

)
(2.88)

and Ck is the capacitance of the piezoelectric sensor. The integral given in the

above equation can be shown to be equal to Ψij in (2.81) when j is replaced by

k. So the contribution of each mode to the overall sensor voltage is proportional

to Ψik.

Taking the Laplace transform of (2.82) and (2.87), the MIMO (Multiple-

Input, Multiple-Output) transfer function from the actuator voltage Va(s) to

the sensor voltage Vs(s) = [Vs1(s) . . . VsJ(s)]T is

GV s(s) =
∞∑

i=1

ΥiPi

s2 + 2ζi ωi s + ω2
i

(2.89)

where Υi = [Ω1Ψi1 . . .ΩJΨiJ ]T . For certain cases such as when actuators and

sensors are compatible and collocated, then ΥiPi is a positive or negative semi-

definite matrix, depending on the polarity of each sensor with respect to its

collocated actuator. This collocated nature leads to a minimum phase property

for flexible structure systems that has desirable implications on control design.

This issue will be discussed further in Chapter 6.

Similar transfer functions can be obtained for more complicated structures,

such as plates with certain boundary conditions and tubular structures, by using

approximate methods such as the FE method. The modelling of piezoelectric

laminate beam via FE method will be discussed next.

2.7 Finite element modelling of piezoelectric lam-

inate structures

When a flexible structure to be modelled is complicated, it is usually not possible

to use modal analysis for modelling. Alternatively, approximate methods can

be used for modelling such a structure. However, the approximate methods

such as the Rayleigh-Ritz and assumed-modes methods rely on the choice of the
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admissible functions. The model obtained may not be accurate if the functions

chosen are far away from the actual eigenfunctions. The choice of the functions

will be more difficult if the structure is complicated.

Finite element method also relies on the admissible functions, but they are

defined on each element instead. The method divides a complex system into a

finite number of simpler sub-systems. The information of the system is contained

in grid points or nodes. This section will discuss the finite element formulation

of a flexible beam with piezoelectric actuators and sensors attached to it. We

consider the flexural vibration of beams described in the previous section.
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Figure 2.17: A finite element beam

A model of a FE beam of length L with four elements is shown in Figure

2.17. A complicated structure can be divided into simpler elements. Here, we

consider the case in which each element can be regarded as a homogeneous beam

element. It can be shown that the solution to FE converges to the solution of the

associated PDE by increasing the number of elements [Mei75]. Because the FE

method used here is standard, only some essential formulations will be discussed

in this section. More detailed descriptions can be found in [Mei75, CB97, OP92,

Ros91].

Consider a uniform elemental beam of length he shown in Figure 2.18. The

global axis is denoted by r, while the local (elemental) axis is denoted by re.

The Young’s Modulus E, moment of inertia I, density ρb, and cross-sectional

area Ab of the element are constants. Each elemental beam has four degrees of

freedom, two transverse displacements and two angular displacements as shown
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Figure 2.18: An elemental beam

in Figure 2.18. The nodal displacements of the elemental beam can be written as

we = [w1 w2 w3 w4]
T . The location of a particular point on this elemental

beam is denoted by re.

The FE method discretizes a continuous system whose structural information

is contained in the nodes. Hence, the information between nodes need to be

estimated using admissible functions which are also called the shape functions.

The shape functions commonly used for this flexural beam case are the Hermite

cubic polynomials:

H̄(re) =
[
H̄1 H̄2 H̄3 H̄4

]T
(2.90)

where

H̄1(re) = 1 − 3
(

re

he

)2

+ 2
(

re

he

)3

H̄2(re) = he

[(
re

he

)
− 2

(
re

he

)2

+
(

re

he

)3
]

H̄3(re) = 3
(

re

he

)2

− 2
(

re

he

)3

H̄4(re) = he

[
−
(

re

he

)2

+
(

re

he

)3
]
. (2.91)

Thus, the transverse displacement at any point along the beam we can be ap-

proximated by

we(t, re) = H̄(re)
T we(t). (2.92)
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The elemental mass matrix Me can be obtained by considering the kinetic

energy of the beam element:

Te =
1

2

∫ he

0
ρbAb

(
∂we(t, re)

∂t

)2

dre

=
1

2

∫ he

0
ρbAb ẇe(t)

T H̄(re)H̄(re)
T ẇe(t)dre

=
1

2
ẇe(t)

T Me ẇe(t) (2.93)

where Me = ρbAb

∫ he

0 H̄(re)H̄(re)
T dre.

The elemental stiffness matrix Ke can be obtained in a similar way. The

strain energy of the beam Ve can be obtained from

Ve =
1

2

∫ h

0
EI

(
∂2we(t, re)

∂r2
e

)2

dre

=
1

2

∫ he

0
EI we(t)

T

(
d2H̄(re)

dr2
e

)(
d2H̄(re)

dr2
e

)T

we(t)dre

=
1

2
we(t)

T Ke we(t) (2.94)

where Ke = EI
∫ he

0

(
d2H̄(re)

dr2
e

)(
d2H̄(re)

dr2
e

)T
dre.

Suppose N elements are used to model the beam and k is the number of

degrees of freedom of the beam. We introduce the subscript n to denote the

properties of the nth elemental beam. The nth elemental nodal displacements

wen
are expressed in terms of the global displacements w by using a linear

transformation matrix An:

wen
(t) = An w(t) (2.95)

where wen
∈ R4×1, w ∈ Rk×1 and An ∈ R4×k.
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Figure 2.19: The axes system

The transverse deflection of the beam w at a particular location r can be

determined from the displacement of the corresponding elemental beam at dis-

tance re. Here, r ∈ R = {r | 0 ≤ r ≤ L} and re ∈ R1 = {re | 0 ≤ re ≤ he}. For

instance, the point O in Figure 2.19 is located at r in the nth elemental beam.

The corresponding local coordinate for the elemental beam is re. The transverse

deflection w of point O can be obtained only from the nodal displacements of

the nth elemental beam, wen
.

The global displacement w can be determined using (2.92) and (2.95):

w(t, r) = wen
(t, re) = H̄(re)

T wen
(t)

= H̄(re)
T An w(t)

= Cw(r) w(t) (2.96)

where Cw(r) = H̄(re)
T An ∈ R1×k.

2.7.1 Global nodal force vector, F̂

The global force vector describes all external forces applied to the overall struc-

ture. The global nodal force vector due to piezoelectric actuators can be obtained

by calculating the virtual work done by the beam. The distributed forces are

represented as the equivalent nodal forces. Consider the j th piezoelectric actua-

tor patch whose ends are located at r1j and r2j . Suppose the point r1j is in the

element n1j whose corresponding local position is r1je
. Similarly, the r2j is in

the element n2j whose corresponding local position is r2je
.
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The virtual work done by the whole structure δW j(t) due to the jth actuator

excitation can be calculated by using (2.76), (2.96) and the Dirac delta function

property (2.78) as follows:

δW j(t) =
∫ L

0

∂2Mprj

∂r2
δw(t, r) dr

=
∫ L

0
Kj Vaj(t)

[
dδ(r − r1j)

dr
− dδ(r − r2j)

dr

]
δw(t, r) dr

= Kj Vaj(t)

[
∂δw(t, r2j)

∂r
− ∂δw(t, r1j)

∂r

]

= Kj Vaj(t)

[
dH̄(r2je

)T

dre

An2j
− dH̄(r1je

)T

dre

An1j

]
δw(t)

= F̂j(t)
T δw(t) (2.97)

where F̂j(t) ∈ Rk×1 denotes the global nodal force vector of the beam. Hence,

F̂j(t) = Kj Vaj(t)

[
AT

n2j

dH̄(r2je
)

dre

− AT
n1j

dH̄(r1je
)

dre

]

= Kj Vaj(t) Θj

= F̄j Vaj(t) (2.98)

where F̄j, Θj ∈ Rk×1.

If the contribution of all J actuators are considered, we have

F̂ (t) =
J∑

j=1

F̄j Vaj(t)

= F̄ Va(t) (2.99)

where Va = [Va1 . . . VaJ ]T and F̄ = [F̄1 . . . F̄J ] ∈ Rk×J .

