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ABSTRACT We consider testing for an unobservable normal distribution with unspecified
mean and variance. It is only possible to observe the counts in groups with boundaries
specified before sighting the data. On the basis of a small power study we recommend the
usual X? test be used as an omnibus test, augmented by informal examination of the first two
non-zero component of X2. We also recommend use of maximum likelihood and method of
moments estimation.

Key Words: Critical values; improved grouped normal models; maximum likelihood
estimation; method of moments estimation; power study

1. Introduction

In the Table 1 below we give counts of 1053 mothers grouped in two inch classes for
height. These data are derived from data given in Pearson and Lee (1903). The question of
interest is are the underlying data normally distributed?

In the Table 1 scenario we are given a random sample of n observations of a random
variable X but all that is known about these observations is into which of K mutually
exclusive predetermined groups they fall. This situation occurs in practice because

the measuring instrument only gives readings to a certain accuracy and

only the histogram counts may be available now even if individual measurements
were once available.

We assume the K groups have boundaries ki, ko, ... , kk—1 specified before sighting the
data, and we also take ko = —o0 and kx = oo. The null hypothesis to be tested is that X has a
normal distribution with probability density function

exp{— (x— u) /(202)} for —oo < X < o,

f0 11, 0) = 0\/1%

in which —o < y< o0, and 0 < o< .

Forj=1,2, ..., Kthe probability of an observation in group j is

By = (k= 1010~ D+~ ), inwhich @(2) = —— [expl- " 12)ix.

Again for j=1, 2, ... , K let N;j be the number of the n observations that fall into the jth group
and for the Table 1 and Table 5dataand j =2, ... , K- 1, let x; = (kj; + kj—1)/2 with x; = k; — (ko
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- k1)/2 = (3k1 - k2)/2 and Xk = kK_j_ + (k K=1— k K—2)l2 = (3k K=1 — k K_z)/z. The definitions of X1
and xx ensure all the x;s are equi-spaced if the k; are equi-spaced. This is a common approach;
see, for example, Hoel (1984, p.258) and Freund (2004, exercise 14-41, p.355). The sample
mean and variance of the grouped data are given by

K K v
X =3 Nx/nands?= >N (x,-X}/n.
= j=1

The maximum likelihood estimators (MLES) x of xand & of o are obtained by iteratively
solving the non-linear equations derived by differentiating the logarithm of the likelihood of
the sample. Initial estimates of z and & are taken to be z, = X and &, = S respectively, and
then new estimates are obtained by bivariate Newton-Raphson. This process is repeated until
convergence is reached. Further details are given in Appendix A.

Once x and & have been obtained it is straightforward to apply the test of normality
described subsequently. For the Table 1 data # = 62.49 and & = 2.37. Table 1 also gives the
cell expectations, Ej = nf)j, where the estimated z and & have been used to obtain the class
“ (N,-E,F/E, = 1345 which is

j=1

probabilities ﬁj. If no pooling is done X? = Z

asymptotically distributed as chi-squared with six degrees of freedom: ;(g The corresponding

p-value is 0.04 using this ;(g approximation. Cochran (1952) suggested that when testing for
normality one class expectation of 0.5 still allows a valid ;(2 approximation. It appears these
data are not consistent with the grouped normal distribution.

Without access to relevant computer routines, finding the MLEs z and & can be
difficult, and so a traditional approach which is still given in textbooks estimates x and o by
= X and & =S respectively. See, for example, Selvanathan et al. (2000, section 17.4).

However the X? statistic no longer has an asymptotic 15_3 distribution. See Fisher (1924) and
Rayner and Best (1989, Chapter 7). The question is, in general what are the consequences of
using (2, &) instead of (u, )?

