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On Sampled-Data Models for Nonlinear Systems
Juan I. Yuz, Student Member, IEEE, and Graham C. Goodwin, Fellow, IEEE

Abstract—Models for deterministic continuous-time nonlinear
systems typically take the form of ordinary differential equations.
To utilize these models in practice invariably requires discretiza-
tion. In this paper, we show how an approximate sampled-data
model can be obtained for deterministic nonlinear systems such
that the local truncation error between the output of this model
and the true system is of order � +1, where � is the sampling
period and is the system relative degree. The resulting model in-
cludes extra zero dynamics which have no counterpart in the un-
derlying continuous-time system. The ideas presented here gener-
alize well-known results for the linear case. We also explore the
implications of these results in nonlinear system identification.

Index Terms—Nonlinear systems, sampled-data models, sam-
pling zeros, system identification, zero dynamics.

I. INTRODUCTION

MODELS for continuous-time nonlinear systems often
arise from the application of physical laws such as

conservation of momentum, energy, etc. [1]. These models typ-
ically take the form of ordinary differential equations. To utilize
these models in a numerical context requires discretization.
This raises the question of the relationship between the model
describing the samples and the original continuous-time model.
It is tempting to simply sample quickly and then to replace
derivatives in the continuous-time model by divided differences
in the sampled-data model. However, one can obtain a more
accurate model. For example, in the linear case, it is well known
that better sampled-data models can be generated by including
extra zeros due to the sampling process [2].

For linear systems, the presence of sampling zeros has been
discussed in many papers following [2]. In that work, it is shown
that the sampled-data model corresponding to a linear system of
relative degree has, generically, sampling zeros, which
have no continuous-time counterpart. When using shift oper-
ator models, these sampling zeros converge (in the -domain)
asymptotically, as the sampling period goes to zero, to the roots
of the Euler–Fröbenious polynomials [2]–[4]. Equivalent con-
vergence results hold when using the delta operator [5], [6],
however, in this case the sampling zeros go to infinity (in the

-domain). The presence of sampling zeros in stochastic models
has also been addressed in [7]–[9].

Sampling zeros are known to have an effect mainly at high
frequencies. Nonetheless, they have important consequences in
both estimation and control. For example, in the least squares
parameter estimation of continuous-time autoregressive models
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it has been shown that they have to be considered to obtain un-
biased parameter estimates [10], [11].

One would reasonably expect similar results to hold for non-
linear systems. However, the situation for the nonlinear case is
more complex than for linear systems. Indeed, to the best of
our knowledge, an explicit characterization of the sampling zero
dynamics for nonlinear systems has previously remained unre-
solved, although, an implicit characterization has been given in
[12].

The occurrence of nonlinear zero dynamics is relevant to the
problem of control of nonlinear continuous-time systems. In this
context, topics such as relative degree, normal form, and zero
dynamics of the continuous-time nonlinear plant become impor-
tant, in particular, regarding feedback linearization techniques
[13]–[17]. Some of these results have also been extended to
discrete-time and sampled nonlinear systems [18]–[30]. How-
ever, the theory for the discrete-time case is less well developed
than for the continuous-time case [31] and the absence of good
models for sampled-data nonlinear plants is still recognized as
an important issue for control design [32]. The accuracy of the
approximate sampled-data plant model has proven to be a key
issue in the context of control design, where a controller de-
signed to stabilise an approximate model may fail to stabilises
the exact discrete-time model, no matter how small the sam-
pling period is chosen [33]. Any sampled-data model for a
nonlinear system will, in general, be an approximation of the
combination of two elements: the continuous-time system and
the associated sample and hold device. An exact discrete-time
description of such a hybrid nonlinear system is, in most cases,
not known or impossible to compute [34].

In this paper, we present an approximate sampled-data model
for nonlinear system which is accurate to some order in the sam-
pling period. We show how a particular strategy can be used
to approximate the system output and its derivatives in such a
way as to obtain a local truncation error, between the output of
the resulting sampled-data model and the true continuous-time
system output, of order , where is the sampling period
and is the (nonlinear) relative degree. An insightful interpreta-
tion of the obtained sampled-data model can be made in terms of
additional zero dynamics, which have no continuous-time coun-
terpart. We give an explicit characterization of these sampling
zero dynamics and show that these are a function only of the
system relative degree . Moreover, the sampling zero dynamics
turn out to be identical to those found in the linear case. Thus, the
current paper extends the well-known notion of sampling zeros
from the linear case to nonlinear systems. We also examine the
implications of including these sampling zero dynamics in dis-
crete-time nonlinear models used for system identification.

