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Abstract: Control technology underpins the operation of many, and arguably all, modern
high technology systems. Such systems include transportation (aircraft, high speed trains,
marine vessels, automobiles), telecommunication systems, electricity networks, mining, minerals
processing and agriculture. A particular area where control is playing an increasingly important
role is industrial electronics. In this paper we will give a tutorial introduction to the application
of control engineering concepts to such systems and reflect on the opportunities and challenges
that exist in this area.
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1. INTRODUCTION

Advanced control is a mature subject. It has gone through
various phases of development Goodwin et al. (1997) in-
cluding classical control, L2 optimal control, robust control
and, most recently, networked control and quantum con-
trol. Often it has been new application areas that have in-
spired control theory developments. For example, the ideas
of network control are responding to the challenges arising
from implementing control over a telecommunication net-
work. This problem leads to new questions regarding the
impact of limited channel capacity, random delays and lost
packets, Goodwin et al. (2008), Silva et al. (2010). Also,
research in quantum control is inspired by the potential of
quantum computing.

A technology that underpins the operation of many mod-
ern systems is that of switching electronics. This technol-
ogy lies at the core of many new systems including smart
electricity grids, wind and solar power, high speed trains
and electric and hybrid vehicles. These systems give rise to
a unique set of control engineering opportunities and chal-
lenges. Certainly many of these challenges have already
been addressed or are the subject of current research,
Kazmierowski et al. (2002), Mohan et al. (1995), Holmes
and Lipo (2003). In this context, the aim of the current
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paper is to give a tutorial introduction to the control of
power electronics and drives.

An overview of the remainder of the paper is as follows:
In section 2, we briefly review control problems in power
electronics and drives. In section 3, we give a brief overview
of basic concepts in control. In section 4, we illustrate the
ideas by reference to the control of a Synchronous Reluc-
tance Machine. In section 5, we provide a brief overview
of Model Predictive Control. In section 6 we discuss issues
involved in providing a “certificate of stability” and we
introduce the idea of “fusion control”. In section 7, we
discuss challenges and opportunities. Finally, in section 8,
we draw conclusions.

2. BRIEF OVERVIEW OF CONTROL PROBLEMS IN
SWITCHING ELECTRONICS

2.1 General Comments

In the area of switching electronics, a wide range of circuit
topologies are used in various applications. There are
many different types of switch mode converter and inverter
circuits that find use in power supplies, motor drives and
power conditioning applications.

Although the range of circuit architectures is diverse, it
is also true that the associated control problems share
many common elements. The controllers generally seek to
regulate a voltage or current with minimum steady state
error while maintaining a fast transient response. In each
instance, the controller output is limited to a finite set of



values determined by the circuit’s switching states. The
controller must be robust, remaining insensitive to vari-
ations in plant parameters. For example, the inductance
and resistance values in motor drives can vary significantly
due to magnetic saturation and thermal effects. Also, one
typically wants to minimize excessive switching to enhance
efficiency. Finally, allowance must be made for the noise
content in feedback signals as power electronic circuits are
inherently noisy.

2.2 Motivational Example

The torque control of a synchronous reluctance motor
(SynRM) is used here as a representative problem to
demonstrate some of the key control issues in power
electronics and drive circuits. The example is also of
interest in its own right. Although, the induction motor
(IM) is the most popular machine for industrial use, the
modern SynRM is considered to be a viable alternative.
While providing a torque comparable to that provided by
an IM, the losses in a SynRM are about 50% of those in
an IM. Thus, it is expected that the SynRM will receive
increasing attention, in the future.

The SynRM is distinguished by its rotor structure where
axial laminations, or other techniques, are used to produce
both a low reluctance and high reluctance magnetic flux
path, Matsuo and Lipo (1994). By convention, the low
reluctance axis is called the direct (D) axis and the high
reluctance axis is called the quadrature (Q) axis. The
stator of a SynRM is typically a three-phase distributed
winding as is common to other AC machines. The SynRM
develops torque as it seeks to align its low reluctance axis
to the stator field.

The control of a SynRM is usually addressed in a rotating
DQ reference frame which is fixed to the rotor. This of-
fers the advantage of transforming the AC stator current
variables to DC values. Additionally, the transformation
removes the position dependence and mutual inductance
terms otherwise obtained when operating in stator vari-
ables. The voltage and torque equations for a three-phase
SynRM in the rotor DQ reference frame are well known
Matsuo and Lipo (1994):

vd = Rsid + Ld
did
dt

− ωLqiq (1)

vq = Rsiq + Lq
diq
dt

+ ωLdid (2)

T =
3p

2
(Ld − Lq)idiq (3)

Figure 1 shows the typical control structure for a SynRM
drive Vas (2003). An outer speed control loop generates
a torque reference which translates into the quadrature
current reference using (3). Speed in the outer loop can
be measured by a sensor (as shown) or estimated using
the natural SynRM rotor saliency. The combined direct
and quadrature currents are controlled by an inner current
control loop that determines the voltage to be applied
to the motor in the DQ reference frame. The direct
axis current reference is typically set to its rated value.
This ensures the machine is fully fluxed and maximum
torque is obtained. In a three-phase drive only eight (seven

independent) voltage vectors can be applied to the motor
via the inverter. The switching selector chooses the most
appropriate voltage vector or sequence of voltage vectors
to apply to the machine at each control cycle.
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Fig. 1. Synchronous Reluctance Motor Drive

The most common approaches to implementing the cur-
rent control loop and inverter switching selection blocks
are as follows Cortés et al. (2008):

a. Hysteresis Control: The direct and quadrature cur-
rent references can be transformed to stator phase
current values. These reference values are then com-
pared to the actual stator phase currents. The in-
dividual inverter legs are switched to maintain the
associated phase current within a band around the
reference value Coates (2001). While this type of
controller is simple to implement, it requires higher
switching frequencies leading to increased inverter
switching losses.

b. Linear Control with PWM: The error between the ref-
erence and measured values of direct and quadrature
currents are fed to respective controllers (typically
PI) that generate reference values for the direct and
quadrature axis voltages. A pulse width modulator is
then used to generate the switching signals for the
inverter Xu et al. (1991).

c. Predictive Control Methods: Given the measured
state of the machine, the motor voltage equations can
be used to determine the ideal direct and quadrature
voltages to move the current vector to its desired
value in one step. In this instance, the switching
selector chooses the inverter switching configuration
(or a combination of switching configurations) that
is closest to approximating the ideal voltage vector.
This switching configuration is applied over the next
control cycle, Coates (2001), Cortés et al. (2008).

d. Other Control Techniques Various other strategies
including, fuzzy logic and sliding mode have also been
applied in this area.