For the Table 1 data ;i = 62.49 and & = 2.44 with X* = 12.56. Using ;(g to
approximate the distribution of X we find a p-value of 0.051. Thus if we had taken « = 0.05,
use of (£, &) gives a significant X? while use of (i, &) gives a (just) non-significant value.
The structure of the paper is as follows. Section 2 considers components of X?, section 3 gives
a study of critical values and powers, while section 4 uses the components to derive a model
better than that based on the {np it

Table 1. Heights of mothers (in inches)

Class interval (o, 55) | (55,57) | (57,59) | (59, 61) | (61, 63)
Frequency 3 8 53 215 346
Cell expectations (E;) 0.8 10.1 63.5 204.3 336.6
Class interval (63,65) | (65,67) | (67,69) | (69, x)
Frequency 277 120 24 7
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Cell expectations (E;)

284.3 ‘ 123.0 ‘ 27.2 ‘ 3.2 ‘ ‘

2. Components of the Chi-Squared Statistic

A more thorough examination of the null grouped normal hypothesis can be made by looking
at the components of the X? statistic. These components may be calculated via orthonormal
polynomials as in Lancaster (1953) or Rayner and Best (1989). The rth component of X? is
defined as

Vy = zK:Njgr(xj)/\/ﬁ forr=1,2,...,K-1,
j=1

in which {g(x;)} are polynomials orthonormal on {p;}, defined as follows. For an arbitrary
distribution for which the following quantities exist, suppose u is the familiar population
mean while s, r =2, 3, 4, ... are the population central moments:

E ijpJ and g = Z(x —ﬂ) pj forr=2,3,4,.
j=1 j=1

The first four orthonormal polynomials are

go(X;j) = 1 for all x;,
9:106) = (% — 20/ 14,
9a(X)) = {(X,- —uf - ﬂs(X,- — 1)l tty — }/\/u4 — i1y — 5 and

(Xj - uf —a(xj - uf —b(xj —u)-c

= Vs = 285 +(a” =2 Ju, + 2(ab - c)us, + (b7 + 2ac ), +*

in which

a= (,us_ﬂa/%/:uz_ﬂz/%)/d b= (/uj/,uz_ﬂ2ﬂ4_ﬂ3ﬂ5/ﬂ2+ﬂ32)/d'
c= (2!‘3#4_#3/,“2_,“2#5)/(1 and d = ﬂ4_ﬂ32/ﬂ2_ﬂ22-

Appendix B gives an explicit formula for ga(X;). Further polynomials may be givep using the
recurrence relations of Emerson (1968). Subsequently if (x, o) is estimated by (x, o) then
we refer to p;j as |6j, and if (&, o) is estimated by (z, &) then we refer to p; as |6j.

The statistic X2 may be expressed in terms of the components V, via

X2=V2+ L+ V7

See Lancaster (1953).
For the Table 1 data we find V; = —0.05, V, = - 1.20, V3 = 0.52 and V, = 2.47, where
V is VIr using (&, o). We also find Vl = — 0.005, V2 = - 0.05, V3 =0.84 and V4 = 2.62,
where V is V; using (, o). Later we show that, in agreement with the large V4 and V4 that
possibly reflect kurtosis values, the values of (N; — EJ)/\/EJ are large in the tails. Also we
suggest that \71 and \72 will be close to zero and that the other \7r are distributed
3
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approximately as N(O, 1); this suggestion is supported by the simulations of the next section.

The distributions of the V, seem to approximate those of the V,, but the exact details are
unknown to us. In the next section we will look at the critical values of the tests based on both

V, and V. as n increases. We expect V5 and V, to approximate the standardized sample
skewness and kurtosis coefficients for grouped data. Calculation details of these grouped
coefficients are given, for example, in Snedecor and Cochran (1989, sections 5.13 and 5.14).

3. Critical Values and Power Comparisons

Table 2 gives some critical values for X?, V32 and V42 using the grouped frequency estimators
(&2, o), called GRO in Table 2. Also given are the critical values using the maximum
likelihood (ML) estimators ( z, o) and the method of moments (MOM) estimators obtained
by solving V1 = V, = 0. Both the ML and MOM methods of estimation require the use of the
iterative bivariate Newton-Raphson method. See Appendix A for details. The critical values
are for a standard normal distribution.

