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Abstract

This paper presents a system for automating
the time consuming task of manual colour cal-
ibration for a mobile robot. By converting
a series of YUV images to HSI format and
analysing histogram data it can be seen that
there are distinct regions of colour space for
each object colour class and that one dimen-
sion, hue, can be used to uniquely identify each
colour class. Using an expectation maximisa-
tion (EM) algorithm to estimate the parame-
ters of a Gaussian mixture model, it is proposed
that the HSI colour space can be segmented and
automatically labeled for the purpose of auto-
matic colour calibration. This method is ap-
plied to a Aldebaran Nao robot vision system
that uses a ‘soft’ colour classification method to
classify non-unique colour space. By reducing
the colour labeling dimension to one and imple-
menting soft classification principles, a reliable
automatic calibration system was achieved.

1 Introduction

In many RoboCup Leagues robot vision is used as the
primary source of information about the environment.
When a robot operates in a colour coded environment,
such as the Standard Platforms League, colour classifica-
tion is used to extract information from images. Colour
classification is the process of mapping input image pix-
els to a colour code stored in a colour table. Man-
ual calibration of this table involves hours of manual
pixel mapping from test images to colour classes. A
change of lighting conditions shifts image values, hence
at each competition venue the colour table must be re-
calibrated.

There is an additional problem with calibration of how
to classify pixel values that are non unique to an object.
That is, shades of colour that occur elsewhere in the
environment. To address this problem our vision system

uses a soft colour classification system [Quinlan et al.,
2005] with additional classes to classify these shades. An
overview of the soft colour classification system is given
in Section 2.1.

To automate colour calibration a source of additional
information is required to label colour classes. Although
there are methods for automation (Section 2.2), most
are unreliable for use in competition and manual cali-
bration is most commonly used. We propose that by
transforming selected images from YUV to HSI format
(Section 2.3) we can use the characteristics of the HSI
colour space as the additional information required to
automatically label colour classes. Using HSI sample
data we applied an an expectation maximisation (EM)
algorithm [Bishop, 2006] [Dempster et al., 1977] to esti-
mate the parameters of a multivariate Gaussian mixture
model to automatically segment the HSI colour space
into colour regions. These regions can be automatically
labeled using the known order of hue colour values. The
advantage of using the HSI colour space is that there is
only one dimension that the boundaries are required to
be highly accurate. The advantage of using soft colour
classification is that it reduces the accuracy required of
these colour class boundaries. This method offers a prac-
tical solution to the time consuming task of manual cal-
ibration and is detailed in Section 3.

The resulting multivariate Gaussian mixture model
and colour table are outlined in Section 4 and future
work is discussed in Section 5.

2 Background

2.1 Colour Classification and Soft Colour
Classification

The first process of the Nao robot vision system is to
colour classify the image. This involves creating a colour
classified image by mapping the input YUV image pix-
els to a colour class stored in a pre-defined colour table.
Colour classes are based on the colour coded environ-
ment. Red, orange, yellow, green, blue and white are all
colour codes used in the environment. When a change in



lighting conditions occurs image pixel values shift break-
ing the map. Hence a new colour table is required at each
venue.

There is the additional problem of how to classify over-
lapping colour classes. That is, colour space that is non
unique to an object. It can be seen in any colour space
(eg. YUV, HSI, RGB) that certain colours are close and
hence more difficult to separate. Due to the fixed posi-
tion of the camera, the mobile nature of the robot and
the dynamic objects on the field, varied lighting condi-
tions occur that cause these close colours to overlap. A
main concern is the separation of red robot uniforms and
the orange ball, the orange ball and yellow goal, and the
blue goal and blue robot uniforms.

The vision system uses a soft colour classification sys-
tem to account for this overlap. Additional ‘soft colour’
classes were added to the colour table to classify the non
unique, shared pixel values. These soft colours delay the
decision making process of which colour class the pixel
belongs to until the entire image is processed. Based on
the spatial relationship to neighboring colour classes a
decision can be made as to what object the soft colour
class belongs to.