We will use a multi-degree-of-freedom control architecture
in section 4 for a nine-phase SynRM to illustrate basic
ideas in this area.

3. A TUTORIAL OVERVIEW OF BASIC CONTROL
CONCEPTS

3.1 Inversion

At a high level of abstraction, we can view the problem of
control as one of inversion Goodwin et al. (1997). One has
a system - usually called the “plant” - which has outputs
- process variables. The plant is acted upon by inputs
(manipulated variables). The core problem is to choose
the inputs so that the outputs achieve certain objectives.
If one has a model linking inputs to outputs, then one



sees that the above problem can, in principle, be solved
by inverting the model so as to evaluate the necessary
inputs which bring the outputs to their desired values.
Thus, conceptually, if the model takes the form:

y = G(u) (4)
where y, u denote the output and input respectively, and
we want y to be y∗, then the required input is simply given
by

u∗ = G−1(y∗) (5)
Of course, there are a number of practical issues which
render this solution too naive in most real situations.
Some of the additional features of real problems include
Goodwin et al. (1997):

(i) Disturbances: The output response y is influenced by
(load) disturbances in addition to the input, u.

(ii) Measurement Errors: It is helpful, at least intuitively,
to know if y has reached the target value y∗. However,
the measurements of y are typically corrupted by
noise and other measurement imperfections.

(iii) Input Constraints: It is usual that we cannot apply
desired inputs to the plant. For example, in switching
electronics, the input will typically be restricted by
the finite set of available switch positions. Thus one
must “make the best use of” the available input
options.

(iv) Dynamics: The model (4) implies that the effect of
changing the input is instantaneous on the output.
However, all real systems are subject to energy stor-
age and delays i.e., the voltage in capacitors and the
current in conductors cannot be changed instantly.

(v) Model Errors: Typically the model G(·) is, at best,
only approximately known. Hence one needs to find
a way of obtaining an inverse which is insensitive to
model errors.

(vi) Time Variations: Typically the model G(·) will not
be fixed, e.g., resister and inductor values can change
as the temperature changes.

(vii) Robustness: This is a term used to describe control
systems that operate satisfactorily in the light of the
kind of problems mentioned under (v) and (vi) above.

In the sequel we will use a slightly more general way
of modelling the system. We will use a transfer function
description based on Z-transforms:

y(z) = G(z)u(z) + d0(z) (6)

ym(z) = y(z) + n(z) (7)
where n, d0 represent (the z-transform of) measurement
noise and process disturbances (lumped at the output).
(The Z-Transform variable can also be interpreted as the
forward shift operator thus giving a direct mechanism for
implementing the required control law transfer functions.)

3.2 High Gain Feedback

It turns out that a remarkably robust way of achieving
“inversion” is via feedback. Thus, if we have a desired
value, y∗, for y, then we might envisage generating the
input via a feedback law of the form:

u(z) = −C(z)ym(z) + M ′(z)y∗(z) (8)

To simplify developments we will temporarily restrict at-
tention to single-input single-output systems. (The results

apply more generally.) Also, for the moment, we choose
M ′(z) = C(z). (Other choices will be explored in section
3.6).

Solving (6) to (8) simultaneously gives the following
“closed loop” relationship

y(z) =
G(z)C(z)

1 + G(z)C(z)
y∗(z)

− G(z)C(z)
1 + G(z)C(z)

n(z)

+
1

1 + G(z)C(z)
d0(z)

(9)

Equation (9) motivates us to introduce the two key closed
loop transfer functions T (z) and S(z). These are called the
complementary sensitivity and sensitivity respectively:

T (z) =
G(z)C(z)

1 + G(z)C(z)
(10)

S(z) =
1

1 + G(z)C(z)
(11)

We can then write
y(z) = T (z)y∗(z)− T (z)n(z) + S(z)d0(z) (12)

We now see how feedback is a way of achieving inversion.
All we need do is make C(z) “very large” to achieve

T (z) = 1 (13)

In this case, the “closed loop” transfer function from y∗ to
y becomes 1 and u(z) = G(z)−1[y∗(z)−d0(z)] as required.

3.3 Design Trade-offs

Alas, the above (high gain) solution to the control problem
isn’t as easy as it sounds. For example, (9) shows that
putting T (z) = 1, causes the measurement noise to be
transferred to the output y(z). Another slightly more
subtle issue is that we see from (10), (11) that

T (z) + S(z) = 1 (14)

Hence, if we want low sensitivity to measurement noise
(T (z) → 0), then necessarily we have 100% sensitivity to
(output) disturbances (S(z) → 1) and vice versa.

Actually, there is another reason why we may not want to
have infinite (or a least very high) gain in the controller.
The reason is that we usually only have an approximate
model. To illustrate, let us describe model errors in the
frequency domain by saying that the true plant transfer
function, G(z) is related to the given model, G0(z), by a
relationship of the form:

G(ejω4s) = G0(ejω4s)
[
1 + G4(ejω4s)

]
(15)

where 4s is the sampling period.

We say that G4(ejω4s) is the multiplicative error at
frequency ω.

One can then easily derive the following relationship
between the true sensitivity function S(ejω4s) and the
nominal sensitivity function S0(ejω4s):



S0(ejω4s) =
1

1 + G0(ejω4s)C(ejω4s)
(16)

S(ejω4s) =
S0(ejω4s)

1 + T0(ejω4s)G4(ejω4s)
(17)

Say one designs S0(ejω4s) to be small (over some fre-
quency range), then T0(ejω4s) will be near unity over
the same frequency range. Thus we see that there
is a potential danger arising from G4(ejω4s). Indeed,
a sufficient condition for closed loop stability is that
|T0(ejω4s)||G4(ejω4s)| should be less than 1 at all fre-
quencies. This is a simple consequence of (17).