For K = 10 the categories were defined as (- «, - 3], (-3,-2], (-2,-15], (- 15, -
0.5], (-0.5,0], (0, 0.5], (0.5, 1.5], (1.5, 2], (2, 3], (3, ), and for K = 20 the categories were
(o, -2], (-2,-1.778], (- 1.778, — 1.556], (- 1.556, — 1.334], (- 1.334, - 1.112], (- 1.112, -
0.890], (- 0.890, — 0.668], (- 0.668, — 0.446], (- 0.446, — 0.224], (-0.224, 0], and the
reflections of these categories.

In Table 2(a) only sample sizes n = 500 and n = 1000 meet the Cochran (1952, p. 329)
criterion that the smallest class expectation should be 0.5 or greater. All the Table 2(b) sample
sizes meet this criterion and we see that all the critical values agree well with the asymptotic
critical values when this criterion is satisfied. Further, the ML critical values are generally
better than the corresponding GRO values in the sense that they are closer to the 7* values.
Moreover the corresponding ML and MOM values are generally very similar. The critical
values shown in Table 2 are based on N(0O, 1) random values, but were little changed for other
(1, 0).

Thus we suggest that in introductory statistics courses when the GRO approach is used
it should be emphasised that the approach is approximate and a better method exists. For
example, Selvanathan et al. (2000, section 17.4) could mention that what is presented is an
approximation to a more efficient method.

Table 2(a). Critical values for X?, V32 and V42 based on 20,000 simulations and categories as
specified in the text for K = 10 and « = 0.5, 0.25, 0.10, 0.05 and 0.01

Statistic n Estimator 050 0.25 010 0.05 0.01

X? ML 514 7.69 11.07 14.06 25.66
50 GRO 491 7.24 10.09 12.15 17.62
MOM 517 7.67 10.83 13.27 20.49

ML 539 816 11.75 14.88 25.75
75 GRO 5.17 7.63 1057 12.78 17.62
MOM 542 810 1144 14.05 20.83

ML 558 844 1196 1485 23.92
100 GRO 538 7.91 10.75 12.70 17.80
MOM 559 835 11.64 14.09 21.00

ML 598 871 1216 14.78 21.61
200 GRO 5.89 834 1117 1335 17.72
MOM 596 8.64 1189 14.27 19.83

4
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ML 6.20 8.90 11.95 14.26 19.44

