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ABSTRACT   We consider testing for an unobservable normal distribution with unspecified 
mean and variance. It is only possible to observe the counts in groups with boundaries 
specified before sighting the data. On the basis of a small power study we recommend the 
usual X2 test be used as an omnibus test, augmented by informal examination of the first two 
non-zero component of X2. We also recommend use of maximum likelihood and method of 
moments estimation. 
 
Key Words: Critical values; improved grouped normal models; maximum likelihood 
estimation; method of moments estimation; power study 
 
 
1. Introduction 
 

In the Table 1 below we give counts of 1053 mothers grouped in two inch classes for 
height. These data are derived from data given in Pearson and Lee (1903). The question of 
interest is are the underlying data normally distributed?  

In the Table 1 scenario we are given a random sample of n observations of a random 
variable X but all that is known about these observations is into which of K mutually 
exclusive predetermined groups they fall. This situation occurs in practice because 

the measuring instrument only gives readings to a certain accuracy and 
only the histogram counts may be available now even if individual measurements 

were once available.  
We assume the K groups have boundaries k1, k2, … , kK–1 specified before sighting the 

data, and we also take k0 = –∞ and kK = ∞. The null hypothesis to be tested is that X has a 
normal distribution with probability density function  
 

f(x; µ, σ) = ( ) ( ){ }22 2/exp
2

1 σµ
πσ

−− x  for –∞ < x < ∞, 

in which –∞ < µ < ∞, and 0 < σ < ∞. 
 
For j = 1, 2, … , K the probability of an observation in group j is  
 

pj = Φ((kj – µ)/σ) – Φ((kj–1 – µ)/σ), in which Φ(z) = ( )∫
∞−

−
z

dxx 2/exp
2
1 2

π
. 

 
Again for j = 1, 2, … , K let Nj be the number of the n observations that fall into the jth group 
and for the Table 1 and Table 5 data and j = 2, … , K – 1, let xj = (kj + kj–1)/2 with x1 = k1 – (k2 
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– k1)/2 = (3k1 – k2)/2 and xK = kK–1 + (k K–1 – k K–2)/2 = (3k K–1 – k K–2)/2. The definitions of x1 
and xK ensure all the xjs are equi-spaced if the kj are equi-spaced. This is a common approach; 
see, for example, Hoel (1984, p.258) and Freund (2004, exercise 14-41, p.355). The sample 
mean and variance of the grouped data are given by 
 

 

X  = nxN
K

j
jj /

1
∑

=

 and S2 = ( ) nXxN
K

j
jj /

1

2∑
=

− . 

 
The maximum likelihood estimators (MLEs) ˆ µ  of µ and ˆ σ  of σ are obtained by iteratively 
solving the non-linear equations derived by differentiating the logarithm of the likelihood of 
the sample. Initial estimates of ˆ µ  and ˆ σ  are taken to be 

 

ˆ µ 0 = 

 

X  and 

 

ˆ σ 0 = S respectively, and 
then new estimates are obtained by bivariate Newton-Raphson. This process is repeated until 
convergence is reached. Further details are given in Appendix A. 

Once ˆ µ  and ˆ σ  have been obtained it is straightforward to apply the test of normality 
described subsequently. For the Table 1 data ˆ µ  = 62.49 and ˆ σ  = 2.37. Table 1 also gives the 
cell expectations, Ej = 

 

nˆ p j , where the estimated ˆ µ  and ˆ σ  have been used to obtain the class 

probabilities 

 

ˆ p j . If no pooling is done X2 = ( )∑ =
−

K

j jjj EEN
1

2 /  = 13.45 which is 

asymptotically distributed as chi-squared with six degrees of freedom:   χ6
2 . The corresponding 

p-value is 0.04 using this   χ6
2  approximation. Cochran (1952) suggested that when testing for 

normality one class expectation of 0.5 still allows a valid χ2 approximation. It appears these 
data are not consistent with the grouped normal distribution. 

Without access to relevant computer routines, finding the MLEs ˆ µ  and ˆ σ  can be 
difficult, and so a traditional approach which is still given in textbooks estimates µ and σ by 

 

˜ µ  = 

 

X  and 

 

˜ σ  = S respectively. See, for example, Selvanathan et al. (2000, section 17.4). 
However the X2 statistic no longer has an asymptotic 

 

χk−3
2  distribution. See Fisher (1924) and 

Rayner and Best (1989, Chapter 7). The question is, in general what are the consequences of 
using (

 

˜ µ , 

 

˜ σ ) instead of ( ˆ µ , ˆ σ )? 
For the Table 1 data 

 

˜ µ  = 62.49 and 

 

˜ σ  = 2.44 with X2 = 12.56. Using   χ6
2  to 

approximate the distribution of X2 we find a p-value of 0.051. Thus if we had taken α = 0.05, 
use of ( ˆ µ , ˆ σ ) gives a significant X2 while use of (

 

˜ µ , 

 

˜ σ ) gives a (just) non-significant value.  
The structure of the paper is as follows. Section 2 considers components of X2, section 3 gives 
a study of critical values and powers, while section 4 uses the components to derive a model 
better than that based on the {

 

nˆ p j}. 
 

