Regulation of the Tumour Suppressor PP2A by Oncogenic Tyrosine Kinases

Kathryn G. Roberts

B.BiomedSci (Hons)

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

December 2009

STATEMENT OF ORIGINALITY

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due references has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

Kathryn Roberts

TABLE OF CONTENTS

Abstract	xi
Acknowledgments	xiv
Publications	xvi
Abbreviations	xviii
Chapter 1 – Introduction	1
1.1 Overview	1
1.2 BCR/ABL	2
1.2.1 Clinical presentation of Chronic Myeloid Leukaemia (CML)	2
1.2.2 The Philadelphia chromosome	4
1.2.3 Overview of signalling pathways	6
1.2.3.1 Mitogen activated protein kinase (MAPK)	6
1.2.3.2 PI3K/Akt	6
1.2.3.3 Src family kinases (SFK)	9
1.2.3.4 Janus kinases (JAKs)/signal transducers and activators	
of transcription (STATs)	9
1.2.3.5 Wnt/β-catenin	9
1.2.4 Transition from chronic phase to blast crisis CML	10
1.3 Receptor Tyrosine Kinase c-KIT	11
1.3.1 Structure and function	11
1.3.2 Expression of c-KIT in human malignancies	15
1.3.2.1 Gastrointestinal stromal tumours (GIST)	15
1.3.2.2 Core-binding factor Acute Myeloid Leukaemia (CBF-AML)	18
1.3.2.3 Mastocytosis	22
1.3.2.4 Melanoma	22
1.3.2.5 <i>c-KIT</i> mutations at codon 816	22
1.4 Small Molecule Inhibitors Targeting BCR/ABL and c-KIT	24
1.4.1 Imatinib	24
1.4.1.1 CML clinical trials	26
1.4.1.2 GIST clinical trials	27
1.4.1.3 AML and mastocytosis clinical trials	28

i

1.4.2 Second generation inhibitors	29
1.4.2.1 Nilotinib	29
1.4.2.2 Dasatinib	31
1.4.2.3 Sunitinib	33
1.4.2.4 Alternative therapeutic strategies for resistant disease	35
1.5 Protein Phosphatase 2A (PP2A)	36
1.5.1 PP2A subunits	39
1.5.1.1 The catalytic subunit (PP2Ac)	39
1.5.1.2 The structural subunit (PP2A A)	41
1.5.1.3 The regulatory subunits (PP2A B)	42
1.5.1.3.1 The B55 family	42
1.5.1.3.2 The B56 family	43
1.5.1.3.3 The B" family	43
1.5.1.4 PP2Ac interacting proteins	44
1.5.2 Signalling pathways regulated by PP2A	44
1.5.2.1 PP2A and MAPK signalling	45
1.5.2.2 PP2A and PI3K/Akt signalling	45
1.5.2.3 PP2A and Wnt/β-catenin signalling	47
1.5.2.4 PP2A and p53 regulation	49
1.5.2.5 PP2A and c-Myc regulation	49
1.5.3 PP2A as a tumour suppressor	51
1.5.3.1 Okadaic acid and SV40 ST	51
1.5.3.2 Inhibition of PP2A by BCR/ABL	52
1.5.3.3 Role of PP2A regulatory subunits in transformation	54
1.5.3.4 Role of PP2A structural subunits in transformation	55
1.5.4 PP2A activators	60
1.5.4.1 Forskolin	60
1.5.4.2 Ceramide	61
1.5.4.3 FTY720	63
1.6 Aims of this Thesis	67

Chapter 2 – Materials and Methods	68
2.1 Buffers and Reagents	68
2.2 Recombinant DNA Techniques	68
2.2.1 Plasmid vectors	68
2.2.1.1 cDNA constructs	68
2.2.1.2 shRNA constructs	68
2.2.2 Restriction digests	70
2.2.3 DNA electrophoresis	70
2.2.4 DNA purification from agarose gel	70
2.2.5 Nucleic acid quantification	71
2.2.6 Ligation of insert into plasmid	71
2.2.7 Expansion and purification of plasmid DNA	71
2.2.7.1 Preparation of competent bacteria	71
2.2.7.2 Transformation of competent bacteria	72
2.2.7.3 Purification of plasmid DNA from bacteria	72
2.2.8 DNA sequencing and analysis	73
2.3 Cell Culture	74
2.3.1 Media, solutions and cytokines	74
2.3.2 Cell lines and maintenance	74
2.3.3 Reviving cell lines	75
2.3.4 Cryopreservation	75
2.3.5 Retroviral infection of FDC-P1 cells	76
2.3.5.1 Generation of FDC-P1 cells expressing BCR/ABL and c-KIT	76
2.3.5.2 Generation of shRNA-expressing FDC-P1 WT BCR/ABL cells	78
2.3.6 Drug treatments	79
2.4 Polymerase Chain Reaction (PCR)	79
2.4.1 RNA extraction	79
2.4.2 Reverse transcription PCR (RT-PCR)	79
2.4.3 Quantitative real-time PCR (qRT-PCR)	80
2.5 PP2A phosphatase activity assay	82
2.6 Analytical Procedures for Proteins	82