500 GRO 6.91 941 1217 14.12 18.40
MOM 6.21 8.88 11.85 14.07 18.93

ML 6.23 891 1197 1412 1941

1000 | GRO 8.39 10.86 13.68 15.69 20.09
MOM  6.24 891 1192 14.07 19.10

0 ML 6.35 0.04 12.02 14.07 18.48
V32 ML 030 09 222 357 7.0
50 GRO 023 071 162 252 480
MOM 030 096 214 324 6.24

ML 032 103 245 382 7.0

75 GRO 025 079 180 272 501
MOM 033 105 236 354 6.53

ML 034 110 252 390 7.25

100 GRO 026 084 185 280 4.97
MOM 035 111 242 364 641

ML 041 122 265 385 6.77

200 GRO 031 093 199 290 4.90
MOM 041 121 258 375 6.39

ML 044 128 269 387 6.96

500 GRO 034 099 203 293 523
MOM 044 128 267 383 6.76

ML 044 129 270 386 6.69

1000 | GRO 036 099 208 295 510
MOM 044 129 269 385 6.62

0 ML 045 132 271 384 6.64
V42 ML 030 070 136 265 943
50 GRO 0.18 048 1.04 208 6.00
MOM 032 075 141 237 7.20

ML 034 082 170 334 931

75 GRO 021 057 135 256 6.05
MOM 036 086 171 297 751

ML 041 091 182 337 885

100 GRO 025 0.65 148 267 6.12
MOM 043 096 185 3.06 747

ML 052 112 204 320 7.56

200 GRO 033 080 167 269 5.79
MOM 054 117 209 3.08 6.82

ML 049 132 243 339 694

500 GRO 035 097 19 311 6.08
MOM 051 137 253 342 6.59

ML 046 130 261 3.68 6.60

1000 | GRO 036 106 230 341 6.30
MOM 047 135 270 3.77 6.59

0 ML 045 132 271 384 6.64

Best, Rayner and Thas
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Table 2(b). Critical values for X, V32 and V42 based on 20,000 simulations and categories as
specified in the text for K =20 and « = 0.5, 0.25, 0.10, 0.05 and 0.01

Statistic n Estimator | 0.50 0.25 0.10 0.05 0.01

X? ML 16.42 20.35 24.62 27.44 34.00
50 GRO 16.87 20.87 25.12 28.00 34.52
MOM [16.44 20.35 2455 27.40 33.72

ML 16.37 20.40 24.33 27.52 33.36
75 GRO 16.88 21.00 25.94 28.15 34.08
MOM |16.39 20.42 24.71 2244 33.34

ML 16.33 20.43 24.73 27.65 33.33
100 GRO |16.90 21.09 2545 28.35 34.03
MOM |16.37 2045 24.75 27.60 33.28

ML 16.39 20.50 24.68 27.38 33.44
200 GRO 17.13 21.31 25,56 28.33 34.32
MOM [16.40 20.52 24.68 27.38 33.39

ML 16.34 20.51 24.81 27.73 33.58
500 GRO 1758 21.83 26.23 29.23 35.14
MOM |16.37 20.55 24.86 27.73 33.58

ML 16.38 20.50 24.74 27.62 33.45
1000 GRO 18.42 22.65 27.05 29.93 36.02
MOM [16.40 20.52 24.80 27.66 33.51

0 ML 16.34 20.49 24.77 2759 3341

V32 ML 046 132 265 373 6.42

50 GRO 049 143 291 408 6.94
MOM 047 137 274 383 6.64

ML 046 132 269 384 6.63
75 GRO 049 141 289 413 7.15
MOM 046 132 271 385 6.74

ML 046 132 273 382 641
100 GRO 050 142 292 410 6.92
MOM 046 133 274 385 6.50

ML 047 137 273 389 6.82
200 GRO 050 147 292 418 7.28
MOM 047 138 274 391 6.84

ML 045 134 275 390 6.77
500 GRO 048 143 29 418 7.33
MOM 045 134 276 392 6.86

ML 047 135 271 384 6.48
1000 GRO 050 144 290 411 6.96
MOM 047 135 272 385 6.51

0 ML 045 132 271 384 6.64

V2 ML 049 137 272 380 6.59

50 GRO 052 146 292 4.08 6.99
MOM 050 141 280 390 6.79

ML 046 134 274 382 6.40
75 GRO 049 144 292 411 7.04
MOM 047 138 282 393 6.68

ML 045 131 262 372 644
100 GRO 048 140 281 399 6.97
MOM 046 135 269 382 6.63

6
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ML 045 129 265 376 6.31
200 GRO 049 140 285 4.02 7.00
MOM 046 134 273 388 6.57

ML 046 132 269 3.77 6.28
500 GRO 049 144 292 416 7.03
MOM 047 137 277 390 6.48

ML 045 130 266 3.76 6.65
1000 GRO 050 144 293 419 7.35
MOM 046 134 273 387 6.84

0 ML 045 132 271 384 6.64

It is often suggested that the classes be pooled so that the 4* approximation can be
used to give p-values for X* when testing for grouped normality. We recommend that pooling
not be done and that when the 0.5 criterion is not met, p-values should be found by parametric
bootstrap. Recent discussions concerning finding p-values via parametric bootstrap, in a
goodness of fit context, are given in Gurtler and Henze (2000) and Gulati and Neus (2001).