Table 1. Heights of mothers (in inches) 

Class interval (–∞, 55) (55, 57) (57, 59) (59, 61) (61, 63) 

Frequency 3 8 53 215 346 

Cell expectations (Ej) 0.8 10.1 63.5 204.3 336.6 

Class interval (63, 65) (65, 67) (67, 69) (69, ∞)  

Frequency 277 120 24 7  
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Cell expectations (Ej) 284.3 123.0 27.2 3.2  

 
2.  Components of the Chi-Squared Statistic 
 
A more thorough examination of the null grouped normal hypothesis can be made by looking 
at the components of the X2 statistic. These components may be calculated via orthonormal 
polynomials as in Lancaster (1953) or Rayner and Best (1989). The rth component of X2 is 
defined as 
 

Vr = ( ) nxgN
K

j
jrj /

1
∑

=

 for r = 1, 2, … , K – 1, 

 
in which {gr(xj)} are polynomials orthonormal on {pj}, defined as follows. For an arbitrary 
distribution for which the following quantities exist, suppose µ is the familiar population 
mean while µr, r = 2, 3, 4, … are the population central moments: 
 

µ = 

 

x j p j
j=1

K

∑  and µr = 

 

x j − µ( )r
p j

j=1

K

∑  for r = 2, 3, 4, … . 

 
The first four orthonormal polynomials are 
 

g0(xj) = 1 for all xj, 
g1(xj) = (xj – µ)/ 2µ  

g2(xj) = { ( ) ( ) 223
2 / µµµµµ −−−− jj xx }/

 

µ4 − µ3
2 /µ2 − µ2

2  and 

g3(xj) = 
( ) ( ) ( )

( ) ( ) ( ) 2
2

2
34

2
56

23

2222 cacbcabbaa

cxbxax jjj

+++−+−+−

−−−−−−

µµµµµ

µµµ  

 
in which  
 

a = ( ) d// 322435 µµµµµµ −− , b = ( ) d/// 2
3253422

2
4 µµµµµµµµ +−− , 

c = ( ) d//2 522
3
343 µµµµµµ −−  and d =   µ4 − µ3

2 / µ2 − µ2
2 . 

 
Appendix B gives an explicit formula for g4(xj). Further polynomials may be given using the 
recurrence relations of Emerson (1968). Subsequently if (µ, σ) is estimated by ( ˆ µ , ˆ σ ) then 
we refer to pj as 

 

ˆ p j , and if (µ, σ) is estimated by (

 

˜ µ , 

 

˜ σ ) then we refer to pj as 

 

˜ p j . 
The statistic X2 may be expressed in terms of the components Vr via 
 

X2 =     V1
2  + … + 2

1−KV . 
 
See Lancaster (1953). 

For the Table 1 data we find 

 

˜ V 1 = – 0.05, 

 

˜ V 2 = – 1.20, 

 

˜ V 3 = 0.52 and 

 

˜ V 4  = 2.47, where 

 

˜ V r  is Vr using (

 

˜ µ , 

 

˜ σ ). We also find 

 

ˆ V 1 = – 0.005, 

 

ˆ V 2 = – 0.05, 

 

ˆ V 3 = 0.84 and 

 

ˆ V 4  = 2.62, 
where 

 

ˆ V r  is Vr using ( ˆ µ , ˆ σ ). Later we show that, in agreement with the large 

 

˜ V 4  and 

 

ˆ V 4  that 
possibly reflect kurtosis values, the values of (Nj – Ej)/√Ej are large in the tails. Also we 
suggest that 

 

ˆ V 1 and 

 

ˆ V 2 will be close to zero and that the other 

 

ˆ V r  are distributed 
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approximately as N(0, 1); this suggestion is supported by the simulations of the next section. 
The distributions of the 

 

˜ V r  seem to approximate those of the 

 

ˆ V r , but the exact details are 
unknown to us. In the next section we will look at the critical values of the tests based on both 

 

ˆ V r  and 

 

˜ V r  as n increases. We expect 

 

˜ V 3 and 

 

˜ V 4  to approximate the standardized sample 
skewness and kurtosis coefficients for grouped data. Calculation details of these grouped 
coefficients are given, for example, in Snedecor and Cochran (1989, sections 5.13 and 5.14). 
 