2.6.1 Flow cytometry	82
2.6.2 Immunoblotting	83
2.6.3 Immunoprecipitation	86
2.6.4 Phosphorylation assay	86
2.7 Cellular Growth and Survival Assays	88
2.7.1 Cellular proliferation	88
2.7.2 Analysis of cellular morphology	89
2.7.3 Apoptosis assay	89
2.7.4 Cell cycle analysis	90
2.7.5 Colony-forming assay	90
2.8 Animal Procedures	90
2.8.1 Syngeneic mouse model	90
2.8.1.1 Establishing the FDC-P1 mutant c-KIT tumour model	90
2.8.1.2 Evaluating the safety of FTY720 in DBA/2J mice	91
2.8.1.3 FTY720 treatment of FDC-P1 mutant c-KIT tumours	91
2.8.1.4 Immunohistochemistry	92
2.8.1.5 TUNEL staining	93
2.9 Statistical Analysis	95
CHAPTER 3 – BCR/ABL ALTERS THE EXPRESSION OF PP2A SUBUNITS	96
3.1 Introduction	96
3.2 Results	98
3.2.1 Expression of p210 kDa BCR/ABL oncoprotein in FDC-P1 cells	98
3.2.2 Sensitivity of WT and Y253F BCR/ABL to imatinib	100
3.2.3 BCR/ABL impairs the activity of PP2A	102
3.2.4 BCR/ABL upregulates the PP2A scaffolding subunit	102
3.2.4.1. SET expression	102
3.2.4.2 PP2A catalytic subunit expression	105
3.2.4.3 PP2A scaffolding subunit expression	105
3.2.5 BCR/ABL alters the expression of PP2A regulatory subunits	109
3.2.5.1 PP2A B55 subunit family expression	109
3.2.5.2 PP2A B56 subunit family expression	109

3.2.6 PP2A mRNA levels in BCR/ABL ⁺ FDC-P1 cells	113
3.2.7 BCR/ABL disrupts PP2A assembly in FDC-P1 cells	119
3.3 Discussion	122
<i>CHAPTER 4</i> – THE ROLE OF PP2A COMPLEXES IN BCR/ABL ⁺	
LEUKAEMOGENESIS	129
4.1 Introduction	129
4.2 Results	131
4.2.1 Subcloning of shRNA B56δ into pSR	131
4.2.2 Stable knockdown of PP2A regulatory subunits in	
FDC-P1 WT BCR/ABL cells	131
4.2.3 Functional effects of PP2A regulatory subunit knockdown	133
4.2.3.1 shB56α restores PP2A activity in FDC-P1 WT BCR/ABL cells	133
4.2.3.2 shB56 α impairs the proliferation of FDC-P1 WT BCR/ABL cells	133
4.2.3.3 Suppression of B56 α and B56 δ alters the cellular morphology	
of FDC-P1 WT BCR/ABL cells	142
4.3 Discussion	145
CHAPTER 5 – INHIBITION OF PP2A BY ONCOGENIC C-KIT MUTATIONS	153
	153
5.1 Introduction	100
5.2 Results	154
5.2 Results 5.2.1 Mutant c-KIT impairs the activity of PP2A	154 154
 5.1 Introduction 5.2 Results 5.2.1 Mutant c-KIT impairs the activity of PP2A 5.2.2 Mutant c-KIT alters the expression of PP2A subunits 	154 154 156
 5.1 Introduction 5.2 Results 5.2.1 Mutant c-KIT impairs the activity of PP2A 5.2.2 Mutant c-KIT alters the expression of PP2A subunits 5.2.3 Reactivation of PP2A in mutant c-KIT FDC-P1 cells 	154 154 156 159
 5.1 Introduction 5.2 Results 5.2.1 Mutant c-KIT impairs the activity of PP2A 5.2.2 Mutant c-KIT alters the expression of PP2A subunits 5.2.3 Reactivation of PP2A in mutant c-KIT FDC-P1 cells 5.2.4 Reactivation of PP2A inhibits the proliferation of mutant c-KIT 	154 154 156 159
 5.1 Introduction 5.2 Results 5.2.1 Mutant c-KIT impairs the activity of PP2A 5.2.2 Mutant c-KIT alters the expression of PP2A subunits 5.2.3 Reactivation of PP2A in mutant c-KIT FDC-P1 cells 5.2.4 Reactivation of PP2A inhibits the proliferation of mutant c-KIT FDC-P1 cells 	154 154 156 159
 5.1 Introduction 5.2 Results 5.2.1 Mutant c-KIT impairs the activity of PP2A 5.2.2 Mutant c-KIT alters the expression of PP2A subunits 5.2.3 Reactivation of PP2A in mutant c-KIT FDC-P1 cells 5.2.4 Reactivation of PP2A inhibits the proliferation of mutant c-KIT FDC-P1 cells 5.2.5 Reactivation of PP2A induces apoptosis of mutant c-KIT 	154 154 156 159 159
 5.1 Introduction 5.2 Results 5.2.1 Mutant c-KIT impairs the activity of PP2A 5.2.2 Mutant c-KIT alters the expression of PP2A subunits 5.2.3 Reactivation of PP2A in mutant c-KIT FDC-P1 cells 5.2.4 Reactivation of PP2A inhibits the proliferation of mutant c-KIT FDC-P1 cells 5.2.5 Reactivation of PP2A induces apoptosis of mutant c-KIT FDC-P1 cells 	154 154 156 159 159
 5.1 Introduction 5.2 Results 5.2.1 Mutant c-KIT impairs the activity of PP2A 5.2.2 Mutant c-KIT alters the expression of PP2A subunits 5.2.3 Reactivation of PP2A in mutant c-KIT FDC-P1 cells 5.2.4 Reactivation of PP2A inhibits the proliferation of mutant c-KIT FDC-P1 cells 5.2.5 Reactivation of PP2A induces apoptosis of mutant c-KIT FDC-P1 cells 5.2.6 Reactivation of PP2A inhibits the clonogenic potential of 	154 154 156 159 159 162
 5.1 Introduction 5.2 Results 5.2.1 Mutant c-KIT impairs the activity of PP2A 5.2.2 Mutant c-KIT alters the expression of PP2A subunits 5.2.3 Reactivation of PP2A in mutant c-KIT FDC-P1 cells 5.2.4 Reactivation of PP2A inhibits the proliferation of mutant c-KIT FDC-P1 cells 5.2.5 Reactivation of PP2A induces apoptosis of mutant c-KIT FDC-P1 cells 5.2.6 Reactivation of PP2A inhibits the clonogenic potential of mutant c-KIT cells 	154 154 156 159 159 162 165
 5.1 Introduction 5.2 Results 5.2.1 Mutant c-KIT impairs the activity of PP2A 5.2.2 Mutant c-KIT alters the expression of PP2A subunits 5.2.3 Reactivation of PP2A in mutant c-KIT FDC-P1 cells 5.2.4 Reactivation of PP2A inhibits the proliferation of mutant c-KIT FDC-P1 cells 5.2.5 Reactivation of PP2A induces apoptosis of mutant c-KIT FDC-P1 cells 5.2.6 Reactivation of PP2A inhibits the clonogenic potential of mutant c-KIT cells 5.2.7 Reactivation of PP2A dephosphorylates c-KIT in FDC-P1 cells 	154 154 156 159 159 162 165 169
 5.1 Introduction 5.2 Results 5.2.1 Mutant c-KIT impairs the activity of PP2A 5.2.2 Mutant c-KIT alters the expression of PP2A subunits 5.2.3 Reactivation of PP2A in mutant c-KIT FDC-P1 cells 5.2.4 Reactivation of PP2A inhibits the proliferation of mutant c-KIT FDC-P1 cells 5.2.5 Reactivation of PP2A induces apoptosis of mutant c-KIT FDC-P1 cells 5.2.6 Reactivation of PP2A inhibits the clonogenic potential of mutant c-KIT cells 5.2.7 Reactivation of PP2A dephosphorylates c-KIT in FDC-P1 cells 5.3 Discussion 	154 154 156 159 159 162 165 169 169 169