2.7.2 Global equation of motion

The global equation of motion defines the equation of motion of the overall

structure. Substituting the transformation (2.95) to (2.93) and (2.94) gives the

contribution of the nth element to the global mass matrix M̂ and global stiffness

matrix K̂. Matrices M̂ and K̂ are then obtained from the contribution of each
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element to the total kinetic energy and strain energy respectively:

M̂ =
N∑

n=1

AT
n Men

An (2.100)

K̂ =
N∑

n=1

AT
n Ken

An (2.101)

where M̂, K̂ ∈ Rk×k.

The global equation of motion of the FE beam can now be obtained as:

M̂ẅ(t) + K̂w(t) = F̂ (t). (2.102)

The eigenvalue problem from the above formulation is

K̂w(t) = λ M̂ w(t) (2.103)

where λ represents an eigenvalue of the system. The set of normalized eigenvec-

tors Φ = [φ1 φ2 . . . φk] has the following orthogonality properties:

ΦT M̂ Φ = I (2.104)

ΦT K̂ Φ = Λ (2.105)

where I is a unit matrix and Λ = diag(ω2
1 ω2

2 . . . ω2
k). Here, Φ ∈ Rk×k and

φi ∈ Rk×1. Incorporating a new state q and using a linear transformation

w(t) = Φ q(t) (2.106)

the equation of motion in (2.102) can be transformed into

ΦT M̂ Φ q̈(t) + ΦT K̂ Φ q(t) = ΦT F̂ (t)

q̈(t) + Λ q(t) = ΦT F̂ (t). (2.107)

The above formulation uses the orthogonality properties of the eigenvectors

Φ in (2.104) and (2.105). The equation of motion (2.107) represents the uncou-

pled equations of motion of the beam. Since flexible structures have relatively

small damping, a proportional damping D̂ can be conveniently included into

the equation of motion where D̂ = diag(2ζ1ω1 . . . 2ζkωk) and ζi is the damping
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factor associated with mode i. Therefore, the damped equation of motion for

the beam is

q̈(t) + D̂ q̇(t) + Λ q(t) = ΦT F̂ (t). (2.108)

After obtaining the equation of motion of the FE piezoelectric laminate beam,

the transfer function of the system can be determined. Consider again the

transverse deflection w given in (2.96). Using the linear transformation w = Φ q

in (2.106):

w(t, r) = Cw(r) Φ q(t)

=
k∑

i=1

Cw(r) φi qi(t). (2.109)

Taking the Laplace transform of the equation of motion for each mode i from

(2.108) and using (2.99):

(s2 + 2ζiωis + ω2
i ) qi(s) = φT

i F̂ (s)

= φT
i F̄ Va(s). (2.110)

Realizing that the Laplace transform of the deflection is

w(s, r) =
k∑

i=1

Cw(r)φiqi(s)

then the transfer function from Va(s) to w(s, r) is

Gr(s, r) =
k∑

i=1

Cw(r) φi φ
T
i F̄

s2 + 2ζiωis + ω2
i

(2.111)

where F̄ = [K1Θ1 . . .KJΘj] from (2.98).

2.7.3 Piezoelectric sensors

We consider the use of piezoelectric sensors for the beam. The derivations follow

from Section 2.6. Integrating the charge qp (2.85) over the length of the sensor,

the kth sensor voltage is

Vsk(t) = Ωk

∫ r2k

r1k

∂2w

∂r2
dr (2.112)
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where Ωk is defined in (2.88). The integral given in the above equation can be

evaluated as:

∫ r2k

r1k

∂2w(t, r)

∂r2
dr =

[
∂w(t, r)

∂r

]r2k

r1k

=

[
∂w(t, r2k)

∂r
− ∂w(t, r1k)

∂r

]

=

[
dH̄(r2ke

)T

dre

An2k
− dH̄(r1ke

)T

dre

An1k

]
w(t)

= ΘT
k w(t) (2.113)

where Θk is described in (2.98) by replacing j with k. From (2.112), the sensor

output Vs = [Vs1 . . . VsJ ]T is

Vs(t) =




Ω1Θ
T
1

...

ΩJΘT
J




w(t)

= Θ̂w(t) (2.114)

where Θ̂ ∈ RJ×k.

Using a new state q in (2.106), the transfer function from the actuator voltage

Va(s) to sensor voltage Vs(s) is

GV s(s) =
k∑

i=1

Θ̂φiφ
T
i F̄

s2 + 2ζi ωi s + ω2
i

. (2.115)

2.8 Summary

Modal analysis can be used to obtain exact solutions to PDE’s that govern

the dynamics of flexible structures. In our case, we can assume uniform struc-

tures with reasonable accuracy since the piezoelectric patches used are relatively

thin with respect to dimensions of the structures. Thus, modal analysis can be

used to model such systems with certain boundary conditions. In general cases

of smart structures, approximate methods such as the FE method may be re-

quired. There are other more comprehensive methods for modelling piezoelectric
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laminate structures, such as [BSW96, Yu96]. The modelling includes the contri-

bution of piezoelectric patches to the properties of the structures and non-linear

modelling of piezoelectric structures. Our task in this thesis is to obtain rea-

sonable and usable models that can be used for control design. The modelling

approach described in this chapter is sufficient to model piezoelectric laminate

structures that are used in our experiments.

The spatial information conveyed in the systems can be used to design con-

trollers that minimize structural vibration in a spatially-averaged sense. The

issue will be discussed later in this thesis.



Chapter 3

Spatial norms

This thesis deals with analysis and control of spatially distributed systems. Stan-

dard performance measures such as H2 and H∞ norms can be used for this

purpose. However, we intend to use performance measures that conveniently

incorporate the spatial information of the systems, i.e. spatial norms. The con-

cept of spatial norms is proposed in [MPP99, MF98] and will be used throughout

this thesis for model correction, optimal placement and control design of smart

structures. Hence, it is necessary to discuss some important concepts of spatial

norms in this chapter, concentrating on spatially distributed LTI systems.

3.1 Spatial H2 norm

w(t) z(t,r)
G(s,r)

Figure 3.1: A spatially distributed system

Consider a system G in Figure 3.1 that maps an input signal w ∈ Rm to an

output signal z ∈ R` ×R. The outputs are spatially distributed over a set R.
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The following definitions are proposed in [MPP99, MF98]:

Definition 3.1 Spatial H2 norm of a signal: the spatial H2 norm of a signal

z ∈ R` ×R is defined as:

� z �2
2=

∫ ∞

0

∫

R
z(t, r)T z(t, r)drdt (3.1)

The spatial H2 norm of z can be regarded as the energy of the spatially

distributed signal z. In flexible structures, the signal can be represented as the

deflection/deformation at every point along the structure.

Definition 3.2 Spatial H2 norm of a system: The spatial H2 norm of a

stable system G(s, r) with r ∈ R is defined as:

� G(s, r) �2
2=

1

2π

∫ ∞

−∞

∫

R
tr{G(jω, r)∗G(jω, r)}drdω (3.2)

The spatial H2 norm of the system takes into account the spatial information

embedded in the system. We will use this concept to develop spatial controllers

for minimizing structural vibration in Chapters 6 and 7.

An alternative way to calculate the spatial H2 norm of a system is by finding

an equivalent finite-dimensional system. The H2 norm of the finite-dimensional

system will be similar to the spatial H2 norm of the original system. Therefore,

we only need to find the H2 norm of the equivalent system using a standard

computation technique [ZDG96].

To be clearer, we consider a state-space form of a spatially distributed

model G:

ẋ(t) = Ax(t) + Bu(t)

y(t, r) = C(r)x(t). (3.3)



Chapter 3. Spatial norms 54

The spatial H2 norm of a system of the form (3.3) can be shown to be equiv-

alent to the H2 norm of a finite-dimensional system via the following theorem

[MF98]:

Theorem 3.1 Consider a stable system with a transfer function matrix G(s, r)

that can be described in state-space form by (3.3). Then

� G(s, r) �2= ‖G̃(s)‖2

where G̃(s) is a finite-dimensional system defined by

G̃(s) = Γ(sI − A)−1B

and

ΓT Γ =
∫

R
C(r)TC(r)dr. (3.4)

When we deal with models that arise from modal analysis, the computation of

the spatial H2 norm of such systems can be simplified due to the orthogonality

property of the associated eigenfunctions. Consider a typical modal analysis

model:

G(s, r) =
∞∑

i=1

φi(r)Pi

s2 + 2ζiωis + ω2
i

(3.5)

where r ∈ R and Pi ∈ R1×n for systems with n inputs.