Usually, in practical models, |G4(ejω4s)| is large at high
frequency. Thus robustness to model errors typically places
an upper band on the frequencies over which |T0(ejω4s)|
can be kept near 1. In practice, one usually makes S(z)
identically zero (i.e., T (z) = 1) at dc by including an
integrater in the controller (i.e., a pole at z = 1). Then one
designs C(z) so that S(z) to approaches 1 at some higher
frequency. We call the resultant range of frequencies where
S(z) < 1 the “closed loop bandwidth”.

There are other reasons why one cannot make S0(ejω4s)
small at all frequencies. These constraints arise from the
need to keep S0(ejω4s) stable i.e., to keep S0(z) an
analytic function. In a key result, Bode showed that for
all analytic functions, we have Goodwin et al. (1997)∫ π

4s

− π
4s

log |S0(ejω4s)|dω > 0 (18)

Of course, log |a| > 0 if a > 1. Hence, (18) tells us that
there is a remarkable “water bed” effect i.e., if we have
a range of frequencies where |S0(ejω4s)| < 1, then there
must be another range of frequencies where |S0(ejω4s)| >
1.

3.4 State Estimate Feedback

In modern control it is common to replace the transfer
function model of (6) by a state variable model of the
form:

x+ = Ax + Bu (19)

y = Cx (20)

where x+ is the next value of x.

If the state were directly measured, then one could design
static state variable feedback of the form:

u = −Kx + M(z)y∗ (21)

Subject to mild assumptions (e.g. controllability) then K
can be chosen to give desired closed loop properties. (e.g.,
a specified closed loop bandwidth.)

However x is not usually directly measured. In this case
one can obtain an estimate of x by using an observer:

x̂+ = Ax̂ + Bu + J(y − Cx̂) (22)
and implement the control law as

u = −Kx̂ + M(z)y∗ (23)

We can actually reinterpret the controller given in (22),
(23) in the Classical Transfer Function form as in sections
3.2 and 3.3 by taking z-transforms in (22). This leads to

u = −T1(z)u− T2(z)y + M(z)y∗ (24)
where

T1(z) = K(zI −A + JC)−1B =:
R(z)
E(z)

(25)

T2(z) = K(zI −A + JC)−1J =:
P (z)
E(z)

(26)

Rearranging (24) we obtain:
u = −C(z)y + M ′(z)y∗ (27)

where C(z) = P (z)/[R(z)+E(z)] =: P (z)/L(z); M ′(z) :=
E(z)M(z)/L(z).

Thus we have given a modern interpretation (in the form of
state estimate feedback) to the classical control law given
in (8).

3.5 Internal Models

An important practical issue when designing feedback
control laws is to ensure that certain disturbances are
exactly cancelled at the output. We can achieve this
goal by including a model for the disturbances in the
description (19).

To explain this idea in more detail, say that we have an
input disturbance di. We can model di as the output of a
state space model as shown in (28). The true input to the
plant is u + di.

x+
d = Adxd (28)

di = Cdx (29)

Common choices for Ad would be a scalar matrix con-
sisting of unity (to describe a constant disturbance) or 2
dimensional matrix having eigenvalues on the unit disc (to
describe a sinusoidal disturbance of a given frequency).

The system matrices for the observer and associated
feedback control law then take the form:

A =
[
A0 B0Cd

0 Ad

]
; B =

[
B0

0

]
(30)

J =
(

J0

Jd

)
; C = [C0 0] (31)

K = [K0 Cd] (32)

Notice that this control law cancels the estimated distur-
bance at the input.

It can readily be shown that, in this case, L(z) = R(z) +
E(z) is given by

L(z) = det[zI −A + JC + BK]

= det
[
zI −A0 + J0C0 + B0K0 −B0Cd + B0Cd

JdC0 zI −Ad

]
= det

[
zI −A0 + J0C0 + B0K0 0

JdC0 zI −Ad

]
= det(zI −Ad) det(zI −A0 + J0C0 + B0K0)

(33)



Hence we conclude that L(z) will be zero at the zeros of the
disturbance model. In particular, we obtain an integrating
control law if we model the disturbance as containing an
(unknown) constant.

The significance of this observation will be made clear in
the next section.

3.6 Multi-degree-of-Freedom Control Laws

The operation of a feedback control loop typically needs
to deal with multiple (and often conflicting) design objec-
tives. For example:

(a) We may want to minimize the impact of (unmea-
sured) load disturbances on the output. (This is gov-
erned by S(z) = 1/[1 + G(z)C(z)].)

(b) We may want to minimize the impact of measurement
noise on the output. (This is governed by T (z) =
G(z)C(z)/[1 + G(z)C(z)].)

(c) We may want to track a given reference signal y∗.
(Also, y∗ will typically be time varying.)

(d) We may want to minimize the impact of implementa-
tion errors (e.g. quantization) in u(t) on the output.

Disturbances and Noise. The situation regarding points
(a) and (b) is fundamentally constrained by the fact that

S(z) + T (z) = 1 (34)

The linking of goals (a) and (b) is inescapable since the
relevant part of the control law only uses the measurement
y; i.e., it has only one-degree-of-freedom namely C(z).

The situation regarding points (b) and (c) is different
because we have extra measurements that we can exploit.

Reference Feedforward. We use feedforward to give an
extra degree-of-freedom. Indeed, this has already been
included in the control law in (24) and (27) via the transfer
function M(z). A typical choice for M(z) is

M(z) =
P (z)
E(z)

+
L(z)
E(z)

F (z) (35)

or equivalently M ′(z) = C(z) + F (z).

The resultant transfer function from y∗ to y now becomes

Ty∗y(z) = 1− L(z)[A(z)− F (z)B(z)]
A(z)L(z) + B(z)P (z)

(36)

We also recall the transfer function from d0 to y which is

Sd0y(z) =
A(z)L(z)

A(z)L(z) + B(z)P (z)
(37)

Examination of (36), (37) reinforces the importance of the
result derived earlier in (33), namely provided (28), (29)
include a model for the disturbance and the reference, then
perfect tracking is obtained irrespective of model errors
since L(z0) = 0 where z0 is a zero of the disturbance (and
reference) model.