The remainder of the paper is structured as follows. In Sec-
tion II, we review known results for sampled linear systems,
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using the delta operator. Concepts and properties of nonlinear
systems are presented in Section III. In Section IV, the main re-
sult of this paper is presented, namely, a sampled-data model
for nonlinear systems. Section V explores the implications of
the use of the resultant model in nonlinear system parameter es-
timation. Finally, conclusions are presented in Section VI.

II. REVIEW OF THE LINEAR CASE

To set the results of the current paper in context, we begin
by reviewing well-known results for sampled linear systems.
For convenience we express the results using the delta operator
[5], [6]. This formulation will also prove useful in the nonlinear
case studied in Section IV. Corresponding results hold for the
shift operator using the following relations in discrete-time and
complex variable domains:

(1)

We are interested in the sampled-data model for linear sys-
tems when the input is a piecewise constant signal generated by
a zero-order holdZOH. Thus, for a sampling period

(2)

We then have the following result.
Lemma 1: Given a sampling period , the exact discrete-

time sampled-data model corresponding to the th order inte-
grator , for a ZOH input, is given by

(3)

where the polynomial is given by

(4)

and where the matrix is defined by

...
. . .

. . .
...

...
(5)

Proof: See Appendix I.
Remark 1: The polynomials in Lemma 1, when

rewritten in terms of the -variable using (1), correspond to
the Euler–Fröbenius polynomials [4]. The role of these poly-
nomials in describing pulse transfer function zeros for linear
systems was first described in [2].

Remark 2: In Lemma 1, we have expressed the Euler–Fröbe-
nius polynomials in terms of the delta transform variable .
However, the definition of these polynomials as the determinant
of matrix (5) seems to be novel and differs from the usual format
given in the literature [5], [6].

A consequence of Lemma 1 is a recursive relation for the
polynomials described here.

Lemma 2: The polynomials defined by (4) and (5)
satisfy the recursion

(6)

(7)

and

(8)

Proof: See Appendix II.
We next consider the case of a general single-input–single-

output (SISO) linear continuous-time system. Again, we are in-
terested in the corresponding discrete-time model when a ZOH
input is applied. The relationship between the continuous-time
poles and those of the discrete-time model can be easily deter-
mined. However, the relationship between the zeros in the con-
tinuous and discrete domains is much more involved. We con-
sider the asymptotic case as the sampling rate increases.

Lemma 3: Consider an SISO linear continuous-time system
described in transfer function form by

(9)

Given a sampling period , the discrete-time model corre-
sponding to this system, for a ZOH input, is given by

(10)

where, as the sampling period goes to zero

(11)

(12)

Proof: See [2], [3], [5], or [6].

III. NONLINEAR SYSTEM

In this section, we review some concepts and results from
nonlinear system theory that will be used later in Section IV. The
results presented here are based on [13], for continuous-time
systems, and partially based on [12] and [25], for the discrete-
time case.

A. Continuous-Time Systems

Much of the existing work regarding control of (continuous-
time) nonlinear systems utilizes a model consisting of a set of
ordinary differential equations affine in the control signals [13]

(13)

(14)

where is the state evolving in an open subset , and
where the vector fields and , and the output function

are analytic.
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Definition 1 (Relative Degree): The nonlinear system
(13)–(14) is said to have relative degree at a point if

i) for in a neighborhood of and for
;

ii) ;
where and correspond to Lie derivatives [13]. For ex-
ample, .

Intuitively, the relative degree, as defined previously, corre-
sponds to the number of times that one needs to differentiate
the output to make the input appear explicitly.

We next show that there is a local coordinate transformation
that allows one to rewrite the nonlinear system (13)–(14) in the
so called normal form.

Lemma 4 (Local Coordinate Transformation): Suppose that
the system has relative degree at . Consider the new system
coordinates defined as

(15)

(16)
...

(17)

Furthermore, if it is always possible to define
such that

...
... (18)

has a nonsingular Jacobian at . Then, is a local coor-
dinate transformation in a neighborhood of . Moreover, it is
always possible to define in
such a way that

(19)

in a neighborhood of , for all .
Proof: See [13].