_____ V

CHAPTER 6 – FTY720 INHIBITS MUTANT C-KIT TUMOUR GROWTH IN VIVO	176
6.1 Introduction	176
6.2 Results	177
6.2.1 Establishing an in vivo model for FDC-P1 c-KIT tumour growth	177
6.2.2 Evaluating the toxicity of FTY720 in DBA/2J mice	177
6.2.3 FTY720 delays mutant c-KIT tumour growth	179
6.2.4 FTY720 improves the survival of mice bearing mutant c-KIT tumours	183
6.2.5 FTY720 prevents the infiltration of D816V c-KIT cells into secondary organ	ıs183
6.3 Discussion	195
CHAPTER 7– CONCLUSIONS AND FUTURE DIRECTIONS	199
APPENDIX	211
REFERENCES	216

LIST OF FIGURES

Figure 1.1 Haematopoiesis and the characteristics of CML progenitors	3
Figure 1.2 The Philadelphia chromosome and functional domains of the	
BCR and ABL proteins	5
Figure 1.3 Oncogenic signalling by p210 kDa BCR/ABL	8
Figure 1.4 Functional domains of the c-KIT receptor	12
Figure 1.5 Signalling pathways activated by c-KIT	14
Figure 1.6 Mutations in <i>c</i> - <i>KIT</i> detected in human malignancies	16
Figure 1.7 Structure of BCR/ABL in complex with imatinib	25
Figure 1.8 Structure of BCR/ABL in complex with nilotinib and dasatinib	30
Figure 1.9 Mechanism of action of sunitinib	34
Figure 1.10 Structure of PP2A holoenzymes	38
Figure 1.11 Post-translational modifications of PP2Ac	40
Figure 1.12 Schematic overview of MAPK signalling regulation by PP2A	46
Figure 1.13 Schematic overview of Wnt/β-catenin signalling regulation by PP2A	48
Figure 1.14 Schematic overview of p53 signalling regulation by PP2A	50
Figure 1.15 BCR/ABL-induced inhibition of PP2A in CML	53
Figure 1.16 Regulation of c-Myc by PP2A and CIP2A	56
Figure 1.17 Mechanisms by which mutant PP2A A α may induce transformation	58
Figure 1.18 Tumour suppressive properties of PP2A A β	59
Figure 1.19 Sphingolipid metabolic pathway and structure of FTY720	62
Figure 1.20 Mechanism of FTY720 immunomodulation	64
Figure 1.21 Reactivation of PP2A inhibits BCR/ABL-mediated leukaemogenesis	66
Figure 2.1 Schematic model for the growth of FDC-P1 mutant c-KIT tumours	
and FTY720 treatment	94
Figure 3.1 Expression of BCR/ABL in myeloid progenitors	99
Figure 3.2 Inhibition of BCR/ABL ⁺ myeloid progenitors with imatinib	101
Figure 3.3 Inhibition of BCR/ABL phosphorylation with imatinib	103
Figure 3.4 BCR/ABL inhibits PP2A activity in FDC-P1 myeloid progenitors	104
Figure 3.5 Expression of SET in BCR/ABL ⁺ myeloid progenitors	106