The orthogonality condition of the eigenfunctions for structures with uniform

properties can be expressed as:

∫

R
φi(r)φj(r)dr = δij. (3.6)

The following theorem will be useful in computing the spatial H2 norm of

such a system [MF98]:

Theorem 3.2 Consider the system G(s, r) in (3.5) and suppose that the eigen-

functions satisfy the orthogonality condition in (3.6), then

� G(s, r) �2
2=

∞∑

i=1

‖G̃i(s)‖2
2 (3.7)

where

G̃i(s) =
Pi

s2 + 2ζiωis + ω2
i

. (3.8)
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This theorem proves that the spatial H2 norm of a spatially distributed sys-

tem of the form (3.5) with the orthogonality condition (3.6) is equivalent to the

H2 norm of another system.

We consider that the system in (3.5) is truncated to include only the first N

modes so that the truncated model is GN . Based on Theorem 3.2, the approxi-

mate spatial H2 norm of the system can also be calculated as:

� GN(s, r) �2
2=

N∑

i=1

‖G̃i(s)‖2
2.

For general cases of systems that do not satisfy (3.6), the spatial H2 norm

of the system can be evaluated numerically, such as by using the state-space

method in Theorem 3.1.

In more general cases, it may be beneficial to include a spatial weighting

function to emphasize certain spatial regions within the set R. For example, we

may want to emphasize controlling vibration over a specific region of a structure.

Hence, by placing a suitable spatial weighting function, a certain region can

be emphasized. Definitions 3.1 and 3.2 can be extended to allow such spatial

weightings [MF98] as follows:

Definition 3.3 Weighted spatial H2 norm of a signal: Consider a signal

z(t, r) ∈ R` ×R. Then, the weighted spatial H2 norm of z is defined as:

� z �2
2,Q=

∫ ∞

0

∫

R
z(t, r)T Q(r)z(t, r)drdt (3.9)

where Q(r) ≥ 0.

Definition 3.4 Weighted spatial H2 norm of a system: Consider a stable

system G(s, r) with r ∈ R. The weighted spatial H2 norm of this system is

defined as:

� G(s, r) �2
2,Q=

1

2π

∫ ∞

−∞

∫

R
tr{G(jω, r)∗Q(r)G(jω, r)}drdω (3.10)

where Q(r) ≥ 0.
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Suppose Q(r) is chosen to be a Dirac delta function Q(r) = δ(r − r1) with

r1 ∈ R. Then (3.10) becomes

� G(s, r) �2
2,δ=

1

2π

∫ ∞

−∞
tr{G(jω, r1)

∗G(jω, r1)}dω.

The above norm is simply the H2 norm of the system G at r = r1. Theorem 3.2

cannot be used to compute the weighted spatial H2 norm of a system because

the orthogonality condition in (3.6) is not applicable, unless Q(r) is a constant.

Alternatively, the weighted spatial H2 norm of a system can be computed via

state-space form as in Theorem 3.1. In this case, Γ is computed via

ΓT Γ =
∫

R
C(r)T Q(r) C(r)dr. (3.11)

3.2 Spatial H∞ norm

An alternative performance measure that is commonly used in control theory

is the H∞ norm. The concept of H∞ norm has a significant role in robust

control theory. Since this norm satisfies the multiplicative property of a norm,

it can be conveniently used to incorporate model uncertainties [SP96]. We now

consider the extension of this H∞ norm for spatially distributed systems. This

section will discuss the concept of spatial H∞ norm for spatially distributed LTI

systems, proposed in [MPP99]. Later, in Chapter 8, we will use this concept to

design spatial H∞ controllers for smart structures.

Definition 3.5 Spatial induced norm of a system: Consider a stable sys-

tem G(s, r). Let G be the linear operator which maps the inputs of G(s, r) to its

outputs. The spatial induced norm of G is

� G �2= sup
06=w∈L2[0,∞]

� z �2
2

‖w‖2
2

. (3.12)
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Definition 3.6 Spatial H∞ norm of a system: The spatial H∞ norm of a

stable system G(s, r) is

� G �2
∞= sup

ω∈R

λmax

(∫

R
G(jω, r)∗G(jω, r)dr

)
(3.13)

where λmax(F ) is the largest eigenvalue of the matrix F .

The next theorem shows that the spatial H∞ norm of G(s, r) is equivalent to

the spatial induced norm of G [MPP99].

Theorem 3.3 Suppose a stable system has a transfer function matrix G(s, r)

and let G denotes the linear map it induces from the L2 spaces of its inputs to

its infinite-dimensional outputs. Its induced operator norm � G � satisfies

� G �=� G �∞ .

Similar to the case of weighted spatial H2 norm, a spatial weighting function

can be included in the calculation of the spatial H∞ norm of the system. The

definitions are as follows:

Definition 3.7 Weighted spatial induced norm of a system: Let G be the

linear operator which maps the inputs of G(s, r) to its outputs. The weighted

spatial induced norm of G is

� G �2
Q= sup

06=w∈L2[0,∞]

� z �2
2,Q

‖w‖2
2

. (3.14)

Definition 3.8 Weighted spatial H∞ norm of a system: Consider a stable

system G(s, r) with r ∈ R. The weighted spatial H∞ norm of this system is

� G �2
∞,Q= sup

ω∈R

λmax

(∫

R
G(jω, r)∗Q(r)G(jω, r)dr

)
. (3.15)

It is straightforward to show that Theorem 3.3 holds for weighted spatial

norms. That is

� G �Q=� G �∞,Q .
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Hence, the spatial H2 and H∞ norms take into account the spatial information

of the spatially distributed systems such as flexible structures. We can use these

spatial norms as performance measures in model correction, optimal placement

and control design of smart structures.



Chapter 4

Model correction

In modal analysis, smart structure models can be represented by an infinite

number of modes. In control design, we are usually interested in controlling

vibration for a particular bandwidth. Low frequency modes tend to contribute

more significantly to structural vibration than high frequency modes. However,

it is known that high frequency (out-of-bandwidth) modes also contribute to the

dynamics at low frequencies (in-bandwidth). Thus, a sufficient number of out-

of-bandwidth modes may need to be included to obtain a reasonably accurate

in-bandwidth model [Hug87].

The inclusion of out-of-bandwidth modes in the model may yield a system

with a relatively higher order. Many modern control design methods produce a

controller with similar order to that of the plant. This may yield a controller

with an excessive order that may not be practical to be implemented to real

systems. We can reduce the order of the controller but the order reduction must

be done with care since the reduced-order controller may adversely affect the

closed-loop performance and stability. Thus, it can be convenient to reduce the

order of the model first so as to include only necessary modes within the control

bandwidth.

There are several approaches that can be used for model reduction. We

can use direct truncation, assuming the collective impact of out-of-bandwidth

modes on the in-bandwidth dynamics is minor. However, the removal of the
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out-of-bandwidth modes may perturb the in-bandwidth zeros [Cla97, Moh00a,

Moh00b, MH00]. Furthermore, the gain at zero-frequency (DC gain) is also

perturbed. The truncation error can be significant, especially for cases where

actuators and sensors are collocated.

One particular approach to compensate for the truncation error is to add a

correction term into the truncated model. The mode acceleration approach in

the aeroelasticity literature adds a feedthrough term to compensate for the DC

contents of out-of-bandwidth modes [BA75]. The approach has been recently re-

visited in [Cla97, Moh00a, Moh00b, MH00]. However, this approach only reduces

the DC error to zero. The error at higher frequencies, within the bandwidth of

interest, could still be large. It is also not clear how the multivariable systems

should be dealt with.

The extension of the mode acceleration approach is discussed in [Moh00b,

Moh00a]. An optimal feedthrough term is determined by minimizing the weighted

H2 norm of the truncation error. The existence of an analytical solution for the

optimal feedthrough term for multivariable pointwise models allows the solution

to be used directly. For spatial models, the approach is proposed in [Moh00a] by

finding a feedthrough term that minimizes the weighted spatial H2 norm of the

truncation error. In [Moh00b, Moh00a], however, it is assumed that there is no

damping in the system. This may be sufficient if the damping is relatively small,

but the solution may not be close to optimality if the damping is considerable.