It appears that the only goodness of fit tests for grouped normality in the literature are
those based on the coefficients of skewness and kurtosis, and X°. However other tests can
easily be constructed. Since the Anderson-Darling A? test is very competitive for testing

normality with ungrouped data, we will now compare powers of tests based on X, V32, V42
and a grouped version of the Anderson-Darling A%. Put Hi=p+..+0;,j=12,...,Kand

A= nZRfﬁj/{Hj(l—Hj)},

=1

where forj=1,2,...,K,Rj=N;+ ... + N; - n(f)1+...+ f)j).

Table 3(a) gives powers found using the parametric bootstrap technique as recently
used by Gurtler and Henze (2000) and by Gulati and Neus (2001). Simulation runs of 1000
were used for both the inner and outer loops of the bootstrap. Given the results in Table 2 we
would expect powers of X?, V32 and V42 could also be found using appropriate #* critical
values and this is done in Table 3(b). The powers in Tables 3(a) and 3(b) are in very good
agreement, verifying the accuracy of the ;(2 approximations for these alternatives and showing
that the tests based on X* and A? generally have similar power. No pooling was done in the
power calculations for X?, V32 and V42. Use of V32 and V42 to amplify the X test would seem

sensible as V32 does well for skewed alternatives and V42 does well for alternatives with
kurtosis different to that of the normal distribution. The Anderson-Darling test also provides a
good omnibus test for grouped normality. However p-values for the Anderson-Darling test
cannot be found using a convenient * approximation. The powers shown are for a N(0, 1)
null but seem very similar to those for general N(z, o) null hypotheses.

The first alternative considered in Table 3(a) is the uniform with K = 8, 10 and 12, k; =
JKforj=1,..., K-1and with x; = ki/2, Xk = kk-1 + X1. Other x; are class midpoints. The
second alternative is the logistic distribution with K = 11, 13 and 15, kj = (j - 1)/12 - (K- 2)/4
forj=1, ..., K-1,x1 = (3ki — k2)/2, xk = (3kx-1 — kk—2)/2 and with other x; equal to the class
midpoints. Classes for the Normal, Laplace and Student’s t; alternatives were as defined for
the logistic. The gamma (5) and gamma (6) distributions give skewed alternatives for which
we take K =4, 5, and 6, kj = (7 — K) + 2(j — 1), X1 = k1/2, Xk = k-1 + X1 and other x; equal to
the class midpoints. Another skewed alternative is the extreme value distribution with K = 6,
8and 10, k= (j-1)/2-(K-2)/4forj=1, ..., K-1as for the logistic alternative. Here x; =

7
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(3k1 — k2)/2, Xk = (3kk-1 — kk—2)/2 and other x; are equal to the class midpoints. The first four
alternatives are symmetric and the last three are skewed. Random values from these
distributions were obtained using the IMSL (1995) software package.

Table 3(a). Parametric bootstrap powers against specified alternatives, for test size 0.05, n =

100 and various numbers of classes K

MOM ML GRO
Alternative K| X v2 vi A X y2 vz A X 2 2

Unifoom(0,1) 8 [ 021 0.06 031 021]020 005 034 019|011 0.05 0.13
10032 0.06 047 032]034 005 051 030|023 0.05 0.25
121038 0.07 056 036|036 004 056 035|027 0.04 0.29

Logistic 11006 0.07 0.08 0.06|0.06 0.06 0.07 0.06 006 0.06 0.12
130.07 0.07 010 0.08|0.05 0.06 0.11 0.08|0.07 0.06 0.13
15008 0.08 0.16 0.11|0.06 0.07 0.15 0.11]0.07 0.07 0.8

Laplace 111040 0.08 0.62 046|036 007 064 046|038 0.08 0.66
131053 009 072 059|046 0.09 0.73 060|048 010 0.75
151057 012 083 072|057 014 080 069|059 014 0.81