2.2 Previous Methods of Automation
The main problem with automating colour calibration is
finding the additional information required to automat-
ically apply a colour label. Previous methods use infor-
mation such as the known geometry of the environment
or a manually calibrated base table. Using the geometry
a knowledge based classification system can be used to
dynamically build a probabilistic colour model by grow-
ing and matching colour regions to the expected size and
shape of objects [Cameron and Barnes , 2004][Gunnars-
son et al., 2006]. Another similar approach uses colour
learning with a known walk routine to collect informa-
tion from the known geometry and colour codes of the
environment to self calibrate a colour table [Sridharan
, 2005]. Other machine learning techniques that have
been used include neural networks to recognise the val-
leys of hue histograms and determine meaningful hue
ranges [Amoroso et al., 2000] and Support Vector Ma-
chines (SVMs) to fill a manually calibrated base colour
table [Quinlan, et al., 2003].

However many of these systems are designed for the
future purpose of an on board self calibrating system and
for use in dynamic lighting situations. Most systems are
unreliable for use in competition and manual calibration
is the most common method used.

2.3 YUV and HSI Colour Space
Input images are from a Nao robot 160*120 CMOS cam-
era and are of YUV format. The YUV colour space is
represented by intensity (Y) and colour components (U

and V) which represent the blue chrominance and red
chrominance respectively. Whilst the YUV colour space
is convenient format for the transmission of video data,
for classification and segmentation it suffers from being
non-intuitive and sensitive to changes in lighting.

The HSI colour space (Figure 1a) is represented by;
hue (H) an angular value that represents the predom-
inant wavelength of colour (Figure 1b), saturation (S)
a value for the amount of colour present and intensity
(I) the darkness/brightness of the colour. By transform-
ing the YUV image to HSI we can use hue to uniquely
identify colour segments and reduce the critical colour
dimension from two to one.

Figure 1: (a)The HSI colour space [Sande, 2005] (b) Hue
and colour locations of the HSI colour space

2.4 Gaussian Mixture Models
Gaussian Mixture Models are a statistical clustering
method consisting of a multivariate probability density
function composed of a number of multivariate Gaussian
components. Such models are used for a wide variety of
classification purposes. Image processing applications
include face colour recognition [Greenspan et al., 2001]
and texture classification [Raghu and Yegnanarayana,
1998]. Applications in robot vision include segmenting in
YUV [Cohen et al., 2003], colour learning in HSI [Soest
et al., 2006] and probabilistic visual learning for object
recognition [Moghaddam et al., 1997].

3 Method

3.1 HSI Data
Manually selected images were used to collect HSI pixel
data. An image of each coloured object was selected in
ideal lighting conditions. Only one image of each object
is used to minimise values that overlap and assist fitting
the multivariate Gaussian mixture. Images that fill the
majority of the frame were chosen to reduce noise (Figure
2). The multivariate Gaussian mixture was applied to
the collected images, rather than individual images for
ease of automation. The aim is that in future the robot



will use random images of the environment rather than
selected images.

Figure 2: Input images used for HSI histogram data

3.2 Multivariate Gaussian Mixtures
Applying multivariate Gaussian mixtures to HSI data is
an extension of previous work that used Gaussian mix-
tures in one dimension to segment hue for a Sony Aibo
vision system [Henderson et al., 2008]. The Aibo vi-
sion system used a very poor quality 208*160 CMOS
camera. This method automated the separation of hue
values but relied upon manually tuned upper and lower
boundaries for saturation and intensity channels. The
method proved to be effective but not optimal. For opti-
mal classified regions and the purpose of full automation
the system was extended to multivariate Gaussian mix-
tures.

Using the HSI colour space we gain additional colour
label knowledge and reduce the ‘colour decision’ dimen-
sion to one. When applying the multivariate Gaussian
mixture the characteristics of the HSI colour space can
be used. Although colour temperature and brightness
effects the perception of colours, the theoretical range
of hues for each colour and the sequence of hue colour
labels (Figure 1b) can be used to identify colour classes.

Hue is the only dimension that must be unique and the
colour labels are constrained to the order: red, orange,
yellow, green and blue. White and black are constrained
to low saturation segments. White is constrained to high
intensity and black is constrained to low intensity. Any
order and overlap of the other colour classes is allowed
for saturation and intensity segments.

The Gaussian Model Applied to HSI data components
is shown in Equation1.
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Where:
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3.3 An Adapted Expectation
Maximisation (EM) Algorithm

We adapted the EM algorithm to estimate a multivari-
ate Gaussian distribution in the HSI colour space for
each colour class. The algorithm was initialised at mean
values known to correspond to the field colours, with
moderate to large variances. In the first iteration of the
algorithm the expectation step was replaced with the use
of initial values.