In this chapter, we will briefly mention previous approaches in [Moh00b,

Moh00a, MH00] for obtaining the optimal feedthrough terms for systems that

assume no damping. Later, we will extend the approach for systems that include

damping via convex optimization and analytical optimization.

4.1 Model correction without damping effect

We discuss the determination of optimal feedthrough terms for pointwise and

spatial models. The main assumption here is that there is no damping in the
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system. This may be an acceptable assumption since many resonant systems

have relatively small damping. For example, flexible structures have typical

damping ratios ranging in the order of 0.01 or 0.001. We consider the model

correction for pointwise and spatial models of resonant systems based on the

approaches in [Moh00b, Moh00a].

Consider a typical MIMO model of a resonant system that is obtained from

modal analysis:

G(s) =
∞∑

i=1

Pi

s2 + ω2
i

(4.1)

where Pi ∈ Rm×n. Hence, G maps the input u ∈ Rn to the output y ∈ Rm.

This model represents the pointwise model of the system that relates n input

signals to m output signals.

The obvious way to reduce the order of the model is by direct truncation.

Suppose only N lowest frequency modes inside the bandwidth of interest (i.e.

in-bandwidth modes) are included in the model, then

GN (s) =
N∑

i=1

Pi

s2 + ω2
i

. (4.2)

Higher frequency modes (out-of-bandwidth modes) are ignored assuming that

their effects on the in-bandwidth dynamics are minor. However, this direct

truncation perturbs the zero locations and the DC content of the truncated

model, especially when the system has a collocated nature [Cla97, Moh00a,

Moh00b, MH00]. From (4.1), it can be observed that the DC contribution of

each mode is Pi/ω
2
i . Thus, the removal of high frequency modes leads to error

in DC content of the truncated model. It is obvious that the error will be more

significant if the system is collocated. For instance, a SISO (Single-Input, Single-

Output) collocated system contains Pi/ω
2
i terms with similar signs. Hence, the

error in DC content will be accumulated from each mode. The truncation error

may affect the robustness of the closed-loop system when a feedback controller

is designed. The approach that is proposed in [Moh00b] is to find an analytical

solution for an optimal feedthrough term to compensate for the truncation error

via H2 norm approach. The results will be presented here.
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4.1.1 H2 norm approach

Consider the pointwise system whose truncated model is given in (4.2). The

approach is based on finding a suitable feedthrough term, which is a constant

matrix K ∈ Rm×n, to compensate for the truncation error resulting from the

removal of modes N + 1 to ∞. The corrected model Ĝ then can be written as:

Ĝ(s) = GN(s) + K. (4.3)

The matrix K is determined by finding K that minimizes the weighted error

between the full-order model and the corrected model. The cost function is

defined as:

J = ‖W (s)(G(s) − Ĝ(s))‖2
2 (4.4)

with W a diagonal matrix whose diagonal elements are ideal low-pass filters:

W = diag(w w . . . w) (4.5)

and

w(jω) =





1 −ωc ≤ ω ≤ ωc

0 otherwise
(4.6)

in which ωc ∈ (ωN , ωN+1) is the cut-off frequency of each filter.

The optimum value Kopt can be shown to be [Moh00b]:

Kopt =
1

2ωc

∞∑

i=N+1

1

ωi

ln
(

ωi + ωc

ωi − ωc

)
Pi. (4.7)

The solution gives the analytical solution for the optimal feedthrough term for

pointwise models.

4.1.2 Spatial H2 norm approach

Now, we consider finding optimal feedthrough terms for spatial models. The

approach for compensating the truncated model of such systems will be use-

ful when we deal with the spatial control of smart structures in the next few

chapters. We will mention the approach proposed in [Moh00a].
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The spatial model of a resonant system can be represented by

Gr(s, r) =
∞∑

i=1

φi(r)Pi

s2 + ω2
i

(4.8)

where Pi ∈ R1×n and the transfer function Gr maps the input u ∈ Rn to the

output y ∈ R × R, where r ∈ R. For instance, R = [0, L] for a beam with

length L, and R = [0, a] × [0, b] for a plate with size a × b. For a beam under

flexural vibration, the spatial output y is the transverse displacement at point

r along the beam. Also, φi is the eigenfunction associated with mode i which is

assumed to satisfy the orthogonality property in (3.6).

By direct truncation, the truncated spatial model is

GrN(s, r) =
N∑

i=1

φi(r)Pi

s2 + ω2
i

. (4.9)

A feedthrough term Kr is added to the truncated model GrN to compensate

for the truncation error. The corrected model is

Ĝr(s, r) = GrN(s, r) + Kr(r) (4.10)

and Kr is chosen in the following form:

Kr(r) =
∞∑

i=N+1

φi(r)Kri (4.11)

where Kri ∈ R1×n.

Next, Kri is determined such that the spatial H2 norm of the weighted error

between the full-order model (4.8) and the corrected model (4.10) is minimized.

The cost function is defined as:

Jr = � Wr(s, r)(Gr(s, r) − Ĝr(s, r)) �2
2

= � Wr(s, r)(G̃r(s, r) − Kr(r)) �2
2 (4.12)

where

G̃r(s, r) =
∞∑

i=N+1

φi(r)Pi

s2 + ω2
i

. (4.13)
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Here, Wr is a diagonal matrix whose elements are ideal low-pass filters dis-

tributed spatially over R [Moh00a]:

Wr = diag(wr wr . . . wr) (4.14)

where

wr(jω, r) =





1 −ωc ≤ ω ≤ ωc, r ∈ R

0 otherwise
(4.15)

and ωc ∈ (ωN , ωN+1) is the cut-off frequency of each low-pass filter.

It is shown in [Moh00a], that the cost function in (4.12) can be minimized by

using the orthogonality property of the eigenfunctions (3.6). The optimal Kri is

Kopt
ri =

1

2ωcωi

ln
(

ωi + ωc

ωi − ωc

)
Pi. (4.16)

4.1.3 Spatial H∞ approach

Another way to obtain the feedthrough term is to find the optimal feedthrough

term using spatial H∞ norm as a performance measure. The approach is pro-

posed in [MH00] and only the results will be presented here.

The optimal feedthrough term is calculated such that the following cost func-

tion is minimized:

Jr = � Wr(s, r)(Gr(s, r) − Ĝr(s, r)) �2
∞

= � Wr(s, r)(G̃r(s, r) − Kr(r)) �2
∞ (4.17)

where all parameters have been mentioned previously in Section 4.1.2.

It can be shown that the optimal feedthrough term has the form of [MH00]

Kopt
r (r) =

∞∑

i=N+1

φi(r)K
opt
ri (4.18)

with

Kopt
ri =

1

2

(
1

ω2
i

+
1

ω2
i − ω2

c

)
Pi. (4.19)
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4.2 Model correction with damping effect via

convex optimization

In this section, we will develop a procedure for minimizing the truncation error

when the systems have considerable damping associated with each mode. The

approach is to set up a convex optimization problem and solve it using the

convex optimization techniques [BEGFB94].

Consider a general multivariable pointwise model of the following form:

GM(s) =
M∑

i=1

Ξi

s2 + 2ζiωis + ω2
i

(4.20)

where Ξi ∈ Rm×n. The model can be obtained from modal analysis or other

methods.

This model is truncated by keeping the first N < M modes:

GN (s) =
N∑

i=1

Ξi

s2 + 2ζiωis + ω2
i

. (4.21)

A feedthrough term is added to (4.21) to correct the truncated model. The

corrected model is

ĜN(s) =
N∑

i=1

Ξi

s2 + 2ζiωis + ω2
i

+ K (4.22)

where K ∈ Rm×n.

The optimal K, i.e. Kopt, is determined from the following minimization:

J2 = min
K∈Rm×n

‖W (s)(GM(s) − ĜN(s))‖2
2

= min
K∈Rm×n

‖E(s)‖2
2 (4.23)

where E is the error system and W is a low-pass weighting function whose

purpose is to emphasize the in-bandwidth error. The cut-off frequency of this

filter is typically chosen to lie within the range ωN ≤ ω ≤ ωN+1.

The above transfer functions can be written in state-space form:

GN(s) =




A B

C 0






Chapter 4. Model correction 66

GM(s) =




A 0 B

0 A2 B2

C C2 0




W (s) =




Aw Bw

Cw 0


 (4.24)

with appropriate values for A, B, C, A2, B2, C2 ,Aw, Bw and Cw.