Student’s t; 111021 007 042 027|018 0.08 041 025|021 0.08 0.46
131030 010 064 039|026 0.08 0.62 038|030 0.09 0.64
151043 015 0.78 051|044 015 0.78 054|049 016 0.79

Normal 11006 0.06 0.06 0.04|0.05 0.06 0.06 0.06  0.05 0.06 0.06
131006 0.05 0.06 0.04|0.06 005 005 0.06 006 0.05 0.05
151005 0.06 0.06 0.05|0.04 0.04 0.06 0.06 005 0.06 0.04

024 025 005 023|023 023 001 023|021 0.27 0.02
051 060 0.07 049|052 0.61 0.07 053|052 0.61 0.07
0.64 078 0.07 059|064 0.77 0.05 062 |0.63 0.77 0.05

Gamma (5)

039 051 006 041|039 048 0.06 038|039 049 0.06
036 062 002 047|036 0.62 002 044037 064 0.02

4
5
6

Gamma (6) 4 1022 022 007 022020 0.23 0.06 023|020 0.23 0.01
5
6
6

Extreme 021 032 007 025|023 032 006 027|010 036 0.04
Value
8 1033 061 005 047|031 061 003 045|031 0.63 0.03

10/039 081 005 061]036 079 003 0.64|040 0.81 0.04
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Table 3(b). Powers against specified alternatives, for test size 0.05 and n = 100 using 7>

critical values and 10,000 Monte Carlo simulations

MOM ML GRO

Alternative K| X vz w2 | X v2 vZ2 | X v vz

Uniform (0,1) 10 | 032 005 049|029 0.05 045|045 0.06 0.28
Logistic 13 | 006 0.06 0.11|0.06 0.06 0.09 | 0.10 0.07 0.15
Laplace 13 | 046 010 074|043 010 0.72 048 011 0.75

Student’s t3 13 | 028 0.09 062|026 0.09 060|031 011 0.64

Gamma (5) 5 051 060 0.07]|052 061 007|052 0.61 0.06
Gamma (6) 5 1039 051 005|040 051 005|045 0.53 0.05
Extreme 8 033 062 004|032 061 0.04 |05 071 0.04
Value

Table 3 compares the performance of MOM, ML and GRO estimators. Powers based
on the ML and MOM estimators were very similar. However use of GRO estimators and 3
critical values often gave powers different to what the parametric bootstrap suggested they
should be. For example, see the uniform, logistic and extreme value alternatives. Again we
suggest that the GRO approach with * p-values is only an approximation to the better p-
values available if ML or MOM estimators are used. In our experience ML and MOM
estimators are very similar but if a data set occurred when V; and V, were not very close to
zero with ML estimation then we suggest the use of MOM estimators. Klar (2000) gives
reasons why MOM estimators should be used if tests involving higher order moments, such as
tests based on V3 and V4, are of interest.

For the alternatives considered here, powers usually increase with K, but in practice
we assume K is given and so we will not investigate this effect here.

4. An Improved Model and Additional Example

In this section we will emphasise the desirability of using the significant components of X? to
construct an improved model. For the Pearson and Lee (1903) mothers’ heights data, Table 1
gives expected counts, Ej = n|6j,j =1, ...,9, using the grouped normal model. The analysis

in section 2 suggested that possibly the data differ from normality in regard to kurtosis, and
the component V, is significantly large, using either MOM or ML estimation. We may
therefore expect an appropriate kurtosis correction will significantly improve the model.
Consider the kurtosis corrected model
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P;j =Cp{l+ 6igu(x)} ] =1, ..., K.

where p]—‘ = 0 if pj{1 + 6404(x;)} < 0 and where C is such that Z,— p’; = 1. Barton (1955)

suggested a similar model, although he did not suggest avoiding the negative frequencies.
It is routine to show that V4 is the score test statistic for testing H: &, = 0 against K: &, # 0 for

the model { p?}, as it is for models of the form {C(6,) exp[6s04(x;)] pj}; see Rayner and Best

(1989, p. 72). Moreover it is routine to show that for the model { p?}, E[V4] = 6\, so that V,
properly normalized is a good ‘indicator’ of 6;.