Lemma 5 (Normal Form): The state–space description of the
nonlinear system (13)–(14) in the new system coordinates de-
fined by Lemma 4 is given by the so-called normal form

...
...

(20)

(21)

where the output is , the state vector is

(22)

and

(23)

(24)

... (25)

Proof: See [13].
Remark 3: Note that the state variables contained in ,

defined in (15)–(17), correspond to the output and its first
derivatives

(26)

Definition 2 (Zero Dynamics): The zero dynamics of the
nonlinear system (13)–(14) are defined as the internal dynamics
that appear in the system when the input and initial conditions
are chosen in such a way as to make the output identically zero,
i.e., .

Using the coordinate transformation, and, thus, the system
expressed in the normal form (20)–(21), we can see that the zero
dynamics satisfy

(27)

for any initial condition , and, from (20), for
an input

(28)

Remark 4: For linear systems, the zero dynamics correspond
to the system zeros. In this case, (27) reduces to a linear differ-
ential equation , where the eigenvalues of the matrix
are the roots of the polynomial in (19) (see, for example,
[13]).

B. Discrete-Time Systems

In this section, we consider the case of nonlinear systems de-
fined in discrete-time. We summarize, in a similar fashion to the
aforementioned continuous-time case, several concepts and re-
sults partially based on [12] and [25]. See also related work in
[35].

We consider the class of nonlinear discrete-time system ex-
pressed as

(29)

(30)

where , and are assumed analytic. Note that
the state (29) can also be easily rewritten using the shift operator

(31)

where, using (1)

and (32)

Definition 3 (Discrete-Time Relative Degree): The discrete-
time system (29)–(30) has relative degree if [25]

i) , for all ;
ii) .
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Intuitively, the discrete-time relative degree corresponds to
the number of time shifts before an element of the input se-
quence appears explicitly in the output sequence . The rela-
tive degree can also be characterized in terms of divided dif-
ferences of , as follows.

Lemma 6: The conditions in Definition 3 are equivalent to

a) , for all ;
b) .

Proof: See Appendix III.
Definition 4 (Discrete-Time Normal Form): Consider the

nonlinear discrete-time system (29)–(30) and assume that it
has relative degree . We say that the system is expressed in its
discrete-time normal form when it is rewritten as

...
...

(33)

(34)

where the state vector is

(35)

and the output is .
Remark 5: The state variables contained in , defined in

(35), correspond, in fact, to and its first divided dif-
ferences, i.e.,

(36)

Definition 5 (Discrete-Time Zero Dynamics): The discrete-
time zero dynamics of the nonlinear system (29)–(30) are de-
fined as the internal dynamics that appear in the system when
the input and initial conditions are chosen in such a way as to
make the output identically zero, i.e., .

If the system is expressed in the normal form (33)–(34), we
can see that the zero dynamics satisfy

(37)

for any initial condition , and, from (33), for an
input

(38)

Remark 6: Similarly to the continuous-time case in Remark
4, when restricting ourselves to linear systems, the discrete-time
zero dynamics (37) reduce to a linear difference equation

, where the eigenvalues of the matrix correspond to the
zeros of the discrete-time transfer function (10).

The following lemma re-establishes Lemma 1 regarding the
sampled model for an th-order integrator. We show, via use
of the normal form, that the eigenvalues of the zero dynamics
in this case correspond to the sampling zeros of the discrete-

time transfer function (3). The latter result will be used for the
nonlinear case as a key building block in the Proof of Theorem
2 in Section IV.

Lemma 7 (Sampled th Order Integrator in Normal
Form): Given a sampling period , the discrete-time sam-
pled-data model corresponding to the th order integrator

, for a ZOH input, can be written in the
normal form

(39)

(40)

with output . The scalar and the matrices ,
and take specific forms as given in (127) in Appendix IV.
Furthermore, the sampling zeros in (3) appear as eigenvalues of
the matrix , i.e.,

(41)

Proof: See Appendix IV.

IV. SAMPLED-DATA MODEL FOR NONLINEAR SYSTEMS

In this section, we present the main result of this paper,
namely, a sampled-data model that approximates the
input-output mapping of a given nonlinear system. We also
show that this discrete-time model contains extra zero dynamics
which are the same as the dynamics associated with the asymp-
totic sampling zeros in the linear case.