The algorithm involved an expectation step and a
maximisation step. The expectation step (Equation 4)
calculated a weighted mean and variance-covariance ma-
trix for each colour class. The maximisation step (Equa-
tion 5) allocated sample pixels to colour classes propor-
tional to the ratio of the multivariate Gaussian proba-
bility density function (mvnpdf).

The process was iterated until ∆µ converged to
a threshold value. An mvnpdf of colour classes was
created in the HSI colour space. Rather than creating
one mvnpdf for the maximum probable colour class,
a mvnpdf was created for each colour and weighted
proportionally. This was for the purpose of applying
soft colour principles to pixel values of close probability
which is discussed in Section 3.4.
j = 1 → J
k = 1 → K

Πj = φ

([
hj
sj
ij

])
(4)

Πkj =
φkj∑K

k=1 φkj

(5)

Where:

Π is the weighting of colour k at j

j= sample pixel number

J= number of sample pixels

k= colour class

K= number of colour classes

c= h,s,i value



Figure 3: Histogram of H, S and I input data and resulting univariate Gaussian mixture model for each colour class.

3.4 Building the Colour Table

For each pixel value in HSI colour space the multivariate
normal probability density function (mvnpdf) for each
colour class is compared. A classification rule based on
one or two standard deviations from the mean is used
to label the most probable colour class. The number of
standard deviations is dependent on the characteristics
of the histogram. Two standard deviations was chosen
to classify green and white, one standard deviation is
used for more important object colours red, orange, yel-
low and blue. This can be varied depending on lighting
conditions and image quality. To apply soft colour clas-
sification principles, overlapping probable colours within
two standard deviations of colour classes are classified as
soft colour.

Soft colour classes were added to the table by com-
paring probabilities within two standard deviations of
neighboring colour means. If the probability of both
colour classes are within a probability region the colour
is classed as the corresponding soft colour class. For
example if the probability for red and orange at a par-
ticular point is within two standard deviations of each
class, the point will be classified as the soft colour class
‘red-orange’. This principal is applied to colour regions
that tend to overlap. Blue is an exception, HSI pixels
between one and two standard deviations from the mean
of blue is classed as the soft colour ‘shadow blue’.

Once the HSI table is calibrated, a YUV table must
be generated. All coordinates of the YUV colour space
are transformed to a HSI value and used to reference
the HSI colour table. The colour class found in the HSI
colour table is stored for each YUV coordinate.

For each new set of HSI sample data and colour table,
the weightings and cut off probabilities are recalculated.
Therefore the images and number of images can vary.

By building a YUV colour table offline no additional
processing was required on board the robot, making it

practical for use in competition. However, given suffi-
cient processing power this system could be fully imple-
mented on board a robot for a self calibrating system.

3.5 Implementation
The implementation of the system involved programing
the mvnpdf and adapted EM algorithm using the package
mvtnorm [Genz et al., 2007] in R [R, 2008]. The weighted
mean and variance-covariance matrix calculated in R was
used to calculate the mvnpdf for each colour class in Mat-
lab. The HSI colour table was built in Matlab using the
classification rule and soft colour classification principles
described in Section 3.4. The generation of the YUV
colour table was programmed in C++ into the vision
debug application. When prompted, the vision applica-
tion uses the HSI colour table to generate a YUV colour
table for use on board the robot. The colour table is
modifiable using the vision debug application.

4 Results

The histogram data and resulting univariate Gaussian
mixtures for the hue, saturation and intensity channels
are displayed in Figure 3. For each channel, the Gaussian
components for each colour class are displayed. Manual
calibration involves classifying pixel by pixel, this leads
to sparse colour tables and possible ‘holes’. Applying
the multivariate Gaussian mixtures to segment the HSI
colour space resulted in 3D solid regions and ‘solid’ clas-
sification. Whilst manual classification is reliable, solid
classification has the advantage of classifying additional
information that is lost with holes. This improves size
information and reliability of object recognition.
The automated colour table was compared to a man-
ual colour table using a stream of 275 images taken at
RoboCup 2008. All 275 images were used to calibrate
the manual colour table. The manual colour table used
in competition is used here for comparison. 6 selective



Auto Manual
Blb Obj F+ve Blb Obj F+ve

Orange 100 83 0 100 93 0
ball %

Yellow 100 94 0 96 94 0
goal %

Blue 100 90 0 99 95 0
goal%

Blue 100 0 100 100 0 50
robot%

Table 1: Comparison of performance between the HSI
automated colour table and manual colour table. Blb
represents the blob formation rate in images with the
object present, Obj represents the percentage of objects
recognised, F+ve represents false positive objects recog-
nised.

images from the image stream (Figure 2) were used to
calibrate the automated table. Images from the stream
and the resulting classified images and blobs formed for
both methods are shown in Figure 4.