Table 4. Comparison of observed frequencies (N;) of heights of mothers with E; and E}‘

Class (j) | Class limits | N; | E; E; (Nj _ Ej)zlEj (Nj _ E;)ZIE}*
1 (-0,55] | 3 | 0.8 | 20 5.50 0.45
2 (55, 57] 8 | 10.1 | 12.0 0.42 1.36
3 (57, 59] 53 | 635 | 56.9 1.73 0.26
4 (59, 61] | 215|204.3 | 196.8 0.56 1.68
5 (61,63] | 346 | 336.6 | 353.4 0.26 0.15
6 (63,65] | 277 | 284.3 | 287.4 0.19 0.38
7 (65,67] | 120 | 123.0 | 111.5 0.07 0.64
8 (67,69] | 24 | 27.2 | 272 0.38 0.38
9 (69, o) 7] 32 | 57 4.34 0.29

Table 5. Bohemian income data

Class interval | (-0, 1.53] | (1.53, 2.15] | (2.15, 2.71] | (2.71, 3.32] | (3.32, 3.74]

Frequency 14 16 29 28 9

Class interval | (3.74,4.18] | (4.18,4.53] | (4.53,4.70] | (4.70, )

Frequency 1 1 1 1

With the { p?} model expected counts are given by

ET = npj = nCpJ{l + V4g4(Xj)/\/n},
10



Grouped Normal GOF Best, Rayner and Thas

and Table 4 compares the observed frequencies, N;j, with E; and ET. In terms of the
differences |N; - E;l, as seen, for example, on a histogram, it may not appear that the {ET}

are an improvement on the {E;}. However if we compare XéN = zj(Nj - EJ.)ZIEj with

X2 = Z(N - Ef)zlEf . and the contributions to these metrics from each class, it is clear
ICN AN i i

the kurtosis corrected { E;} give a better fit in the tails of the distribution. Using the improved

model reduces the X* metric from X2y = 13.45to X&y = 5.59.
It is interesting to note that using the { p?} model, straightforward calculations show
that

i(Nj —E;f/E, = X& - V7,

j=1

from which it easily follows that Xy = X&y — V.2 + O(n®°). Roughly speaking, since these
arguments generalise to corrections for other components, the reduction in X? from using a
model that corrects the significant components is the sum of the squares of those components.

D’Agostino and Massaro (1992, p. 332) fit a logistic distribution to the grouped
Bohemian income data shown in Table 5. We now test this grouped data for normality. It is
readily found that X* = 8.07 with p-value 0.23 using MOM or ML estimation and the
approximating ;(g distribution. On this evidence alone we would conclude that the data are
consistent with normality. However it is instructive to calculate the components of X?. We
find \732 = 0.04 and \742 = 6.45, the latter being highly significant and suggesting that non-
normality is due to an excessive peak towards the centre of the data. This example

demonstrates the value of looking at not only X? but its components as well. As with the
mothers’ heights data we could also obtain an improved model using V.

5. Conclusion

On the basis of the power study in section 3 it appears that X* provides a good omnibus test of
normality with grouped data, while V32 and V42 are useful for suggesting whether or not the
alternative is respectively symmetric or, relative to the normal, unusually peaked. From our
simulations here we suggest that y* approximations to the null distributions of the test
statistics X°, V32 and V42 will be reasonable for testing grouped normality if all class
expectations are greater than 0.5 and method of moments or maximum likelihood estimation
IS used.

The suggestion to use X?, V32 and V42 to test for grouped normality is hardly new,
although previously skewness and kurtosis coefficients may not have been calculated as
components of X2 However with modern computing capabilities and bearing in mind the
results above, we make four suggestions on how to improve on the classical approach.

1. Use method of moments or maximum likelihood estimation rather than the

grouped frequency estimation of the normal mean and variance.