We are interested in obtaining a discrete-time model that
closely approximates the nonlinear input-output mapping given
by (13)–(14), when the input is generated by a digital
device using a ZOH. This will result in a model of the form

(42)

(43)

where is the discrete-time state sequence,
is the input sequence, is the output sequence, and

is the discrete-time index.
Our goal is to define the discrete-time model (42)–(43), such

that is close (in a well defined sense) to the continuous-time
output in (14) at the sampling instants , when the
input is generated from with the ZOH (2). Theorem 1
explicitly defines the vector fields , and in
(42) and (43) in terms of the sampling period and the vector
fields , and in Lemma 5, which are function of

, and in the original continuous-time nonlinear
model (13)–(14). We first introduce the following assumption.

Assumption 1: The continuous-time nonlinear system
(13)–(14) has uniform relative degree in the open subset

, where the state evolves.
This assumption ensures that there is a coordinate transfor-

mation as in Lemma 4 that allows us to express the system in its
normal form. We then have the following key result.

Theorem 1: Consider the continuous-time nonlinear system
(13)–(14) subject to Assumption 1. Then the local truncation
error between the output of the following discrete-
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time nonlinear model and the true system output is of order
:

...
. . .

. . .
...

...
(44)

(45)

where , and are defined
in Lemma 5, is the discrete-time input to the ZOH, and the
discrete-time state vector is

(46)

Proof: Assumption 1 ensures the existence of the normal
form for the nonlinear model (13)–(14). In Lemma 5, the
vector fields , and are continuous and, thus,
the state variables are continuous functions of
. This implies (see Remark 3) that the output signal and

its first derivatives are continuous. However, when the
input signal is generated by a ZOH, the th derivative,

, is well defined but is, in
general, discontinuous at the sampling instants , when
the control signal (2) is updated. This allows us to apply the
Taylor’s formula with remainder [36, Th. 5.19] to and to
each one of its derivatives at any point as

(47)

(48)

...

(49)

for some , for all .
In turn, this implies that, taking and , the

state variables at can be expressed exactly by

(50)

(51)

...

(52)

and

(53)

for some time instants .
Next, we rewrite (50)–(53) using the -operator. We also re-

place the signals at the sampling instants by their sampled coun-
terparts, using the superscript

(54)

(55)

...

(56)

(57)

Note that this is an exact discrete-time description of the non-
linear system together with a ZOH input, for some (undeter-
mined) time instants . Replacing these
unknown time instants by we obtain the approximate dis-
crete-time model in (44) and (45).

We next analyze the local truncation error [37] between the
true system output and the output of the obtained sampled data
model, assuming that, at , the state is equal to the true
system state . We compare the true system output at the
end of the sampling interval, in (50),
with the first (shifted) state of the approximate sampled-data
model in (44), i.e., with:

(58)

This yields the following local truncation output error:

(59)

where the existence of the Lipschitz constant is guaran-
teed by the analyticity of , and in (13)–(14) and,
as a consequence, of , and . Indeed, any map
satisfies locally a Lipschitz condition at each point [38].

Furthermore, according to [37, Th. 112E], the Lipschitz con-
dition guarantees that the variation of the state trajectory
can be bounded as

(60)

The result then follows from (59).
Remark 7: The Taylor series truncation used in the proof

of Theorem 1 is closely related to Runge–Kutta methods [37],
commonly used to simulate nonlinear systems. In fact, the
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model in Theorem 1 describes an approximate model for the
output and its derivatives to solve the nonlinear differential
equation in one sampling interval. An important observation
that we will explore in Theorem 2 is that this improved numer-
ical integration technique can be interpreted as incorporating
sampling zero dynamics into the discrete-time nonlinear model.

Remark 8: Theorem 1 shows that the accuracy of the approx-
imate sampled-data model improves with the continuous-time
system relative degree . Thus, in general, one obtains a more
accurate model than the one resulting from simple derivative re-
placement using an Euler approximation.

Remark 9: The sampled-data model described in Theorem
1 can be obtained for any equivalent representation of the non-
linear system of the form (13)–(14). Specifically, the approx-
imate sampled-data model (44)–(45) is described in terms of

, and which are functions of , and
(see Lemma 5).