Using the above notation, an expression for the error system is

E(s) = W (s)
(
GM(s) − ĜN(s)

)

=




Aw Bw

Cw 0


×







A 0 B

0 A2 B2

C C2 0



−




A B

C K







=




Aw Bw

Cw 0


×




A2 B2

C2 −K




=




Aw BwC2 −BwK

0 A2 B2

Cw 0 0




=




Ā B̄1K + B̄2

C̄ 0


 (4.25)

where

Ā =




Aw BwC2

0 A2




B̄1 =



−Bw

0




B̄2 =




0

B2




C̄ = [Cw 0] . (4.26)
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The H2 norm of the error system E can be expressed as [BEGFB94]:

‖E(s)‖2
2 = tr

{
C̄P C̄T

}
(4.27)

where P = P T > 0 is the solution to the following Lyapunov inequality :

ĀP + PĀT + (B̄1K + B̄2)(B̄1K + B̄2)
T < 0. (4.28)

Hence, the above problem can be formulated as a convex optimization prob-

lem to determine Kopt:

minimize tr
{
C̄P C̄T

}

subject to




ĀP + PĀT B̄1K + B̄2

(B̄1K + B̄2)
T −I


 < 0, P > 0.

Another alternative to finding the feedthrough term is by using H∞ norm of

the error system as the cost function:

J∞ = min
K∈Rm×n

‖W (s)(GM(s) − ĜN(s))‖∞. (4.29)

The strict bounded real lemma [PAJ91] is used to solve for the above problem.

Lemma 4.1 [PAJ91] The following two conditions are equivalent:

1. A is stable and ‖C(sI − A)−1B‖∞ < γ.

2. There exists a matrix P > 0 such that

AT P + PA +
1

γ2
PBBT P + CT C < 0. (4.30)

Lemma 4.1 implies that the inequality

‖C̄(sI − Ā)−1(B̄1K + B̄2)‖∞ < γ

holds if and only if there exists a matrix P > 0 such that

ĀT P + PĀ +
1

γ2
P (B̄1K + B̄2)(B̄1K + B̄2)

T P + C̄T C̄ < 0. (4.31)
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Then (4.31) holds if and only if there exists a matrix Q > 0 such that

QĀT + ĀQ +
1

γ2
(B̄1K + B̄2)(B̄1K + B̄2)

T + QC̄T C̄Q < 0. (4.32)

Using Schur complement [BEGFB94], (4.32) can be written as a linear matrix

inequality: 


QĀT + ĀQ QC̄T B̄1K + B̄2

C̄Q −I 0

(B̄1K + B̄2)
T 0 −γ2I




< 0. (4.33)

A convex optimization problem can then be formulated to solve the required

optimization problem as follows:

minimize β

subject to




QĀT + ĀQ QC̄T B̄1K + B̄2

C̄Q −I 0

(B̄1K + B̄2)
T 0 −βI




< 0, Q > 0.

4.2.1 Illustrative example

a piezoelectric patch

� �
� �
� �
� �

� �
� �
� �
� �

800 mm

600 mm

154 mm
142 mm

Figure 4.1: The plate model for model correction

We illustrate the use of the developed model correction procedure via a plate

model. A plate model with simply-supported boundary conditions is used as the
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Plate Young’s modulus, E 7.0 × 1010 N/m2

Plate Poisson’s ratio, ν 0.30

Plate density, ρh 11.0 kg/m2

Piezoceramic Young’s modulus, Ep 6.20 × 1010 N/m2

Piezoceramic Poisson’s ratio, νp 0.30

Charge constant, d31 −3.20 × 10−10 m/V

Voltage constant, g31 −9.50 × 10−3 Vm/N

Capacitance, C 4.50 × 10−7 F

Electromechanical coupling factor, k31 0.44

Table 4.1: Properties of the piezoelectric laminate plate

system. The structure consists of an aluminium plate of 800 mm × 600 mm ×
4 mm. Two identical piezoelectric patches (72.4 mm × 72.4 mm × 0.191 mm)

are used as an actuator and a sensor respectively. The patches are attached

symmetrically to either side of the plate, thus collocating the actuator and sen-

sor. The plate model is shown in Figure 4.1 and other properties are shown in

Table 4.1.

A model of the structure is obtained via modal analysis technique. Only the

first six modes are included in the truncated plate model GN with N = 6. The

feedthrough term calculation is based on the higher-order model of 25 modes

GM with M = 25. A low-pass filter of 4th order, with the cut-off frequency of

249.7 Hz, is used in this example. The cut-off frequency is chosen to be between

modes 6 and 7.

Figure 4.2 compares the frequency response (magnitude) of those two models

up to the cut-off frequency. The zeros for this collocated system are shown as

anti-resonances. It can be observed that the zeros of the truncated model GN
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Figure 4.2: Frequency responses (magnitude) of GN(s) and GM(s)

are significantly different from GM since the effects of out-of-bandwidth modes

are ignored. The zeros of GN occur at frequencies higher than those of GM . It

is obvious that there is an error in the DC content of the truncated model since

the DC contributions of out-of-bandwidth modes are removed. This truncation

error can be detrimental to the closed-loop stability and performance when a

feedback control is designed and implemented.

Next, we use the model correction methodology via the H2 norm approach.

Figure 4.3 shows the corrected model ĜN in comparison with the higher-order

model GM . The zeros of the corrected model now occur at frequencies closer to

those of GM . The feedthrough term also compensates for the DC error in the

truncated model due to removal of out-of-bandwidth modes. The improvement

of ĜN compared to GN is obvious.

We now consider compensating the truncated error via the H∞ norm ap-

proach. Figure 4.4 compares the corrected model ĜN and the higher-order

model GM . The feedthrough term has compensated for some truncation error

due to removal of high frequency modes. However, the result for the H∞ norm
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Figure 4.3: Frequency responses (magnitude) of ĜN(s) and GM(s): H2 norm

approach
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Figure 4.4: Frequency responses (magnitude) of ĜN (s) and GM(s): H∞ norm

approach
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approach, at frequencies lower than 215 Hz, is worse than that for the H2 norm

approach (compare with Figure 4.3). To analyze the performances of both ap-

proaches, the frequency responses of the error system are plotted in Figure 4.5.
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E
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 norm         
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Figure 4.5: Frequency responses (magnitude) of the error system

Figure 4.5 compares the error frequency responses (magnitude) of H2 norm

and H∞ norm approaches. Up to frequency of 214.4 Hz, the error of the H2

norm approach is less than that of the H∞ norm approach. The result is as

expected since the H2 norm approach minimizes the error system across the

frequency bandwidth. In contrast, the H∞ norm approach only minimizes the

H∞ norm of the error system. Because a large degree of error is expected at

higher frequency due to truncation of out-of-bandwidth modes, the maximum

error tends to occur at a relatively high frequency. This explains the tendency

of the H∞ norm approach to have lower error at higher frequencies.

This implies that for improving the performance of the H∞ norm approach at

low frequencies, a higher order low-pass filter is desirable in order to reduce the

magnitude of error at out-of-bandwidth frequencies. However, this will increase

the size of the system, which will increase the computational time.
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Next, we compare the performances of both approaches with the mode ac-

celeration approach as shown in Figure 4.5. The mode acceleration approach

reduces the DC error to zero as expected. However, the error increases with

frequency. The error of the mode acceleration approach exceeds that of our

approaches at frequencies higher than 198.4 Hz. In this case, it is reasonable to

say that the performance of the H2 norm approach is better than those of the

other two approaches at most in-bandwidth frequencies.

4.3 Model correction with damping effect via

analytical approach

The previous model correction approach is based on numerical approach via

convex optimization. Hence, there is a limit on the number of out-of-bandwidth

modes that can be included in the optimization. The more out-of-bandwidth

modes we consider, the more demanding the numerical computation will be.

Moreover, the approach only deals with model correction for pointwise systems.

In this section, we intend to find analytical solutions for optimal feedthrough

terms for both pointwise and spatial models of resonant systems. Hence, the

model correction can be done in a straightforward manner since there is no

limitation on how many out-of-bandwidth modes can be included. Here, we

extend the approaches proposed in [Moh00a, Moh00b] to include the effect of

damping in the systems.