Figure 3.6 Expression of PP2Ac and PP2A A subunits in BCR/ABL ⁺ myeloid	107
progenitors	
Figure 3.7 Quantitation of PP2Ac and PP2A A in BCR/ABL^+ myeloid progenitors	108
Figure 3.8 Expression of PP2A regulatory subunits in BCR/ABL ⁺	
myeloid progenitors	110
Figure 3.9 Quantitation of PP2A regulatory subunits in BCR/ABL ⁺ FDC-P1 cells	111
Figure 3.10 Quantitation of PP2A regulatory subunits in 32D and K562 cells	112
Figure 3.11 mRNA levels of PP2Ac and PP2A A in BCR /ABL ⁺ FDC-P1 cells	115
Figure 3.12 mRNA levels of PP2A B55 in BCR/ABL ⁺ FDC-P1 cells	116
Figure 3.13 mRNA levels of PP2A B56 in BCR/ABL ⁺ FDC-P1 cells	117
Figure 3.14 mRNA levels of PPP2R3A and PPP2R4 in BCR/ABL ⁺	
FDC-P1 cells	118
Figure 3.15 PP2A holoenzyme composition in BCR/ABL ⁺ FDC-P1 cells	121
Figure 3.16 Proposed model of PP2A regulation by BCR/ABL in FDC-P1 cells	128
Figure 4.1 shRNA-mediated gene silencing in mammalian cells	130
Figure 4.2 Expression of GFP in shRNA-WT BCR/ABL FDC-P1 cells	132
Figure 4.3 Knockdown of PP2A regulatory subunits in WT BCR/ABL	
FDC-P1 cells	134
Figure 4.4 mRNA levels of PP2A regulatory subunits in shRNA-WT BCR/ABL	
FDC-P1 cells	135
Figure 4.5 PP2A activity in shRNA-WT BCR/ABL FDC-P1 cells	136
Figure 4.6 Growth rate of shRNA-WT BCR/ABL FDC-P1 cells	138
Figure 4.7 Clonogenic potential of shRNA-WT BCR/ABL FDC-P1 cells	139
Figure 4.8 Colonies formed by shRNA-WT BCR/ABL FDC-P1 cells	140
Figure 4.9 Colonies formed by shRNA-WT BCR/ABL FDC-P1 cells	
at a higher magnification	141
Figure 4.10 Cellular morphology of shRNA-WT BCR/ABL FDC-P1 cells	143
Figure 4.11 Quantitative analysis of the morphological characteristics	
displayed by shRNA-WT BCR/ABL FDC-P1 cells	144
Figure 4.12 Involvement of PP2A B568 in cell cycle regulation	149
Figure 4.13 Proposed model of PP2A regulation by BCR/ABL in FDC-P1 cells	152

Figure 5.1 Surface expression of c-KIT on FDC-P1 cells

155

Figure 5.2 Expression of PP2A regulatory subunits in c-KIT ⁺ FDC-P1 cells	157
Figure 5.3 Quantitation of PP2A subunits in c-KIT ⁺ FDC-P1 cells	158
Figure 5.4 Reactivation of PP2A in mutant c-KIT FDC-P1 cells	160
Figure 5.5 Reactivation of PP2A induces apoptosis of mutant c-KIT FDC-P1 cells	163
Figure 5.6 Reactivation of PP2A increases the sub- G_0 population of mutant	
c-KIT FDC-P1 cells	164
Figure 5.7 Reactivation of PP2A impairs the clonogenic potential of mutant	
c-KIT FDC-P1 cells	166
Figure 5.8 Colony formation of FTY720-treated FDC-P1 cells	167
Figure 5.9 Cytotoxic effect of FTY720 on mutant c-KIT ⁺ FDC-P1 cells	
requires PP2A reactivation	168
Figure 5.10 Reactivation of PP2A dephosphorylates c-KIT	170
Figure 5.11 Regulation of PP2A by mutant c-KIT and reactivation with FTY720	175
Figure 6.1 Preliminary studies of FDC-P1 V560G and D816V c-KIT	
tumour growth	178
Figure 6.2 Safe administration of FTY720 in DBA/2J mice	180
Figure 6.3 FTY720 delays mutant c-KIT tumour growth	181
Figure 6.4 Effect of imatinib on mutant c-KIT tumour growth	182
Figure 6.5 FTY720 improves the survival of mice bearing mutant c-KIT tumours	184
Figure 6.6 Effect of imatinib on the survival of mice bearing mutant c-KIT tumour	s 185
Figure 6.7 FTY720 reduces mutant c-KIT tumour burden at day 14	186
Figure 6.8 FTY720 induces apoptosis in FDC-P1 V560G c-KIT	
tumours at day 14	187
Figure 6.9 FTY720 induces apoptosis in FDC-P1 D816V c-KIT	
tumours at day 14	188
Figure 6.10 FTY720 reduces the splenic weight of mice bearing FDC-P1	
D816V c-KIT tumours	189
Figure 6.11 FTY720 prevents the infiltration of FDC-P1 D816V c-KIT	
cells into the spleen	191
Figure 6.12 FTY720 prevents the infiltration of FDC-P1 D816V c-KIT	
cells into the bone marrow	192
Figure 6.13 Mice bearing V560G c-KIT tumours do not develop splenomegaly	193
Figure 6.14 Absence of V560G c-KIT cells in the spleen	194