Remark 10: In [25], a sampled normal form is obtained by
a Taylor series expansion of all the elements of the state vector
(22) to the same order in the sampling period . By way of
contrast, we have considered the smoothness of the input ,
and, thus, of and its derivatives, to obtain the exact repre-
sentation given in (54)–(57) and, from there, the approximate
sampled-data model (44)–(45).

Remark 11: The result in Theorem 1 can equally be applied
to the nonuniform sampling case. In the latter case, the local
truncation output error will be of order in , where is
the length of the sampling interval .

Next, we present a result which shows that the discrete-time
zero dynamics of the sampled-data model presented in Theorem
1 are given by the sampled counterpart of the continuous-time
zero dynamics, together with extra zero dynamics produced by
the sampling process. The latter dynamics are linear and, sur-
prisingly, turn out to be the same as those which appear asymp-
totically for the linear case, as the sampling period goes to zero.

Theorem 2: The sampled-data model (44)–(45) generically
has relative degree 1, with respect to the output . Fur-
thermore, the discrete-time zero dynamics are given by two sub-
systems.

i) The sampled counterpart of the continuous-time zero
dynamics

(61)

where .
ii) A linear subsystem of dimension

(62)

where the eigenvalues of matrix are the same sam-
pling zeros that appear in the asymptotic linear case,
namely, the roots of defined in (4).

Proof: Using the definition of discrete-time relative de-
gree given in Lemma 6, we have that

(63)

(64)

which shows that (44)–(45) has relative degree 1.
Next, in order to extract the zero dynamics of the discrete-

time nonlinear system (44)–(45), we rewrite it in its normal
form. To do so, we proceed as in the proof of Lemma 7 for the

th order integrator (see Appendix IV). We first define the fol-
lowing linear state transformation:

...
... (65)

where matrix is defined analogously to (125)

(66)

where

(67)

Substituting (65)–(66) into (44), we obtain a discrete-time
normal form

(68)

(69)

where the sub-matrices in (68) are given by expressions analo-
gous to (126)–(129) in Appendix IV.

Taking the output , for all , we now
see that the discrete-time zero dynamics are described by two
subsystems:

(70)

(71)

and the eigenvalues of are clearly the same as the roots of
as given earlier in Lemma 7.

Remark 12: If the continuous-time input is generated
by a different hold device, for example, a first-order hold
(FOH), this information can be used to include more terms in
the Taylor’s expansion (50)–(52). This, of course, would lead
us to a different approximate discrete-time model in Theorem
1, with different sampling zeros in Theorem 2. In fact, this
corresponds to well-known results for the linear case where the
asymptotic sampling zeros depend inter alia on the nature of
the hold device [3], [4], [39], [40].

V. IMPLICATIONS IN NONLINEAR SYSTEM IDENTIFICATION

The results given in the previous sections give additional in-
sight to many problems in nonlinear system theory. As a specific
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illustration, we next consider the problem of nonlinear system
identification based on sampled output observations. Note that
we do not explicitly consider noise in this paper since our focus
is on the deterministic (bias) errors resulting from under-mod-
eling in sampled-data models.

The results in Section IV describe an approximate sampled-
data discrete-time model for a nonlinear system. This model
shows that the accuracy of the sampled data model can be im-
proved by using a better derivative approximation than simple
Euler, where is replaced by the delta operator . This more
accurate discrete-time model can be interpreted as including
sampling zero dynamics, which are the same as in the linear
system case.

In this section, we illustrate the use of the approximate
sampled-data model (44)–(45) for parameter estimation of a
particular nonlinear system. This model, which includes sam-
pling zero dynamics, gives better results than those achieved by
simply replacing time derivatives by divided differences, even
when fast sampling rates are utilized.

Example 1: Consider the nonlinear system defined by the
differential equation

(72)

This model can be expressed in state–space form as

(73)

(74)

where we have defined the function

(75)
This system has relative degree for all , and is

already in normal form (20)–(21).
The nonlinear function (75) can be linearly reparameterised

as , where

and (76)

We next perform system identification by applying an equa-
tion error procedure on three different model structures:.