We also, see the advantages of having F (z) in (36), namely
we can reduce the tracking error at every frequency where
F (z) can be chosen as an approximate inverse to the plant
at these frequencies, i.e.,

F (z) '
[
B(z)
A(z)

]−1

; z = ejω4s (38)

The transfer function F (z) provides feedforward control
from the measured reference signal.

Input Imperfections. We next turn to point (d). This
issue is of great importance in switching electronics since
the switched nature of the input restricts the allowed
input to a finite set. We can describe this implementation
“defect” via

u(t) = Q [u0(t)] (39)
where u(t) ∈ U (the allowable set), u0(t) is the desired
input coming from the controller and Q is a nonlinear
mapping (a generalized “quantizer” Gersho and Gray
(1992)).

For design purposes, it is often helpful to think of the
difference between u0(t) and Q(u0(t)) as a noise source,
q(t), where

q(t) = Q(u0(t))− u0(t) (40)
or

u(t) = u0(t) + q(t) (41)

We could rely upon the feedback controller, C(z), to
reduce the impact of q on the output. However, this
may compromise the design relative to the impact of d0

and n. Hence, we introduce an extra degree-of-freedom
by introducing another feedforward term via a transfer
function H(z) from the measured disturbance q(t). This
leads to the, so called, feedback quantizer shown in figure
2.

+−

+

−

u0(t) u(t)

H(z)

Q

q(t)

Fig. 2. Feedback Quantizer

If we model the quantizer as a noise source as in (41), then
with H(z) = 0, we see that the local transfer function from
q(t) to u(t) is 1.

On the other hand, if we introduce the additional transfer
function H(z) then the transfer function from q(t) to u(t)
becomes 1−H(z). Hence, we can choose H(z) to “shape”
the frequency content of the errors due to the quantizer.
Most importantly, this can be achieved without compro-
mising or affecting any of the other design objectives.

To illustrate, say we implement the controller digitally and
we want to eliminate errors due to the quantizer at ω0.

Then we can choose

H(z) =
[2(1− α) cos ω04s] z + (α2 − 1)

z2 − (2α cos ω04s)z + α2
(42)

This leads to



1−H(z) =
z2 − (2 cos ω04s)z + 1

z2 − (2α cos ω04s)z + α2
(43)

This transfer function is zero at frequency ω = ω0.

The effectiveness of this strategy in eliminating unwanted
components arising from a quantizer is illustrated by the
following example. We simulate a feedback control loop for
a first order plant with integral action in the controller. We
first use a simple (nearest neighbour) quantizer. Figure 3
shows the spectrum of the input signal in this case. It
can be seen that there is a significant spectral peak near
45Hz arising from “quantization noise”. This might have
undesirable practical consequences, e.g., it may excite a
resonance in a motor. When we introduce an extra degree-
of-freedom, via the filter H(z) (see (42)) in the quantizer,
then as shown in figure 4, the unwanted spectral line
disappears. Of course, the Bode integral (18) also holds for
S′(z) = 1−H(z). This implies that there must be a trade-
off i.e., reduction of “quantization noise” at one frequency
must be accompanied by an increase in “quantization
noise” at other frequencies. This effect is also evident in
figures 3 and 4. This idea can be used to eliminate (or at
least reduce) any undesirable frequency component on the
input (subject to satisfaction of the Bode integral trade-
off).
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Fig. 3. Input Spectrum using Nearest Neighbour Quantizer
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Fig. 4. Input Spectrum using Feedback Quantizer

3.7 Constrained Observer Feedback (COF)

A final problem that we wish to discuss is that of input
saturation. Specifically, a high gain linear feedback law is

almost certain to call for larger inputs (e.g. voltages) than
are available. This problem is central to many practical
control problems including switching electronics.

A key approach to dealing with these problems is to make
sure that the various controllers are “informed” that the
(hypothetical) input requested by the linear control law
was not actually used. This concept turns out to be a
(mild) generalization of well known ideas used in integral
control to prevent integrator wind up. These techniques
are usually called Anti-Wind-Up (AWU) Control Goodwin
et al. (1997).

We discuss this issue below for the feedback controller
C(z) = P (z)/L(z) and the feedforward controller, F (z).

Feedback Controller. In this case, the solution is rather
simple. All we need to do is to ensure that the observer
part of the feedback controller “knows” about the true
input rather than the hypothetical input generated by the
linear controller.

Hence the appropriate circuit is as shown in figure 5:

−

+

−

udesired utrue

R(z)

E(z)

P (z)

E(z)

y

Q

Fig. 5. COF Implementation of Feedback Controller

Feedforward Controller. The situation with feedforward
control is a little more subtle. To deal with this, we factor
F (z)−1 as follows:

F (z)−1 = f0 + F̄ (z) (44)
where F̄ (z) is strictly proper.

We then implement the feedforward controller as shown
figure 6:

−

+ utrue
ff

Q
y?

F̄ (z)

f−1
0

udesired
ff

Fig. 6. COF Implementation of Feedforward controller

We see that, in the absence of quantization, or saturation,
that

utrue
ff =

f−1
0

1 + f−1
0 F̄ (z)

y∗

= F (z)y∗ as required
(45)



However, in the presence of quantization, the circuit en-
sures that the states of the feedforward filter which appear
in F̄ (z), “know” that utrue

ff was actually used rather than
udesired

ff .

3.8 Composite Design

Finally, we can put all of the elements together. One final
point to be addressed is that u comprises two signals i.e.,
uff and ufb.

Hence we define

λ =

∣∣∣∣∣∣
Q

[
udesired

ff + udesired
fb

]
[
udesired

ff + udesired
fb

]
∣∣∣∣∣∣ (46)

Then we calculated
uactual

ff = λudesired
ff

uactual
fb = λudesired

fb

(47)

We can then draw the complete design as in figure 7.

Plant
+

+ −

Feedback
Controller

Observer and
State feedback

Quantizer

COF

COF y?

y

Fig. 7. COF Implementation of Complete Control Law

4. ILLUSTRATION VIA CONTROL OF
SYNCHRONOUS RELUCTANCE MOTOR

To illustrate some of the ideas described above we will
present results for the (simulated) control of a nine-phase
voltage source inverter driving a SynRM - see figure 8 and
section 2. We will focus on torque control with constant
fluxing of the machine.