4.3.1 Problem statement for pointwise models

Consider a typical pointwise system with damping:

G(s) =
∞∑

i=1

Pi

s2 + 2ζiωis + ω2
i

(4.34)
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where Pi ∈ Rm×n for a system with n inputs and m outputs. The truncated

model is

GN(s) =
N∑

i=1

Pi

s2 + 2ζiωis + ω2
i

. (4.35)

The corrected model Ĝ then can be written as:

Ĝ(s) = GN(s) + K. (4.36)

The matrix K ∈ Rm×n is determined by finding K that minimizes the weighted

error between the full-order model and the corrected model. The approach used

here follows [Moh00b], where the cost function is defined similar to (4.4):

J = ‖W (s)(G(s) − Ĝ(s))‖2
2 (4.37)

and W is defined in (4.5).

Let

G̃(s) =
∞∑

i=N+1

Pi

s2 + 2ζiωis + ω2
i

. (4.38)

Then, the cost function can be shown to be:

J = ‖W (s)(G̃(s) − K)‖2
2

= ‖WG̃‖2
2 +

1

2π

∫ ωc

−ωc

tr{KT K}dω − 2 × 1

2π

∫ ωc

−ωc

Re{tr{G̃(jω)∗K}}dω.

(4.39)

We differentiate the cost function J with respect to K to obtain the condition

of optimality:

dJ

dK
= 2 × 2ωc ×

1

2π
Kopt − 2 × 1

2π

∫ ωc

−ωc

Re{G̃(jω)}dω = 0. (4.40)

Hence, the optimum value of K is

Kopt =
1

2ωc

∫ ωc

−ωc

Re{G̃(jω)}dω. (4.41)

Using (4.41) and (4.38), the optimum feedthrough term Kopt is

Kopt =
1

2ωc

∫ ωc

−ωc

∞∑

i=N+1

(ω2
i − ω2)Pi

(ω2
i − ω2)2 + 4ζ2

i ω
2
i ω

2
dω. (4.42)

To evaluate the above expression, the integral needs to be solved first. Next, we

will consider the case of spatial models first before we attempt to evaluate Kopt.
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4.3.2 Problem statement for spatial models

Consider the spatial model of a resonant system with damping:

Gr(s, r) =
∞∑

i=1

φi(r)Pi

s2 + 2ζiωis + ω2
i

(4.43)

where Pi ∈ R1×n for a system with n inputs.

The truncated spatial model is

GrN(s, r) =
N∑

i=1

φi(r)Pi

s2 + 2ζiωis + ω2
i

. (4.44)

A feedthrough term Kr ∈ R1×n is added to the truncated model GrN . The

corrected model is

Ĝr(s, r) = GrN(s, r) + Kr(r) (4.45)

and Kr is chosen in the form in (4.11).

Kri is determined such that the spatial H2 norm of the weighted error between

the full-order model (4.43) and the corrected model (4.45) is minimized. The

approach follows [Moh00a], where the cost function is similar to (4.12):

Jr = � Wr(s, r)(Gr(s, r) − Ĝr(s, r)) �2
2

= � Wr(s, r)(G̃r(s, r) − Kr(r)) �2
2 (4.46)

where

G̃r(s, r) =
∞∑

i=N+1

φi(r)Pi

s2 + 2ζiωis + ω2
i

(4.47)

and Wr is defined in (4.14).
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Then the cost function can be expanded as follows:

Jr = � Wr(s, r)G̃r(s, r) �2
2 +

1

2π

∫ ωc

−ωc

∫

R
tr{Kr(r)

TKr(r)}dr dω

−2 × 1

2π

∫ ωc

−ωc

∫

R
Re{tr{G̃r(jω, r)∗Kr(r)}}dr dω

= � Wr(s, r)G̃r(s, r) �2
2

+
1

2π

∫ ωc

−ωc

∫

R
tr









∞∑

i=N+1

φi(r)K
T
ri


×




∞∑

l=N+1

φl(r)Krl







 dr dω

−2 × 1

2π

∫ ωc

−ωc

∫

R
Re




tr









∞∑

i=N+1

φi(r)P
T
i

(ω2
i − ω2) − 2ζiωijω




×



∞∑

l=N+1

φl(r)Krl












 dr dω. (4.48)

We use the orthogonality property of the eigenfunctions φi in (3.6) to obtain

Jr = � Wr(s, r)G̃r(s, r) �2
2 +2ωc ×

1

2π
× tr





∞∑

i=N+1

KT
riKri





−2 × 1

2π

∫ ωc

−ωc

Re



tr





∞∑

i=N+1

P T
i Kri

(ω2
i − ω2) − 2ζiωijω







 dω. (4.49)

Obtaining the derivative of Jr with respect to Kri gives the condition of

optimality:

dJr

dKri

= 2 × 2ωc ×
1

2π
Kopt

ri − 2 × 1

2π

∫ ωc

−ωc

Re

{
Pi

(ω2
i − ω2) − 2ζiωijω

}
dω

= 0. (4.50)

Hence, the optimal feedthrough Kopt
ri is

Kopt
ri =

1

2ωc

∫ ωc

−ωc

(ω2
i − ω2)Pi

(ω2
i − ω2)2 + 4ζ2

i ω
2
i ω

2
dω. (4.51)

It should be noticed that the optimal solution of the spatial case Kopt
ri in (4.51)

involves the same integral as that of the pointwise case Kopt in (4.42). Hence,

we only need to evaluate the integral to solve for both optimal solutions once.

The derivations of the integral can be found in Appendix A. The integral

can be shown to be:

L =
∫ ωc

−ωc

ω2
i − ω2

(ω2
i − ω2)2 + 4ζ2

i ω2
i ω

2
dω

=
1

2ωi

√
1 − ζ2

i

ln



ω2
c + 2ωcωi

√
1 − ζ2

i + ω2
i

ω2
c − 2ωcωi

√
1 − ζ2

i + ω2
i



. (4.52)
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After obtaining the solution for the integral, we can now determine the optimal

feedthrough terms for both pointwise and spatial models.

4.3.3 Pointwise models, Kopt

From (4.52), the solution for Kopt for pointwise models (4.42) is

Kopt =
1

2ωc

∞∑

i=N+1

∫ ωc

−ωc

(ω2
i − ω2)Pi

(ω2
i − ω2)2 + 4ζ2

i ω
2
i ω

2
dω

=
1

4ωc

∞∑

i=N+1

1

ωi

√
1 − ζ2

i

ln


ω2

c + 2ωcωi

√
1 − ζ2

i + ω2
i

ω2
c − 2ωcωi

√
1 − ζ2

i + ω2
i


Pi. (4.53)

We now compare the above solution with the optimal solution with no damping

effect. From (4.7), if ζi = 0, ∀i, then Kopt = 1
2ωc

∑∞
i=N+1

1
ωi

ln
(

ωi+ωc

ωi−ωc

)
Pi. It can

be observed that

ln



ω2
c + 2ωcωi

√
1 − ζ2

i + ω2
i

ω2
c − 2ωcωi

√
1 − ζ2

i + ω2
i



 → 2 ln
(

ωi + ωc

ωi − ωc

)
as ζi → 0. (4.54)

Hence,

Kopt → 1

2ωc

∞∑

i=N+1

1

ωi

ln
(

ωi + ωc

ωi − ωc

)
Pi as ζi → 0 (4.55)

The optimal solution determined here is consistent with the solution when no

damping is assumed.

4.3.4 Spatial models, Kopt
ri

Similarly for spatial models, the optimal feedthrough term is

Kopt
r (r) =

∞∑

i=N+1

φi(r)K
opt
ri (4.56)

with

Kopt
ri =

1

2ωc

∫ ωc

−ωc

(ω2
i − ω2)Pi

(ω2
i − ω2)2 + 4ζ2

i ω
2
i ω

2
dω

=
1

4ωcωi

√
1 − ζ2

i

ln



ω2
c + 2ωcωi

√
1 − ζ2

i + ω2
i

ω2
c − 2ωcωi

√
1 − ζ2

i + ω2
i



Pi. (4.57)
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From (4.16), the solution for ζi = 0, ∀i is Kopt
ri = 1

2ωcωi
ln
(

ωi+ωc

ωi−ωc

)
Pi. Comparing

the solution in (4.57) with that for the no damping case, it can be verified that

Kopt
ri → 1

2ωcωi

ln
(

ωi + ωc

ωi − ωc

)
Pi as ζi → 0. (4.58)

Hence, the correction term for the spatial model presented above, approaches to

the case with no damping reported in [Moh00a].