Figure 7.1 Proposed model of PP2A regulation by BCR/ABL in	
myeloid progenitors	203
Figure 7.2 Summary of PP2A regulation by oncogenic c-KIT in	
myeloid progenitors	206
Figure 7.3 Inhibition of PP2A as a general mechanism employed by	
oncogenic tyrosine kinases	210
Appendix Figure 1 Expression of PP2Ac-p ^{Y307} in CD34 ⁺ CML primary samples	214
Appendix Figure 2 Combined effects of FTY720 and dasatinib on	
D816V c-KIT FDC-P1 cell growth	215

LIST OF TABLES

Table 1.1 Signalling pathways regulated by BCR/ABL	7
Table 1.2 Signalling pathways regulated by c-KIT	13
Table 1.3 Differential activation of signalling pathways by mutant c-KIT	17
Table 1.4 Clinical significance of c-KIT mutations in t(8;21) CBF-AML	20
Table 1.5 Clinical significance of c-KIT mutations in inv(16) CBF-AML	21
Table 1.6 Nomenclature and subcellular distribution of Homo sapiens	
PP2A subunits	37
Table 2.1 shRNA constructs	69
Table 2.2 Oligonucleotides for sequencing and standard PCR	73
Table 2.3 Cell lines and maintenance	77
Table 2.4 Oligonucleotides for quantitative real-time PCR (qRT-PCR)	81
Table 2.5 Primary antibody concentrations used for immunoblotting	84
Table 2.6 Secondary antibody concentrations used for immunoblotting	85
Table 2.7 Antibodies and beads used for immunoprecipitation	87
Table 3.1 Sensitivity of BCR/ABL to imatinib	100
Table 5.1 Mutant c-KIT impairs PP2A activity	156
Table 5.2 Cytotoxicity of PP2A activators in mutant c-KIT FDC-P1 cells	161
Table 6.1 Toxicity data for FTY720 treatment of DBA/2J mice	180

ABSTRACT

Reversible protein phosphorylation plays a central role in the regulation of intracellular signalling, and is controlled by the opposing activities of protein kinases and phosphatases. Deregulation of these mechanisms can result in increased proliferation and enhanced survival, which is a hallmark feature of malignant transformation. For example, over 90% of chronic myeloid leukaemia (CML) patients express the BCR/ABL oncoprotein, which exhibits unrestrained tyrosine kinase activity. In addition, activating mutations within the receptor tyrosine kinase, c-KIT, contribute to the pathogenesis of gastrointestinal stromal tumours (GIST), systemic mastocytosis, acute myeloid leukaemia (AML), testicular seminoma and melanoma. The advent of small molecule tyrosine kinase inhibitors, such as imatinib, has revolutionised the treatment of malignancies driven by these oncogenic kinases. However, a proportion of patients are either unresponsive or develop resistance, and as such, relapse and disease progression is a major clinical problem. In order to improve the treatment outcome for these patients, a greater understanding of the signalling pathways regulated downstream of BCR/ABL and c-KIT is required.

The data presented in this thesis indicates that oncogenic BCR/ABL and mutant c-KIT both require inhibition of the tumour suppressor, protein phosphatase 2A (PP2A), to induce tumourigenesis. PP2A is a large family of serine/threonine phosphatases that provide the fine control on signalling pathways by governing the rate and duration of phosphorylation. The heterotrimeric PP2A enzyme is comprised of a structural subunit (PP2A A α and A β), a catalytic subunit (PP2Ac $_{\alpha}$ and c $_{\beta}$) and a regulatory subunit, which consists of three unrelated families: B55 (α , β , γ , δ), B56 (α , β , γ , δ , ε) and B" (PR72/130 / PR70/48). Binding of the regulatory subunit to the core PP2A AC dimer directs both the substrate specificity and cellular localisation of the enzyme. The combinatorial assembly of these individual components permits the formation of distinct complexes which have been implicated in numerous cellular functions such as proliferation, survival and mitosis. In particular, important roles for PP2A in various aspects of malignant transformation are beginning to emerge.