2. Do not pool the data so that p-values can be found using the z* approximation to

the distribution of X2 Instead find p-values using the parametric bootstrap when
the smallest expectation is less than 0.5.

11
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3. If appropriate give an improved model based on V3 and/or V4, as illustrated in
section 4 above.
4. Check that higher order moment differences do not exist by finding a p-value for

X2 — V32 - V42 using either a ;gﬁ_5 or a parametric bootstrap approximation.
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Appendix A: Bivariate Newton-Raphson Estimation

(i) Maximum Likelihood Estimators
Suppose initial estimates (uo, o) have been found as in the Introduction. Calculate the
corresponding p;, j = 1, ... , K and based on these calculate the logarithm of the likelihood:

In L = constant + Z';:le Inp;. The constant is a multinomial coefficient that does not

depend on (&, o). The maximum of In L is found by simultaneously solving dn L/gu = 0 and
Adn L/do = 0. To solve these equations first find

12
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; _ AInL ; _ FlInL ; _ﬁzlnL_r and _ AL
11 07112 y 112 aﬂé’o_y 21 aO'aIL[ 12 22 50-2 )

_ 1 T

and form the 2 x 2 matrix R = [rll rlzj' Let fo be the vector f = (An L/dy, An Lido)
21 T2

evaluated at e = (1, 0)" = (1o, v)' = €. If Ry is just R evaluated at e = e, the Newton-Raphson

method gives a new vector e; = (w1, o1)' = €y — Ralfo. In the same way calculate f; and R;

using e; and then find e, = e; - R;*f; and further e; until a convergence criterion is satisfied,

usually in five or fewer iterations. We now give the quantities f and R analytically. For j =1,

..., Kwrite y; = (kj — w)/oand z; = exp(- yJZ/Z)/\/(Zﬂ). Then

D; Pj
_o"ﬂj =—(zj-z1)l o, _ﬁoj' ==z - Y1zl o
o'p; _ Ay, °p; 2
a/ﬂj = 50’ o, ayﬁj = —{(yj - Dz - (¥}, - Dz} and

It follows that

(it) Method of Moments Estimators
To find these estimators we need to simultaneously solve the two non-linear equations V; = 0
and V, =0, that is, solve

k k
F= Zj:lxjpj -u=0and G = zj:l(xj —uf p, —-o*=0.
We proceed as above, but now with f = (F, G) and

= —,ry=—,r :Qandr - L
11 071,1’ 12 é’G’ 21 071,1 22 0,,0_-

This time only first order partial derivatives are needed.
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Appendix B: Explicit formula for ga(x;)
Define, as previously,

K K
p= D x;p;j and g = Z(xj —,u)rpj forr=23,4, ...,

i= =
and then put
— 2 3 2
C1 = ffia— H3z — Hp, C2 = M3fia — Hy M3 — H2Ms,
— 2 2 2 _ 2 3
Cs = Hafls — [y pa— g — to pi3, and Ca = w5 pis — 2 pipia + 113,
Now put e = ¢c1(C1us + Couts + C3uu + C4ui5) and define a, b, c and d by
— @8 = G 4ty + CCoplg + C.Co s + CiC, 4y
_ 2
—be = C\Coty + Chutg + CoCatt + CoCatty + (1ot — pistts = s, 1

— 2
— 08 = C\Catty +CoCattg +Cotts +CoCatty + (tyttabty — ity — 13115 + s 1 Gy,
— 2
— de = CyCypty + CoCatty +CaCats +Catty + (pioft? — 2ty + b ptoft — 12415 1 G,

It can be shown that ga(X;) is

(Xj - ﬂ)4 + a(xj - ﬂ)a + b(xj - :”)2 + C(Xj - ﬂ)"’ d
Ve + 221, + (a2 + 2b )iz, + 2(ab + ¢ ) + (b2 + 2ac + 2d Juz, + 2(ad + be)u, +(¢? +2bd Jus, +d?
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