We will investigate the impact of the design and imple-
mentation (in COF form) of the feedback and feedforward
loop. We use a sample period of 4s = 0.2 msec.

Fig. 8. SynRM Control

4.1 The Feedback Controller

For simplicity, we examine the locked rotor scenario.
Comments on the non-locked case will be given in section
6.4. We assume a constant direct axis reference current
of 2(A) and we measure all currents in the presence
of measurement noise. Hence, in view of the comments
made under heading (a) and (b) in section 3.6, we will
need to limit the feedback bandwidth so as to obtain an
appropriate trade-off between disturbance rejection and
noise immunity.

We utilize a simple PI controller where we cancel the
(stable) plant pole by a zero in the controller and introduce
integral action. This leads to

C(z) =
Kp(z − 1) + KI4sz

(z − 1)
(48)

where KI = (1+γ)(1−α)/[4sβ]; Kp = α(1−γ)/β, where
α is the open loop (discrete time) pole, γ is the desired
(discrete time) closed loop pole.

We implement the controller in COF form as shown in
figure 9 where C(z)−1 = c0 + C̄(z), c−1

0 = (Kp + KI∆s),
and where the quantizer is placed immediately after c−1

0 .

Fig. 9. COF Implementation of Feedback Controller

The quantizer is a mechanism which ensures that the
voltage corresponds to one of the allowed switching states.

Fig. 10. Measurement Noise Generation

Fig. 11. Mean Square Error as a Function of Closed Loop
Bandwidth

We simulate the measurement noise as uniformly dis-
tributed white noise in the interval [−0.1, 0.1]. We then



use this to give about 10% measurement noise as shown in
figure 10.

Figure 11 shows the mean square torque error as a function
of closed loop bandwidth. As we increase the bandwidth
the effect of disturbances decreases but the effect of
measurement noise increases. Thus there is an optimal
trade-off. We see from figure 10 that the optimal closed
loop bandwidth is approximately 200Hz.

Next we vary the noise amplitude and plot the optimum
bandwidth as a function of noise amplitude. The results
are shown in figure 12. As expected, the optimum band-
width decreases as we increase the measurement noise
level.

Fig. 12. Optimum Bandwidth as a Function of Measure-
ment Noise Amplitude

Finally, we test the use of COF feedforward. We design the
(unconstrained) response time of the feedforward to be 1

5

th

that of the feedback loop. We use a set point change of 10%
downwards after reaching steady state. (We choose a small
reference change so that the results are not dominated by
input slewing resulting from saturation effects.)

Fig. 13. Response Times Achieved with Different Control
Laws

Figure 13 compares the measured response time for 3
controllers as follows:

(i) TFV - this is the predictive control method described
in part (b) of Section 2.

(ii) PI controller (in feedback COF form).
(iii) PI controller with compensator (feedback and feed-

forward controller in COF form).

We see from figure 13 that controller (iii) gives approxi-
mately 50% reduction in closed loop transient time inde-
pendent of the closed loop bandwidth.

5. A BRIEF INTRODUCTION TO MODEL
PREDICTIVE CONTROL

5.1 Overview

Model Predictive Control (MPC) Maciejowski (2002), Ca-
macho and Bordons (1999), Goodwin et al. (2005), Rawl-
ings and Mayne (2009) has emerged as a very successful
method to solve a wide range of problems in the process
industries where the plant being controlled is “slow”, Qin
and Badgwell (2003). The method is being increasingly
employed to control “fast” plants including switching elec-
tronics. Here the sampling rate is high (< 1 msec) and
hence special attention must be placed on computational
issues. MPC owes its success to its ability to (relatively
easily) handle nonlinearity of the plant and to allow one
to impose hard constraints on states and controls. These
are requirements that are difficult to satisfy with other
control methods. The penalty is that an open-loop optimal
control problem (possibly nonlinear and constrained) has
to be solved at each instant to obtain the control.

5.2 Basic Ingredients of Deterministic MPC

To allow for consideration of nonlinear systems, suppose
the plant to be controlled is described by

x+ = f(x, u) (49)
where x and u denote, respectively, the state and control
and x+ the successor state, i.e. the state at the next
sampling instant. Suppose the length of the horizon of the
optimal control problem to be solved is N and that the
plant is subject to the control (input) constraint u ∈ U and
state constraint x ∈ X. We discuss the deterministic case.
By “deterministic” we imply that there is no uncertainty
in the system. In particular, the state x is assumed to
be known and there are no unknown disturbances. The
optimal control problem (solved on line) requires that,
for the known current state x at time t, a constrained
minimization be carried out with respect to the control
sequence u = {u(0), u(1), . . . , u(N − 1)}. Because the
system is time-invariant, it is convenient to regard the
initial time in the optimization problem to be 0. The state
at each time k > 0 is a function of (x,u). Hence, the cost
VN (·) is defined by

VN (x,u) :=
N−1∑
i=0

`(x(i), u(i)) + Vf (x(N)) (50)

in which x(i) = φ(i;x,u) is the solution at time i of the
difference equation x+ = f(x, u) when the initial state
is x and the control (input) sequence is chosen as u.
The minimization is carried out subject to the control
and state constraints u(i) ∈ U and x(i) ∈ X for all
i ∈ {0, 1, 2, . . . , N − 1}. It is also usual to impose a
terminal state constraint of the form x(N) ∈ Xf . In this
formulation, Vf (·) is the additional terminal cost (a control
Lyapunov function in the neighbourhood of the set point)
and Xf ⊆ X is the associated control positive invariant
set. (A discussion of control Lyapunov functions can be
found in Rawlings and Mayne (2009)). These are added to
the optimal control problem as a mechanism to provide a
certificate of stability. The minimization yields the optimal
control sequence

u0(x) = {u0(0;x), u0(1;x), . . . , uN−1(0, x)} (51)



This is a function of the current state x as well as the value
function V 0

N (x) = VN (x,u0(x)). Model predictive control
implements the solution in a “rolling horizon” fashion, i.e.,
we use only u0(0;x), the first element of this sequence,
as the control u to be applied to the plant. The control
u = κN (x) := u0(0;x) applied to the plant is a function
of the state. Hence a particular form of static (nonlinear)
state feedback control is obtained. When time advances
one step, we measure (or estimate) the current state and
repeat the calculation.