Recent work demonstrates that PP2A is functionally inactivated by BCR/ABL in myeloid progenitor cells. Using the mouse myeloid progenitor cell line, FDC-P1, these

observations were confirmed in the current study. Detailed investigation into the underlying mechanisms have demonstrated for the first time that active BCR/ABL increases the expression of the PP2A structural and certain regulatory subunits. This alters the PP2A holoenzyme composition and results in the abundance of complexes containing B55 α and B56 α . Consequently, B56 γ , a known tumour suppressive subunit, appears to be simultaneously displaced. To investigate which subunits are functionally important for BCR/ABL-mediated leukaemogenesis, individual PP2A subunits were targeted with shRNA sequences in WT BCR/ABL FDC-P1 cells. Subsequent evaluation identified B56 α as a key player which facilitates the leukaemic phenotype. In accordance with an increase in PP2A activity, knockdown of B56 α significantly inhibited the cellular growth and reduced the clonogenic potential of BCR/ABL FDC-P1 cells appears to delay progression through the cell cycle. Together, these findings provide new insights into the biology of PP2A and begin to define the precise mechanisms by which BCR/ABL induces leukaemogenesis via PP2A in CML.

Investigation of the regulation of PP2A was also extended to the oncogenic tyrosine kinase, c-KIT. Using FDC-P1 cells expressing imatinib-sensitive (V560G) or –resistant (D816V) mutant c-KIT, this work demonstrates for the first time that constitutive activation of c-KIT impairs the activity of PP2A, and this is essential for tumourigenesis. Pharmacological reactivation of PP2A with FTY720 significantly reduced the proliferation, impaired the clonogenic potential and induced apoptosis of oncogenic c-KIT cells, whilst having no effect on empty vector controls or WT c-KIT cells stimulated with stem cell factor (SCF). These cytotoxic effects of FTY720 are mediated, in part, by the rapid dephosphorylation, and hence inactivation, of oncogenic c-KIT receptors. These promising *in vitro* findings were translated into an *in vivo* model, where the daily administration of FTY720 significantly delayed the growth of mutant c-KIT⁺ tumours. Furthermore, FTY720 markedly prevented the infiltration of D816V c-KIT tumour cells into secondary lymphoid organs, such as the spleen and bone marrow. As a result, the survival of FTY720-treated mice was significantly prolonged compared to saline-treated controls.

Overall, this body of work greatly enhances our understanding of PP2A function and identifies the complex mechanisms of PP2A regulation by the oncogenic tyrosine kinases, BCR/ABL and c-KIT. Taken together, the data suggests that inhibition of PP2A may represent a general mechanism employed by constitutively active kinases to facilitate tumour growth. As such, this work supports the future application of PP2A-activating agents in a broad range of human malignancies.

ACKNOWLEDGEMENTS

Wow what an amazing journey I've experienced during this PhD candidature! Of course there are numerous people who have contributed along the way, and without which, the road to thesis submission would have seemed an almost impossible task. I'd like to acknowledge The University of Newcastle and The Ohio State University for providing the facilities to carry out this research. A special acknowledgement is extended to the Cancer Institute NSW for a Research Scholarship that provided project funding and also enabled me to present my work at national and international conferences. Firstly, a big thank you to my supervisor, Dr. Nikki Verrills, who has been such a fantastic mentor that I honestly could not have dreamed of a more appropriate person for guidance during the past 4 years. It continues to amaze (and scare me a little!) how much we are on the same wavelength on so many different levels. I've lost track how many times I've received an email saying "have you done/or thought about doing XYZ" when I have either just done the experiments or about to write a very similar email saying "I think it would be interesting to look at XYZ!" Being under the supervision of someone who has such a passion for research is truly inspiring and I have learnt so much from our interesting conversations. In addition to being an amazing role model, Nikki provided me with focus when required and pushed me above and beyond what I thought I was capable of. She was always there to listen and provide advice on any problems I was having, both work-related and personal. Thanks Nik!

I would like to thank Prof. Leonie Ashman for being a continual source of knowledge on a wide range of topics and helping me to think about my work in the bigger picture. Leonie has provided important guidance, particularly in the last six months, when I have had some big decisions to make. Thank you also to Prof. Alistair Sim, who is still officially my co-supervisor, although he has not worked at the University for the last two years. Despite this separation, he was always accessible and still interested in providing feedback on written work. A special thank you is extended to Prof. John Rostas, who I first met when applying for a travel grant through HMRI during the first year of my candidature. Since that time, John has showed a genuine interest in my progress and provided constructive feedback on several aspects of research such as grant writing, presentations and post-doctoral interviews. No matter what time of the day, even if we ran into each other in the corridor, he was more than happy to stop and give advice, which is something I really appreciate.