The solutions in (4.53) and (4.57) contain ωi in their denominators. Hence,

the contribution of each mode to the solutions tends to decrease as i increases.

Therefore, it is sufficient to include a sufficiently large number of the out-of-

bandwidth modes to calculate these optimal feedthrough terms.

Next, we will demonstrate the effectiveness of our proposed model correction

solutions in compensating for truncation error. In particular, we want to show

that when the system has damping in it, our solutions can be expected to perform

better than those that ignore the damping effect (proposed in [Moh00a, Moh00b],

see Sections 4.1.1 and 4.1.2).

For each mode i, the contribution to the feedthrough term in (4.53) and (4.56)

is proportional to

ki =
1

ωi

√
1 − ζ2

i

ln



ω2
c + 2ωcωi

√
1 − ζ2

i + ω2
i

ω2
c − 2ωcωi

√
1 − ζ2

i + ω2
i



. (4.59)

We express the resonance frequency as ωi = kωiωc, so ki may be re-written

as:

ki =
1

kωiωc

√
1 − ζ2

i

ln


1 + 2kωi

√
1 − ζ2

i + k2
ωi

1 − 2kωi

√
1 − ζ2

i + k2
ωi


. (4.60)

The normalized ki is then obtained by dividing ki (4.60) with the arbitrary

reference ki that is evaluated at ζi = 0, kωi = 1.5. The reference value is used so

ki is independent of the actual value of ωi.

The resonance frequency of mode i is normalized with respect to the cut-

off frequency, i.e. ωi/ωc. The normalized ki changes as the damping ratio

and normalized resonance frequency are varied as shown in Figure 4.6. At large
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Figure 4.6: The normalized ki

ωi/ωc ratio, the effect of damping on the normalized ki is minimal. There is small

difference between the results with and without the damping effect. However, at

smaller ωi/ωc ratio, the difference becomes more significant. This corresponds

to the case of out-of-bandwidth modes that are close to the cut-off frequency ωc.

When the resonance frequency is relatively close to the cut-off frequency, the

feedthrough term will give an excessive value if the damping effect is ignored.

This is expected as when ωi is close to ωc, the effect of damping of that mode

on the in-bandwidth dynamics is considerable. For the case where damping is

ignored, the normalized ki will have an infinite value when ωi/ωc = 1. Therefore,

it is necessary to include the damping effect especially for the out-of-bandwidth

modes that are close to ωc.

4.4 Illustrative example

We now consider applying our model correction solutions to a specific exam-

ple, a simply-supported flexible structure. The structure is a 60 cm long uni-
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Figure 4.7: A simply-supported beam

Beam length, L 0.600 m

Beam width, W 0.050 m

Beam thickness, h 0.003 m

Beam Young’s modulus, E 7.00 × 1010 N/m2

Beam density, ρ 2.770 × 103 kg/m3

Piezoceramic r-length, Lp 0.070 m

Piezoceramic width, Wp 0.025 m

Piezoceramic thickness, hp 2.50 × 10−4 m

Piezoceramic Young’s modulus, Ep 6.70 × 1010 N/m2

Charge constant, d31 −2.10 × 10−10 m/V

Voltage constant, g31 −1.15 × 10−2 Vm/N

Capacitance, C 1.05 × 10−7 F

Electromechanical coupling factor, k31 0.34

Table 4.2: Properties of the piezoelectric laminate beam
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form aluminium beam of a rectangular cross section as shown in Figure 4.7.

A pair of piezoelectric ceramic elements is attached symmetrically to either side

of the beam, 50 mm away from one end of the beam. The piezoceramic elements

used are PIC151 patches. Some properties of the piezoelectric laminate beam

are shown in Table 4.2.

Modal analysis is used to obtain pointwise and spatial models of the beam.

The pointwise model used is the transfer function from the piezoelectric actuator

voltage Va to its collocated sensor voltage Vs. The spatial model is the trans-

fer function from the piezoelectric actuator voltage to the transverse deflection

y at any point along the beam. The simulation results are presented below.

The damping factor associated with each mode is assumed to be ζi = 0.025 in

this simulation. We include the first eleven modes as the in-bandwidth modes,

and higher modes up to mode 100 as the out-of-bandwidth modes. The out-

of-bandwidth modes will be used to calculate the optimal feedthrough term.

The first 100 modes are considered sufficient since including higher modes does

not change the in-bandwidth dynamics significantly. The cut-off frequency is

ωc = 2, 682 Hz, which is between modes 11 and 12.

4.4.1 Pointwise model

Figure 4.8 compares the zeros of the truncated and full-order models up to the

frequency ωc. The full-order model consists of modes from 1 to 100. Similar to

the case in Section 4.2, there are errors in the locations of zeros of the truncated

model due to removal of out-of-bandwidth modes. Figure 4.9 demonstrates the

effect of adding the optimal feedthrough term to the truncated model, where

the errors in the locations of zeros of the compensated model are reduced sub-

stantially. The improvement of the compensated model can also be seen by

comparing Figures 4.10 and 4.11. Here, the error in DC content of the trun-

cated model in Figure 4.10 is reduced by adding the feedthrough term as shown

in Figure 4.11.
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Figure 4.8: Zeros of full-order and truncated models
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Figure 4.9: Zeros of full-order and corrected models
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Figure 4.10: Full-order and truncated models
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Figure 4.11: Full-order and corrected models
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Figure 4.12: Frequency responses of error systems

The frequency responses (magnitude) of the error systems corresponding to

both approaches are presented in Figure 4.12. The error system is based on the

error of the corrected model with respect to the full-order model. The first error

system is based on the approach that ignores the damping effect [Moh00b], while

the second is based on our approach that incorporates the damping effect. The

second approach has a smaller error at low frequencies, while the first approach

has a smaller error at high frequencies. At frequencies near ωc, both approaches

yield similar errors. However, it can be observed that our approach performs

better in most in-bandwidth frequencies. A better performance is expected when

the system damping is considerable.

4.4.2 Spatial model

The performance of the proposed approach in compensating for the trunca-

tion error of a spatial system can be seen from Figures 4.13, 4.14, 4.15, and

4.16. The figures show the frequency responses (magnitude) of error systems at
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Figure 4.13: Frequency responses of error systems at r=0.13m
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Figure 4.14: Frequency responses of error systems at r=0.27m
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Figure 4.15: Frequency responses of error systems at r=0.36m
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Figure 4.16: Frequency responses of error systems at r=0.47m
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Figure 4.17: Spatial error frequency response for the truncated model

four different locations along the beam (r = 0.13, 0.27, 0.36 and 0.47 m). The

magnitudes of error systems for truncated models, and corrected models with

and without the damping effect are shown in the plots. Similar to the case of

pointwise models, our approach performs better in a wide range of in-bandwidth

frequencies than the approach with no damping effect in [Moh00a].

However, at some locations along the beam (e.g. r = 0.27, 0.47 m), the error

at low frequencies for the corrected model exceeds that of the truncated model.

The reason is that the feedthrough term is optimized by minimizing the spatial

H2 norm of the error system. Hence, it is possible that a larger error may

result at some locations on the structure over some frequency range. However,

the overall spatial error of the corrected model will be minimum. In some

resonant systems with considerable damping such as acoustic systems [MFM02],

the advantage of our proposed approach over the previous approach will be more

significant.

In order to demonstrate the effect of adding the optimal feedthrough term

more clearly, we consider the first two modes as in-bandwidth modes. The out-
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Figure 4.18: Spatial error frequency response for the corrected model

of-bandwidth modes consist of mode 3 to mode 100 and the cut-off frequency

is ωc = 128 Hz. The spatial error frequency responses (magnitude) for the

truncated and corrected models are plotted in Figures 4.17 and 4.18 respectively.

The error of the truncated model increases with frequency, while the error of

the corrected model decreases to a minimum at the mid-frequency region. From

the plots, the error of the truncated model ranges from −180 dB to −136 dB

spatially, while the error of the corrected model ranges from −210 dB to −146

dB spatially. It is obvious that the corrected model has a generally smaller error

over the entire structure.

Finally, we compare pointwise frequency responses at several locations along

the beam (r = 0.10, 0.21 and 0.42 m) in Figures 4.19, 4.20, and 4.21 respectively.