5.3 Stability

Subject to conditions on f(·), `(·), Vf (·) and Xf , then
closed-loop stability (i.e. asymptotic or exponential) can
be established Mayne et al. (2000) for the closed-loop
system x+ = f(x, κN (x)). This result is obtained using the
value function V 0

N (·) as a Lyapunov function. Satisfaction
of the conditions mentioned above ensures V 0

N (·) is zero at
the target state, positive elsewhere and satisfies
V 0

N (x+) ≤ V 0
N (x)− `(x, κN (x)), x+ = f(x, κN (x)) (52)

Thus V 0
N (·) decreases along closed-loop trajectories and

this ensures closed-loop stability. The analysis also shows
that recursive feasibility is maintained, i.e., if the optimal
control problem can be solved at the initial time, it can
be solved at all future times. If the terminal cost is chosen
appropriately (this is easy when the system is linear) and
the set of states to be controlled restricted to a region
around the target state, performance is identical to that
obtained using an infinite horizon optimal control problem.

5.4 Nonconvex problems

If, the optimal control problem is non-convex (which is
often the case if f(·) is nonlinear), then finding the global
minimum of VN (·) is problematic. However, it has been
shown Rawlings and Mayne (2009) that determining, at
each time, a feasible, rather than an optimal, solution
yields, under mild conditions, a stabilising controller.
Moreover, recursive determination of a feasible solution
is always possible if the initial problem is feasible.

5.5 Specialization to Linear Systems with Quadratic Cost

Formulation. Here we study the special case where the
system f(·) is linear as in (19) and (20) and the cost is
quadratic.

Say that the current state estimate is x̂(0), then the future
states over horizon N can be predicted via

ˆ̂x(i) = Aix̂(0) +
i∑

k=1

Ai−kBu(k − i + 1) (53)

where i = 1, . . . , N . (Note that here we do not include a
terminal cost.)

Let us assume a simple cost function of the form

VN (x̂(0),u) =
N∑

k=1

ˆ̂e2(k) + λu2(k − 1) (54)

where ˆ̂e(k) = C ˆ̂x(k). Clearly this is a quadratic function
of x̂(0) and u = {u(0), u(1), . . . , u(N − 1)}.

Now the cost function (54) can be expressed in matrix
notation as

VN (x̂(0),u) = (Hu + r)T (Hu + r) + λuT u (55)
where

H =

 CB 0
. . .

CAN−1B · · · CB

 (56)

u =

 u(0)
...

u(N − 1)

 ; r =

 CA
...

CAN

 x̂(0) (57)

H contains the system Markov parameters and r is the
extended observability matrix.

Unconstrained Solution. In the absence of constraints,
we can easily find u that minimizes (55) namely

u = −
[
HTH+ λI

]−1HT r (58)

Constrained Solution. In the presence of constraints,
we need to minimize (55) subject to satisfaction of the
constraints.

When rolling horizon optimization is used, we implement
u(0) only. We then measure (or estimate) a new state x̂(1),
reset the current time to zero and repeat the problem. At
each step, we apply

u(0) = [1 0 . . . 0]u∗ (59)
where u∗ is the vector optimizing the cost function.

Horizon 1. In many applications (including switching
electronics) the sampling rate is often very high (e.g. 4s

is typically chosen as a fraction of a millisecond). In this
case, it is usually prohibitive to use large values for the
horizon N . Hence it is common to use small horizons e.g.
unity.

When there are no constraints, then it can be seen, by
specializing (58) to horizon 1, that the input is given by

u(0) = −Kx̂(0) (60)
where, in this special case,
K =

[
BT CT CB + λI

]−1
CBCA.

When constraints are added, it is relatively simple to
modify the solution as shown below. Let uuc(0) be the
solution to the unconstrained problem. Then the cost can
be factored as

VN (x̂(0),u)

= [u(0)− uuc(0)]T
[
BT CT CB + λI

]
[u(0)− uuc(0)]

+ constant
(61)

Next say that we require that u(0) ∈ U, a given constraint
set. (Note that this set can be convex or finite.)

We factor the Hessian in the above expression as follows
DT D

.=
[
BT CT CB + λI

]
(62)

and define



ū = Du(0)

ūuc = Duuc(0)

We also transform the allowable constraint set by defining
U = DU (63)

Then we see that
VN (x̂(0),u) = (ū− ūuc)T (ū− ūuc) + constant (64)

We also see that the constrained optimization problem is
solved by finding the closest value (in a Euclidean sense)
within U to the unconstrained solution ūuc.

In summary, we have that the constrained optimal solution
is

u(0) = D−1
[
Q {Duuc(0)}

]
= Q [uuc(0)] (65)

where Q and Q denote a simple “nearest neighbour”
quantizer and a generalized quantizer respectively.

We thus see that the horizon 1 solution is defined via the
generalized “projection” quantizer given in (65). Moreover,
it is clear that the horizon 1 solution is a special case
of the COF principle described in section 3.7 where the
“quantizer” takes the form given in (65). For this reason,
using the term MPC in this context is perhaps misleading.
We thus prefer the term “COF” rather than “MPC” for
the horizon 1 case, see Goodwin et al. (2003), Quevedo
and Goodwin (2005), De Doná et al. (2000). Extensions
to longer horizons are discussed in Quevedo et al. (2004)
and Quevedo et al. (2007).

5.6 The Spectra of Uncertainty

We return to the general formulation described in sections
5.2 and 5.3. Unfortunately, the core stability result as-
sumes no uncertainty (i.e., no disturbances or modelling
error).