Within the laboratory I would like to send a very big thanks to Fiona McDougall, without whose help I would still be struggling to catch mice, let alone inject and measure them on a daily basis! Fiona provided an absolute wealth of knowledge on the design of the animal experiments, helped with the daily management of the mice and established the protocols for immunohistochemical and TUNEL staining. I'd also like to thank Amanda Smith who has not only contributed to extra runs of several experiments, but on a social level is the one person who has kept me sane! Our morning coffee breaks was something I always looked forward to. Thanks to Helen Carpenter for her work in setting up our plasmid database, and always willing to help with any experiment that required an extra set of hands. Thank you also to Martin Horan for his help in setting up the real-time PCR assay.

Six months of this work was conducted at The Ohio State University and made possible by a travel award which was donated by Jennie Thomas through HMRI. Jennie is truly an inspiring person and I can not thank her enough for enabling me the amazing opportunity to study abroad. I would also like to thank my supervisor A/Prof. Danilo Perrotti for accepting me into his laboratory and continuing to maintain contact and provide feedback on my project. Thanks as well to the lab members, Anna, Paolo and Josh for making the Perrotti lab such a welcoming and fun working environment! A special thank you is extended to Anna, who started her PhD at the same time. It was very comforting to know there was someone else out there who was pulling all nighters and experiencing the same emotional and mental stress as myself!

I would like to save the biggest thanks to my wonderful parents who have always told me "the sky is the limit", and have provided me with every opportunity to achieve my very best. Their never-ending love and support is a continual source of motivation for me. Just knowing I could rely on them for anything (and that dinner would always be in the microwave when I came home late!) was extremely comforting. To my beautiful friends, especially Skye, Elizabeth, Katie and Ezz. Thank you for understanding when I couldn't make most social outings, particularly this year. You have no idea how much all your thoughtful and motivating messages helped me get through the tough times.

PUBLICATIONS

Roberts KG, Smith AM, McDougall F, Carpenter H, Neviani P, Perrotti D, Sim ATR, Ashman LK, Verrills NM (2009) Essential requirement for PP2A inhibition by c-KIT: FTY720-mediated reactivation of PP2A as a treatment strategy for c-KIT⁺ cancers. Submitted to *Cancer Research* #CAN-09-2544

Patents

International PCT Patent: Inhibition of c-KIT Cancers Filed March 2009

Oral Conference Presentations

Roberts KG, Ashman LK, Sim ATR, <u>Verrills NM</u> (2007) BCRABL regulates specific B subunits of the tumour suppressor protein phosphatase 2A (PP2A): potential targets for chronic myeloid leukaemia. *Proc. Amer. Assoc. Cancer Res.* Abstract 4154.

Roberts KG, Smith AM, Carpenter, H, Ashman LK, Santhanam R, Sim ATR, Perrotti D, <u>Verrills NM</u> (2008) Protein phosphatase 2A (PP2A): a novel therapeutic target for myeloid leukaemias. *New Directions for Leukaemia Research*, Sunshine Coast, Australia.

Roberts KG, Ashman LK, Sim ATR, Verrills NM (2007) BCR/ABL inactivates the tumour suppressor PP2A in chronic myeloid leukaemia. *Australian Society for Medical Research Annual Meeting*.Sydney, Australia.

Poster Conference Presentations

<u>Roberts KG</u>, Smith AM, Carpenter, H, Ashman LK, Santhanam R, Sim ATR, Perrotti D, Verrills NM (2009) Reactivation of PP2A as a treatment strategy for c-KIT⁺ corebinding factor acute myeloid leukemia. *Proc. Amer. Assoc. Cancer Res.* Abstract 3644.

<u>Smith AM</u>, **Roberts KG**, Carpenter, H, McDougall, F, Ashman LK, Sim ATR, Perrotti D, Verrills NM (2009) FTY720-mediated reactivation of PP2A as a treatment alternative for c-KIT⁺ cancers. *EMBO Europhosphatases Annual Meeting*, Egmond aan Zee, The Netherlands.

<u>Roberts KG</u>, Smith AM, Carpenter, H, Santhanam R, Ashman LK, Sim ATR, Perrotti D, Verrills NM (2009) Reactivation of PP2A as a treatment strategy for c-KIT⁺ cancers. *Australian Society for Medical Research Annual Meeting*. Sydney, Australia. **Awarded winner for best student poster.**

<u>Roberts KG</u>, Smith AM, Carpenter, H, Santhanam R, Ashman LK, Sim ATR, Perrotti D, Verrills NM (2008) Inhibition of the tumour suppressor PP2A by c-KIT in acute myeloid leukaemia. *HMRI Conference on Translational Cancer Research*, Newcastle, Australia. **Awarded winner for best student poster.**

<u>Roberts KG</u>, Carpenter, H, Ashman LK, Sim ATR, Perrotti D, Verrills NM (2008) Altered expression of PP2A regulatory subunits in chronic myeloid leukaemia. *HMRI Conference on Translational Cancer Research*, Newcastle, Australia.

<u>Roberts KG</u>, Smith AM, Carpenter, H, Santhanam R, Ashman LK, Sim ATR, Perrotti D, Verrills NM (2008) c-Kit functionally inactivates the tumour suppressor PP2A in AML. *New Directions for Leukaemia Research*, Sunshine Coast, Australia. **Awarded a travel scholarship for best student abstract submission.**

Roberts KG, Carpenter, H, Ashman LK, Sim ATR, Perrotti D, Verrills NM (2008) BCR/ABL alters the expression of specific PP2A regulatory subunits in CML. *New Directions for Leukaemia Research*, Sunshine Coast, Australia.