1) A simple derivative replacement model (SDRM): This
model is obtained by simply replacing the time deriva-
tives by divided differences in the state–space model
(73)–(74). This leads to the approximate model

(77)

where the parameters are given in (76).
2) A model incorporating fixed zero dynamics (MIFZD):

This is based on our proposed discrete-time nonlinear

model in Theorem 1. The corresponding state space
representation is given by:

(78)

(79)

where is defined in (75). This particular
system can be rewritten as a divided difference equa-
tion as follows:

(80)

where the parameters are given in (76).
3) A model incorporating parameterised zero dynamics

(MIPZD): This is also based on our proposed discrete-
time nonlinear model (78)–(79), with the difference
that we expand (80) and relax the existing relation be-
tween the parameters of the different terms. This yields

(81)

where are given
in (76), , and

.
Note that the MIPZD in (81) can be rewritten in

state–space form as

(82)

(83)

with output .
The parameters for the three models, SDRM in (77), MIFZD

in (80), and MIPZD in (81), can be estimated using the ordi-
nary least squares method by minimizing the equation error cost
function

(84)

where (85), as shown at the bottom of the next page, holds.
The parameters for each model were estimated by performing

50 Monte Carlo simulations, using different realizations of a
Gaussian random input sequence (zero mean, unit variance).
The sampling period was [s]. The results are sum-
marized in Table I. We can see that both MIFZD and MIPZD
give good estimates for the continuous-time parameters,
whereas SDRM is not able to find the right values, especially
for the parameters . Of course, small discrepancies
from the continuous-time parameters are explained by the non
infinitesimal sampling period.

To explore the convergence of the parameter estimates to the
continuous-time values, we repeat the simulations for different
sampling periods. Table II shows the root mean square error
between the average parameters obtained by running 50 Monte
Carlo simulations for each sampling period. Note that we are
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TABLE I
PARAMETER ESTIMATES USING EQUATION ERROR PROCEDURES

able to compare only the first five parameters of the MIPZD. In
fact, we can see that, as the sampling period is reduced this is the
model that gives the best estimation of the true parameter vector.
On the other hand, the estimate corresponding to the SDRM is
clearly asymptotically biased.

We also tested the three models, SDRM, MIFZD, and
MIPZD, with the average estimated parameters that appear in
Table I, using a longer validation data set of length 100 [s] and
the same sampling period [s]. Part of the output
of the nonlinear continuous-time system and the discrete-time
models, when using the validation input, are shown in Fig. 1.
We see that both models based on our proposed state-space
model as described in Section IV replicate the continuous-time
output very accurately. On the other hand, the SDRM has a
clear bias.

The value of the equation error cost function (84) for each one
of the three discrete-time models, when considering the sam-
pled input and output validation data, appears in the last row of
Table I.

Remark 13: The results obtained for the nonlinear models
in the previous example highlight that the inclusion of zero dy-
namics (MIFZD and MIPZD) allows one to obtain better re-
sults than a simple derivative replacement approach (SDRM).
In particular, the latter model will give biased estimates also
in the linear system case. As a matter of fact, if we consider

in (72) we obtain the linear system

(86)

This system can also be represented by the transfer function

(87)

TABLE II
CONVERGENCE OF PARAMETER ESTIMATES

If derivatives in (86) are replaced by divided differences, we
obtain the lineal SDRM model

(88)

The parameter estimates that minimize the equation error cost
function

(89)

where

(90)

are given by the solution of the equation

(91)

Thus, differentiating the cost function with respect to each of
the parameter estimates, we obtain

(92)

This equation can be rewritten in terms of (discrete-time) cor-
relations as

(93)

(85)
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Fig. 1. Simulated output sequences for the validation input.

It can be shown (see [43] for details) that, as the sampling
period goes to zero

and (94)

This means that the estimates are clearly asymptotically bi-
ased for approximate model (88).

The advantages of including zero dynamics in the discrete-
time model are further illustrated in the following example.

Example 2: Let us consider the linear system (86), with the
following continuous-time parameters .

We performed system identification for the discrete-time
model

(95)

where7

linear
linear

linear

(96)

These models are the linear analogues of the ones used for
the nonlinear case in Example 1.

We choose a sampling period [s] and a random
Gaussian input of unit variance. Table III shows the estimation
results where the bias is clear in the estimate of for the SDRM
(as predicted in Remark 13). Note that the system considered is
linear, thus, the exact discrete-time parameters can be computed
for the given sampling period. These are also given in Table III.

Remark 14: The analysis presented in Remark 13 is helpful
to understand the presence of asymptotic bias in the SDRM es-
timates in Examples 1 and 2, for both nonlinear and linear sys-
tems. This bias can be mitigated, for example, if we use output
error system identification instead of least squares estimation,
but at the expense of using nonconvex optimization.