If uncertainty is present, the equivalence between open-
loop and feedback control disappears and the proven sta-
bility properties of deterministic model predictive control
are lost. Thus it is no longer true that the solution to
an open-loop optimal control problem (modified to com-
pensate for its finite horizon) provides optimal control
of the uncertain system. We could envisage a “feedback”
solution to account for uncertainty; however, an optimal
control problem that provides the optimal “feedback” so-
lution would be impossibly complex. Hence, as in adaptive
control, ‘smart’ non-optimal solutions have to be devised.
What is often done in practice is to obtain model predictive
control for the nominal system, i.e to ignore uncertainty
in computing the on-line control action. This can give
satisfactory control (but is not guaranteed to do so). To
see what might happen, consider the simple case when the
state is measured but a disturbance, w, enters additively;
the system is then described by

x+ = f(x, u) + w (66)

Since now x+ = f(x, κN (x)) + w rather than x+ =
f(x, κN (x)), the evolution equation for the value function
V 0

N (·) (of the nominal control problem) satisfies
V 0

N (x+) = V 0
N (x)− `(x, κN (x)) + δ(x, w) (67)

The extra term, δ(x,w) := V 0
N (f(x, κN (x)) + w) −

V 0
N (f(x, κN (x)), may well exceed `(x, κN (x)) in magnitude

so that a decrease of the candidate Lyapunov function is
no longer ensured. Also, recursive feasibility is no longer
guaranteed.

To overcome these features of nominal MPC various
schemes have been proposed. One proposal, called tube
model predictive control Rawlings and Mayne (2009), uses
nominal MPC to determine a nominal trajectory from the
current set point to the next set point and local feedback to
confine the trajectories of the uncertain system to remain
in a specified neighbourhood of the nominal trajectory. If
the system f(·) is linear and if z(i) and v(i) are the state
and control of the nominal system at time i, the control
u(i) applied to the plant is u(i) = v(i) + K(x(i) − z(i))
where x(i) is the current state of the plant. If the distur-
bance, w, is bounded, a bounded set S may be computed
such that the state x(i) of the plant satisfies x(i) ∈ z(i)+S
for all i and all possible disturbance sequences. The state
z(i) of the nominal system converges to the set point x∗

and the state x(i) of the uncertain system converges to
the set x∗ + S; once the state x(i) enters the set x∗ + S,
it remains there. With this knowledge, nominal MPC may
be designed to ensure that the uncertain system satisfies
all constraints. If the state is not directly measured, as is
commonly the case, a similar procedure is used to control
the state estimator. The latter can be viewed as another
“uncertain system” with measured state.

5.7 Quantized Control

The stability results described above assume the control
u lies in, say, U where the input constraint set U is a
convex subset of, say, Rm. In switching electronics, U is
typically a finite subset of Rm, e.g. U = {u1, u2, . . . , um}
is the set of voltages, say, that may be generated by the
power electronics. A finite alphabet U raises new problems
regarding a proof of stability. Some of these problems are
discussed below.

6. CERTIFICATES OF STABILITY

6.1 General Comments

It is desirable, but not always possible, to imbue a control
law with a “certificate of stability”.

In the context of Model Predictive Control, stability can
be achieved by adding to the optimal control problem a
terminal cost function that is a global Control Lyapunov
Function or by adding a terminal cost function that is
merely a local Control Lyapunov Function provided that
a terminal constraint is also added such that the local
Control Lyapunov Function is valid within the terminal
constraint set. This, in turn, raises the issue of “feasibil-
ity”, i.e. the ability to steer the system from its initial state
into the terminal constraint set. This is where a longer
horizon can be useful since it offers greater flexibility (i.e.
more control moves) to reach the terminal set.

Several special cases facilitate the search for a Control
Lyapunov Function. Two such cases are discussed below.

(i) When the B matrix in the system description is
invertible. The key point about this case is that it
is always possible to steer any initial state lying



sufficiently close to the target state x∗ to a point
“closer” to the target state (even in one step). Hence,
in this case, there exists a wide range of local Control
Lyapunov Functions such as the function |x−x∗| used
in some switching electronic applications. In this case,
the Control Lyapunov Function is local because the
control constraint restricts the range of states that
can be moved “closer” to the target state.

(ii) When the system is open loop stable. The key point
about this case is that one can choose the Con-
trol Lyapunov Function (CLF) to be the function
Vf (x) := (1/2)(x − x∗)′P (x − x∗) where x∗ is the
target state and P is the solution of the Lyapunov
equation

P = AT PA + Ω (68)
where Ω is any positive definite symmetric matrix. With
this choice for Vf (·), the control u = u∗, which steers
the system to x∗, causes a reduction in the CLF and
any control that minimizes Vf (x+), x+ = Ax + Bu,
will decrease the CLF more and steer the system to x∗

even more quickly. This CLF is global and this makes it
preferable to the local CLF discussed in (i). Invertibility
of B is also not required in this case.

Obtaining a control by minimizing Vf (x+) with respect to
u, is actually equivalent to an old form of control in which a
Control Lyapunov Function (CLF) is directly employed to
obtain a stabilising controller. However, MPC provides ex-
tra freedom. For example, a stabilising controller may also
be obtained by employing the cost V1(x, u) := `(x, u) +
Vf (Ax + Bu) in place of V1(x, u) := Vf (Ax + Bu). As
before, Vf (·) should be a CLF. The function `(·), which
should satisfy some simple conditions, may be used to im-
prove performance if Vf (·) is chosen appropriately. Larger
horizons would provide even more flexibility.

6.2 Quantization

Quantization introduces an extra layer of difficulty over
those described above. For example, with finite alphabet
control it is not a-priori obvious that one has the flexibility
to steer the state to a desired target x∗ that is an
equilibrium state in the sense that there exists a control u∗

satisfying x∗ = Ax∗+Bu∗ even if B is invertible. Difficulty
arises if the control u∗ does not lie in the finite alphabet.
This problem requires a more detailed analysis.

One option would be to relax the problem by ignoring
the discrete nature of U, i.e. U is replaced in the optimal
control problem by V which is defined to be the convex
hull of U yielding a control u. The control actually applied
to the plant is then utrue = Q(u) where Q is a generalized
quantizer. The quantizer noise q := utrue − u is bounded
so that the plant, if it is linear, is now described by

x+ = Ax + Butrue + Bq (69)

and is an uncertain system with bounded additive distur-
bance w = Bq. This can be treated by using techniques
from the emerging theory of robust model predictive con-
trol - see Rawlings and Mayne (2009), Løvaas et al. (2008),
Løvaas et al. (2009), Løvaas et al. (2010).