Roberts KG, Smith AM, Carpenter, H, Ashman LK, Sim ATR, Santhanam R, Neviani P, Perrotti D, <u>Verrills NM</u> (2008) BCR/ABL-induced inactivation of the tumour suppressor, PP2A: role of PP2A regulatory subunits and their potential as therapeutic targets in CML. *Lorne Cancer Conference*, Lorne, Australia.

<u>Roberts KG</u>, Ashman LK, Sim ATR, Perrotti D, Verrills NM (2007) Altered Expression of PP2A Regulatory Subunits in Chronic Myelogenous Leukemia: Identifying Targets for Improved Therapies. *Blood (American Society of Hematology Annual Meeting Abstracts)* 110: 2925.

Roberts KG, Ashman LK, Sim ATR, Verrills NM (2006) BCR/ABL expression functionally inactivates the tumour suppressor PP2A in early myeloid cells, *Australian Health & Medical Research Congress*, Melbourne, Australia.

Roberts KG, Ashman LK, Sim ATR, Verrills NM (2006) Investigating the role of protein phosphatase 2A in chronic myeloid leukaemia, *HMRI Conference on Translational Cancer Research*, Newcastle, Australia. **Awarded runner-up for best student poster.**

Awards

Best Poster Presentation – Australia Society for Medical Research Annual Meeting, Sydney, June 2009.

GlaxoSmithKline Best Student Poster Presentation – Hunter Medical Research Institute Conference, Newcastle, September 2008

Leukaemia Foundation Student Travel Scholarship – New Directions for Leukaemia Research, Sunshine Coast, April 2008.

GlaxoSmithKline Runner-up Best Student Poster Presentation – Hunter Medical Research Institute Conference, Newcastle, September 2008

Hunter Medical Research Institute Travel Grant – November 2007

Cancer Institute NSW Research Scholar Award - February 2006

ABBREVIATIONS

μg	microgram
μl	microlitre
μΜ	micromolar
ALL	acute lymphoblastic leukaemia
AML	acute myeloid leukaemia
B-CLL	B-cell chronic lymphocytic leukaemia
bp	base pair
BSA	bovine serum albumin
CBF-AML	core-binding factor AML
CML	chronic myeloid leukaemia
cDNA	complementary DNA
CML-BC	blast crisis CML
CML-CP	chronic phase CML
Ct	cycle threshold
DAB	diaminobenzidine
DMEM	Dulbecco's modified Eagle's medium
DMSO	dimethyl sulphoxide
DNA	deoxyribose nucleic acid
ECL	enhanced chemiluminescence
ERK	extracellular signal-regulated kinase
EtOH	ethanol
FACS	fluorescence-activated cell sorter
FCS	fetal calf serum
FITC	fluorescein isothiocyanate
FLT3	fms-like tyrosine kinase 3
g	gram
g	gravity
GFP	green fluorescent protein
GIST	gastrointestinal stromal tumour
GM-CSF	granulocyte-macrophage colony-stimulating factor
GSK3β	glycogen synthase kinase 3β
HRP	horseradish peroxidise

HSC	haematopoietic stem cell
ID ₅₀	concentration of drug that inhibits cells by 50%
IFN	interferon
IL	interleukin
IMDM	Iscove's modified Dulbecco's medium
i.p.	intraperitoneal
JAK	Janus kinases
JMD	juxtamembrane domain
kDa	kilodalton
М	molar
mAb	monoclonal antibody
МАРК	mitogen-activated protein kinase
mg	milligram
ml	millilitre
mM	millimolar
mRNA	messenger RNA
nt	nucleotide
nm	nanometre
pAb	polyclonal antibody
PAGE	polyacrylamide gel electrophoresis
PBS	phosphate buffered saline
PBA	PBS / 0.1%BSA / 0.1% sodium azide
PCR	polymerase chain reaction
\mathbf{Ph}^{1}	Philadelphia chromosome
рН	potential of hydrogen
PI	propidium iodide
PI3K	phosphatidylinositol 3-kinase
p.o.	oral gavage
PP2A	protein phosphatase 2A
pSR	pSUPER.retro.neo+GFP
qRT-PCR	quantitative real time PCR
RIPA	radio-immunoprecipitation assay
RNA	ribonucleic acid
RT-PCR	reverse-transcriptase PCR

RTK	receptor tyrosine kinase
RTV	relative tumour volume
S1PR	sphingosine-1-phosphate receptor
s.c.	subcutaneous
SCF	stem cell factor
SDS	sodium dodecyl sulphate
SEM	standard error of the mean
SFK	Src family kinases
SMP	skim milk powder
SphK	sphingosine kinase
ST	small T antigen
STAT	signal transducer and activator of transcription
SV40	simian virus 40
TBST	tris buffered saline-Tween 0.1%
TUNEL	terminal deoxynucleotidyltransferase-mediated dUTP nick end
	labelling
U	units
Wnt	wingless/Int
WT	wild-type