Table 1 shows a quantitative measurement of the re-
sults. It is difficult to measure how well an image is
classified. Blob formation is used as a measure of clas-
sification. If pixels are classified as a colour class it will
be grouped into a blob, therefore the formation of blobs
is our main measure of classification.

There are many variables in blob formation such as
size, the number of pixels included etc. The object
recognition process analyses blob variables when making
a decision about the reliability of the colour information.
Therefore object recognition is used as an additional
measurement of the reliability of blobs formed. However,
object recognition is manually tunable and was written
for the manual lut. The rate of objects recognised and
false positives can be altered by modifying the object
recognition code.

4.1 Robust Classification
It can be seen from the images of Figure 4 that the clas-
sified images are of similar reliability to the manual cal-
ibrated table. This is confirmed in Table 1. The test
images show a variety of distances of objects that cause
the object to reflect light differently. The limitations of
the automated colour table can be seen in the fifth set of
images. The boundary of orange classification does not
include high enough intensities to fully classify the more

distant ball.
Classifying in solid HSI regions resulted in a larger

number of classified pixels and ‘solid’ classified images.
Limiting the hue range allows for greater ranges of sat-
uration and intensity to be classified, making the sys-
tem more robust in varied brightness levels. The most
improvement came from the classification of a greater
range of intensity values for yellow. Table 1 shows an
improvement of yellow blob formation, these were par-
ticularly in images of distant goals. It can be seen from
the set of images that the automated classification and
blob formation for yellow is much ‘cleaner’ than manual.

4.2 Colour Separation
Colours were successfully separated. However the au-
tomated table classified a greater area of blue than the
manual table. The pixel values of the blue goal and blue
robot greatly overlap and the additional classifed blue
resulted in more false positve goals than the manual ta-
ble (Table 1). However this is more due to the fact that
the object recognition system that was calibrated for the
manual table and has not accounted blue robot recogni-
tion yet.

4.3 Time Improvement
Calibration time was greatly reduced from approx 4
hours to approx 10 minutes. The R program to gen-
erate the mvnpdf and EM algorithm took approximately
5 minutes to compute on an Intel Core 2 Duo E6600
(@2.4GHz) desktop computer with 2GB RAM. The Mat-
lab code to compute the HSI classified regions took ap-
proximately 2 minutes and the C++ code to generate
the YUV lut took approximately 2 minutes. The num-
ber of required images was greatly reduced from approx
275 random test images to 6 selected images.

5 Conclusion and Future Work

Results have shown that colour classes can be success-
fully separated and labeled in HSI colour space. The
extension from one dimensional to three dimensional seg-
mentation and the improvement in camera quality from
the Aibo to the Nao robot produces a system that is
more amenable to automation and provides an obvious
method to separate colours and detect black and white
regions. The EM algorithm provides a quick and sta-
ble estimate of colour component weighted mean and
variance-covariance matrices. The addition of soft colour
principles allows for flexibility when separating colour
classes and results in a practical automated colour ta-
ble.
While the reliability of the automated table was very
similar to that of the manual table, the time improve-
ment was significantly greater. Classifying in solid HSI
regions resulted in a larger number of classified pixels



Figure 4: (First Column) Input image taken at RoboCup 2008, (Second Column) Classified image using manual colour
table, (Third Column) Blobs formed with manual colour table, (Fourth Column) Classified image using automated
HSI colour table, (Fifth Column) Blobs formed with automated colour table.



and ’solid’ classified images. This is an advantage and
disadvantage. Classifying more colour space, particu-
larly a larger range of intensity values, improves the vi-
sion systems robustness in dynamic lighting conditions.
However, manual classification is more sparse but im-
proves reliability in a non dynamic situation.
Future work involves integrating the automated HSI
classification system into the competition vision system.
For this, improved robot and goal recognition is required
to account for the overlap of blue. Additional checks of
an objects geometry and texture are to be accounted for
using hue edge detection.
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