6.3 Fusion Control

It has been suggested above that one way to treat quanti-
zation is to transform the optimization problem into one
with unquantized control and additive bounded noise. Of
course, noise comes in different “flavours”. Hence, there
may be value in combining some of the ideas used in
section 3 with Model Predictive Control. We term such
strategies “Fusion Control” since the goal is to fuse modern
and traditional ideas.

6.4 The SynRM Revisited

The voltage and torque equations for a three-phase syn-
chronous reluctance motor in the rotating DQ reference
frame are given in section 2. If the state x for the current
loop is defined to be the vector (id, iq), then the system
satisfies:

ẋ = Ā(ω0)x + B̄u

y = c(x)
where

Ā :=
[

−α1 β1(ω0)
−β2(ω0) −α2

]
, B̄ :=

[
1/L1 0

0 1/L2

]
(70)

and
c(x) := (3p/2)(Ld − Lq)x1x2 (71)

where α1 := Rs/Ld, α2 := Rs/Lq, β1(ω0) := (Ld/Lq)ω0,
β2(ω0) := (Lq/Ld)ω0, u denotes the voltage vector (vd, vq),
ω0 the ‘electrical’ angular velocity, y is the output torque
and p is the number of pole pairs in the motor. The open
loop characteristic polynomial is

φ(s) = s2 + (α1 + α2)s + α1α2 + ω2
0 (72)

This characteristic polynomial is lightly damped if ω0 is
large. The outer loop of the speed control system provides
a reference current x∗ for an inner loop; x∗1 is constant at
a value that provides maximum flux while x∗2 is varied by
the outer loop to achieve the desired angular velocity ω∗0 .
The discrete-time model for the inner loop corresponding
to a sampling period of 4s seconds is:

x+ = Ax + Bu (73)

where A := exp(Ā4s) and B :=
∫4s

0
exp(Āt)B̄dt. This

translates the problem into a form where one could use
MPC. However, the core problem is the finite alphabet
nature of the control. Hence MPC with horizon length
N requires choosing, via optimization, a control sequence
lying in UN . This is a difficult problem if N is large. If we
use a horizon length N = 1, then the problem becomes
much simpler as discussed in section 5.5.4. Moreover, for
this particular problem, B and hence B, are nonsingular
and A is stable. Hence, the ideas discussed in section 6.1
(i) and (ii) are potentially useful.

7. CHALLENGES AND OPPORTUNITIES

7.1 Horizon Length

Much of the literature on MPC for switching electronic
applications uses, for computational reasons, a horizon
length N of unity although there are a few exceptions
Cortés et al. (2008), Geyer et al. (2009). As we have
shown in section 6.2, it is possible to establish closed loop



stability with N = 1 e.g., if the system being controlled is
invertible in one step or is open loop stable which is the
case in some applications. There is a need to investigate
whether significantly better performance can be obtained
with longer horizons together with suitable choice of the
stage cost `(·), state constraint, and terminal cost. If a
(global) control Lyapunov is available, as is often the case,
a terminal constraint is not required. Indeed much of the
power of MPC arises from its flexibility in choice of cost
function and from its ability to handle hard constraints.
Longer horizons may help with performance objectives
such as reduction of switching frequency Geyer et al.
(2009) although there is inevitably a trade-off between
switching losses and harmonic minimization. It would also
be helpful to know under what conditions a horizon length
of unity yields good performance.

7.2 Quantization Effects

There appear to be two distinct possibilities in MPC for
handling the quantization that is induced by the switching
converters. One, that seems to be preferred in the current
literature, is to pose the optimal control problems as
minimizing a cost subject to the constraint u ∈ UN

where U is the discrete set specifying permissible switched
voltages. This approach requires solution of an integer
program. The second alternative, also discussed above,
is to perform the minimization over VN where V is the
convex hull of U. The resultant optimal u is then quantised
and the nearest neighbour to u applied to the plant;
alternatively PWM or SVF modulation may be employed
as is done when PI control is used. The relaxed problem
is simpler, being a conventional quadratic or nonlinear
programme. This permits a traditional analysis of closed
loop stability. It would be interesting to compare the
performances of these two approaches. Also, the potential
advantages of using feedback around the quantizer to
modify the frequency spectrum of the quantization errors
should be explored.

7.3 Robustness

Existing design techniques for unconstrained control prob-
lems permit a wide range of robustness issues such as un-
dermodelling, unknown parameters, unknown states, the
effect of disturbances to be addressed. Unfortunately, the
same is not true for MPC since, as pointed out above, the
solution to the open loop optimal control problem solved
online is not equivalent to the feedback solution. A conse-
quence is that nominal MPC, which ignores uncertainty
and is widely used, may have poor robustness properties.
Current research is searching for modifications to nominal
MPC that ensure robustness. Some proposals have been
made for the case when the uncertainty takes the form
of an unknown, but bounded, disturbance and also when
the state has to be estimated. Recent work on unmodelled
dynamics is given in Løvaas et al. (2008) to Quevedo and
Nešić (2010).

7.4 Control Architecture

In classical control several different architectures have been
employed to good effect. One of these is the multi-degree-
of-freedom controller architecture as described in section

3.6. It would be interesting to know if MPC would benefit
from more complex architectures than the single loop that
is currently employed. A related question is the use of
‘inner’ and ‘outer’ loops. In some applications, MPC is
used for an inner current or torque loop and a conventional
controller for an outer speed loop. This raises the question
as to whether or not it would be advantageous to dispense
with the inner loop and use a single model predictive
controller for the outer loop? Another alternative would be
to employ model predictive controllers in both the inner
and outer loop.

7.5 Cost Function

The cost function for Power Electronic Applications typ-
ically has a “standard” form which assigns penalty coef-
ficients to each component of the output error. This is
somewhat arbitrary and subjective process. Development
of a unified approach to cost function design would be
beneficial. Variable or adaptive cost functions that achieve
best performance under varying operating conditions and
alternative design requirements would be useful.

8. CONCLUSION

This paper has given a tutorial overview of the application
of control to switching electronic systems. We have also
commented on issues that arise when these techniques are
applied to switched systems and we have raised a number
of open problems and challenges.
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