VI. CONCLUSION

This paper has developed an approximate discrete-time
model for nonlinear systems. The obtained sampled-data model

TABLE III
PARAMETER ESTIMATES FOR A LINEAR SYSTEM

uses a more sophisticated derivative approximation than the
simple Euler approach. Moreover, an insightful interpretation
is given in terms of an explicit characterization of the nonlinear
sampling zero dynamics of the obtained model. This extends a
well-known result for sampling zeros of linear systems to the
nonlinear case. The result is believed to give important insights
which are relevant to many aspects of nonlinear systems theory.
By way of illustration, we have shown that models obtained
by system identification have higher fidelity when nonlinear
sampling zero dynamics are included in the model.

APPENDIX I
PROOF OF LEMMA 1

We describe the th-order integrator in
state–space form

(97)

(98)

where the matrices take the specific form

...
... (99)

(100)

The equivalent sampled-data model, assuming a ZOH input
as in (2), is given by

(101)

(102)
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where , and the matrices can be
exactly obtained noting that the matrix is nilpotent, i.e.,

. This yields

...
. . .

. . .
...

(103)

(104)

(105)

Note that, applying the delta transform to (101), with initial
conditions equal to zero, we obtain the following set of equa-
tions:

... ...
. . .

. . .
...

...
...

(106)
This set of algebraic equations can be solved in terms of the

first state

...
...

...
. . .

. . .
...

... (107)

Next, using Cramer’s Rule [41], we can solve the system for
the input in terms of

(108)

where is defined as in (107) [see also (5)], and

...
. . .

. . .
...

...
(109)

From (108), using definition (4), and computing the determi-
nant of the matrix , for example, along the last column, we
obtain the inverse sampled-data system transfer function

(110)

APPENDIX II
PROOF OF LEMMA 2

We first present the following preliminary result.
Lemma 8: For an integer , consider the matrix

defined in (5) and (107). Then, we have

...
...

(111)

Proof: The left-hand side of (111) corresponds to solving
system (107) by inverting the matrix , and omitting the
output variable . Thus, in the same way that we solved
(107) for in Appendix I, we can use Cramer’s Rule [41]
to solve for every state . This leads to

(112)

where is the matrix obtained by replacing the th
column of by the vector on the left of (107). Thus, (113), as
shown at the bottom of the next page, holds.

Then, computing the determinant along the th column,
we have that

(114)

where

. . .
. . .

...
...

(115)

and, from definition (4)–(5)

(116)

Replacing (115) and (116) in (114), we obtain

(117)

It follows that the solution of (107) is

...
...
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... (118)

which is equivalent to (111).
We now proceed to establish Lemma 2. From the definition

of the matrix in (5), we have that

...
(119)

The determinant of this matrix can be readily computed, using
the matrix inversion lemma (see, for example, [42, App. E])

...
(120)

Finally, from (4) and using Lemma 8, we have that

... (121)

where we have replaced by . The recursive relation in
(7) corresponds exactly to (121).

Equation (8) readily follows from recursion (7), noting that

(122)

APPENDIX III
PROOF OF LEMMA 6

– –
Using the delta operator definition (1), we have that

(123)

where clearly if , for all , then
, for all . Furthermore,

implies .
– –

This follows from similar arguments, on noting that
. Then, we have that

(124)

where clearly if , for all ,
then for all . Furthermore,

implies .

APPENDIX IV
PROOF OF LEMMA 7

We consider the sampled-data model for the th order in-
tegrator given by (101)–(105), and the state–space similarity

. . .

. . .
...

...
. . .

...
...

. . .

...
. . .

...
. . .

...
. . .

...
...

...
. . .

...

(113)
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transformation , where the nonsingular matrix is given
by

(125)

where

(126)

Then, the new state–space representation is given by the fol-
lowing matrices:

(127)

where, from (103)

(128)

...
. . .

. . .
... (129)

and

(130)

(131)

These state–space matrices give the normal form that appears
in (39)–(40).

To prove (41), we first note that

(132)

Computing the determinant of the matrices on both sides of
the equation and using the matrix inversion lemma (see, for ex-
ample, [42, App. E]), we have that

(133)

where, from definition of in (127), we finally have that

(134)
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