The results show the effectiveness of the proposed approach in compensating for

the truncation error spatially.
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Figure 4.19: Pointwise frequency responses at r=0.10m
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Figure 4.20: Pointwise frequency responses at r=0.21m
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Figure 4.21: Pointwise frequency responses at r=0.42m

4.5 Model correction for models from approxi-

mate methods

When a model is obtained from an approximate method, we can ask how to

compensate for such a model. The model consists of a finite number of modes,

which differs from models obtained from modal analysis. However, it may be

necessary to reduce the order of the model for control design purposes.

In pointwise cases, the model correction approaches described in Sections 4.2

and 4.3.1 can be used. However, the model correction approach in Section 4.3.2

cannot be used for spatial cases. The difficulty in applying the previous approach

for spatial cases is because of the orthogonality condition that is assumed for

eigenfunctions in (3.6). This orthogonality condition assumes a structure with

a uniform mass distribution. In more general cases of flexible structures, the

eigenfunctions are, in fact, orthogonal with respect to the associated distributed

mass as implied by (2.44).
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This section will extend the model correction methodology for spatial models

that are obtained from approximate methods. Initially, we consider the case

of models that are developed via the FE method. In particular, we consider a

model of the beam that was discussed in Chapter 2.

Consider a spatial system obtained from the the FE method in (2.111):

Gr(s, r) =
k∑

i=1

Cw(r) φi φ
T
i F̄

s2 + 2ζiωis + ω2
i

.

Definition 4.1 Distributed mass: Considering the FE beam in Section 2.7,

suppose ρbn and Abn are the density and cross-sectional area of the nth element.

The distributed mass of the beam with N elements is defined as:

m(r) = ρbnAbn for (n − 1)he < r < nhe n = 1, . . . , N. (4.61)

Lemma 4.2 Considering the distributed mass m(r) in Definition 4.1 and Cw(r)

in (2.96), the eigenvector φi is orthogonal with respect to
∫ L
0 Cw(r)T m(r)Cw(r)dr:

φT
i

∫ L

0
Cw(r)T m(r) Cw(r) dr φp = δip (4.62)

where δip is the Kronecker delta function.

Proof Using the expression for Cw (2.96) and realizing that the nth elemental

mass matrix is Men = ρbnAbn

∫ he

0 H̄(re)H̄(re)
T dre in (2.93), then

∫ L

0
Cw(r)T m(r) Cw(r)dr =

N∑

n=1

∫ he

0
Cw(re)

T m(re) Cw(re)dre

=
N∑

n=1

AT
n

(∫ he

0
H̄(re) ρbnAbn H̄(re)

T dre

)
An

=
N∑

n=1

AT
n Men An

= M̂.

Since φi is orthonormal with respect to the mass matrix M̂ (2.104), this com-

pletes the proof of the lemma.
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Now, we can obtain the following theorem:

Theorem 4.1 Consider the spatial system Gr(s, r) in (2.111). The weighted

spatial H2 norm of the system is

� Gr(s, r) �2
2,m=

k∑

i=1

‖G̃i(s)‖2
2 (4.63)

where m is the distributed mass and

G̃i(s) =
φT

i F̄

s2 + 2ζiωis + ω2
i

. (4.64)

Proof

� Gr �2
2,m =

1

2π

∫ ∞

−∞

∫ L

0
tr{Gr(jω, r)∗ m(r) Gr(jω, r)} dr dω

=
1

2π

∫ ∞

−∞

∫ L

0
tr

{(
k∑

i=1

F̄ T φi φ
T
i Cw(r)T

(ω2
i − ω2) − 2ζiωijω

)
× m(r)

×



k∑

p=1

Cw(r) φp φT
p F̄

(ω2
p − ω2) + 2ζpωpjω







 dr dω.

Using Lemma 4.2

� Gr �2
2,m =

1

2π

∫ ∞

−∞

k∑

i=1

tr

{
F̄ Tφi

(ω2
i − ω2) − 2ζiωijω

× φT
i F̄

(ω2
i − ω2) + 2ζiωijω

}
dω

=
k∑

i=1

‖G̃i(s)‖2
2.

This completes the proof.

After establishing the theorem, we can consider the model correction of spatial

models that are obtained from the FE method. Consider again the model Gr in

(2.111). The corrected model is

Ĝr(s, r) = Grk̄(s, r) + Kr(r) (4.65)

where k̄ < k and

Grk̄(s, r) =
k̄∑

i=1

Cw(r) φi φ
T
i F̄

s2 + 2ζiωis + ω2
i

. (4.66)

Here, Kr is chosen in the following form:

Kr(r) =
k∑

i=k̄+1

Cw(r)φiKri. (4.67)
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Instead of cost function in (4.46), we use the following cost function:

Jr = � Wr(s, r)(Gr(s, r) − Ĝr(s, r)) �2
2,m

= � Wr(s, r)(G̃r(s, r) − Kr(r)) �2
2,m (4.68)

where

G̃r(s, r) =
k∑

i=k̄+1

Cw(r)φiφ
T
i F̄

s2 + 2ζiωis + ω2
i

(4.69)

and Wr has been defined previously in (4.14).

The cost function in (4.68) can be shown to be:

Jr = � Wr(s, r)G̃r(s, r) �2
2,m +

1

2π

∫ ωc

−ωc

∫ L

0
tr{Kr(r)

T m(r)Kr(r)}dr dω

−2 × 1

2π

∫ ωc

−ωc

∫ L

0
Re{tr{G̃r(jω, r)∗m(r)Kr(r)}}dr dω

= � Wr(s, r)G̃r(s, r) �2
2,m

+
1

2π

∫ ωc

−ωc

∫ L

0
tr








k∑

i=k̄+1

KT
riφ

T
i Cw(r)T



× m(r)

×



k∑

l=k̄+1

Cw(r)φlKrl







 dr dω

−2 × 1

2π

∫ ωc

−ωc

∫ L

0
Re




tr









k∑

i=k̄+1

F̄ Tφiφ
T
i Cw(r)T

(ω2
i − ω2) − 2ζiωijω


× m(r)

×



k∑

l=k̄+1

Cw(r)φlKrl











 dr dω. (4.70)

Using the orthogonality property of the eigenvectors φi in Lemma 4.2 gives

Jr = � Wr(s, r)G̃r(s, r) �2
2,m +2ωc ×

1

2π
× tr





k∑

i=k̄+1

KT
riKri





−2 × 1

2π

∫ ωc

−ωc

Re




tr






k∑

i=k̄+1

F̄ T φiKri

(ω2
i − ω2) − 2ζiωijω









 dω. (4.71)

After obtaining the derivative of Jr with respect to Kri as in Section 4.3.2, the

optimal term Kopt
ri is

Kopt
ri =

1

2ωc

∫ ωc

−ωc

(ω2
i − ω2)φT

i F̄

(ω2
i − ω2)2 + 4ζ2

i ω2
i ω

2
dω

=
1

4ωcωi

√
1 − ζ2

i

ln



ω2
c + 2ωcωi

√
1 − ζ2

i + ω2
i

ω2
c − 2ωcωi

√
1 − ζ2

i + ω2
i



φT
i F̄ (4.72)
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where the integral solution can be found from (4.52).

Similar results can be obtained from other approximate methods such as

the Rayleigh-Ritz and assumed-modes methods. It can be shown, as outlined in

[Mei75], that the estimated eigenfunctions are also orthogonal with respect to the

distributed mass. These results give a more general model reduction methodol-

ogy for spatial models since many systems cannot be modelled by modal analysis

alone.

4.6 Summary

A number of different approaches can be used to compensate for the trunca-

tion error in models of resonant systems. The previous approaches assume no

damping in the models since it simplifies the problems of finding the analytical

optimal feedthrough terms. However, for systems with significant damping, the

effect of damping may need to be included.

We extended the approach using the convex optimization and analytical ap-

proaches for finding the optimal feedthrough terms. The proposed analytical

solutions generalize the previous solutions obtained with no-damping assump-

tion. There is no limitation on the number of out-of-bandwidth modes that can

be used in evaluating the feedthrough terms, since the terms can be readily com-

puted from the analytical solutions. Therefore, the proposed solution provides a

simple and effective way for model correction/reduction of pointwise and spatial

systems.