 
3. Critical Values and Power Comparisons 

 
Table 2 gives some critical values for X2,     V3

2  and     V4
2  using the grouped frequency estimators 

(

 

˜ µ , 

 

˜ σ ), called GRO in Table 2. Also given are the critical values using the maximum 
likelihood (ML) estimators ( ˆ µ , ˆ σ ) and the method of moments (MOM) estimators obtained 
by solving V1 = V2 = 0. Both the ML and MOM methods of estimation require the use of the 
iterative bivariate Newton-Raphson method. See Appendix A for details. The critical values 
are for a standard normal distribution. 

For K = 10 the categories were defined as (– ∞, – 3], (– 3, – 2], (– 2, – 1.5], (– 1.5 , – 
0.5], (– 0.5, 0], (0 , 0.5], (0.5, 1.5], (1.5, 2], (2, 3], (3, ∞), and for K = 20 the categories were 
(–∞, – 2], (– 2, – 1.778], (–  1.778, – 1.556], (– 1.556, – 1.334], (– 1.334, – 1.112], (– 1.112, – 
0.890], (– 0.890, – 0.668], (– 0.668, – 0.446], (– 0.446, – 0.224], (–0.224, 0], and the 
reflections of these categories. 

In Table 2(a) only sample sizes n = 500 and n = 1000 meet the Cochran (1952, p. 329) 
criterion that the smallest class expectation should be 0.5 or greater. All the Table 2(b) sample 
sizes meet this criterion and we see that all the critical values agree well with the asymptotic 
critical values when this criterion is satisfied. Further, the ML critical values are generally 
better than the corresponding GRO values in the sense that they are closer to the χ2 values. 
Moreover the corresponding ML and MOM values are generally very similar. The critical 
values shown in Table 2 are based on N(0, 1) random values, but were little changed for other 
(µ, σ). 

Thus we suggest that in introductory statistics courses when the GRO approach is used 
it should be emphasised that the approach is approximate and a better method exists. For 
example, Selvanathan et al. (2000, section 17.4) could mention that what is presented is an 
approximation to a more efficient method. 

 
Table 2(a). Critical values for X2,     V3

2  and     V4
2  based on 20,000 simulations and categories as 

specified in the text for K = 10 and α = 0.5, 0.25, 0.10, 0.05 and 0.01 
 
Statistic n Estimator 0.50 0.25 0.10 0.05 0.01 

X2  ML 5.14 7.69 11.07 14.06 25.66 
 50 GRO 4.91 7.24 10.09 12.15 17.62 
  MOM 5.17 7.67 10.83 13.27 20.49 
  ML 5.39 8.16 11.75 14.88 25.75 
 75 GRO 5.17 7.63 10.57 12.78 17.62 
  MOM 5.42 8.10 11.44 14.05 20.83 
  ML 5.58 8.44 11.96 14.85 23.92 
 100 GRO 5.38 7.91 10.75 12.70 17.80 
  MOM 5.59 8.35 11.64 14.09 21.00 
  ML 5.98 8.71 12.16 14.78 21.61 
 200 GRO 5.89 8.34 11.17 13.35 17.72 
  MOM 5.96 8.64 11.89 14.27 19.83 
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  ML 6.20 8.90 11.95 14.26 19.44 
 500 GRO 6.91 9.41 12.17 14.12 18.40 
  MOM 6.21 8.88 11.85 14.07 18.93 
  ML 6.23 8.91 11.97 14.12 19.41 
 1000 GRO 8.39 10.86 13.68 15.69 20.09 
  MOM 6.24 8.91 11.92 14.07 19.10 
 ∞ ML 6.35 9.04 12.02 14.07 18.48 

 

V3
2   ML 0.30 0.95 2.22 3.57 7.50 
 50 GRO 0.23 0.71 1.62 2.52 4.80 
  MOM 0.30 0.96 2.14 3.24 6.24 
  ML 0.32 1.03 2.45 3.82 7.50 
 75 GRO 0.25 0.79 1.80 2.72 5.01 
  MOM 0.33 1.05 2.36 3.54 6.53 
  ML 0.34 1.10 2.52 3.90 7.25 
 100 GRO 0.26 0.84 1.85 2.80 4.97 
  MOM 0.35 1.11 2.42 3.64 6.41 
  ML 0.41 1.22 2.65 3.85 6.77 
 200 GRO 0.31 0.93 1.99 2.90 4.90 
  MOM 0.41 1.21 2.58 3.75 6.39 
  ML 0.44 1.28 2.69 3.87 6.96 
 500 GRO 0.34 0.99 2.03 2.93 5.23 
  MOM 0.44 1.28 2.67 3.83 6.76 
  ML 0.44 1.29 2.70 3.86 6.69 
 1000 GRO 0.36 0.99 2.08 2.95 5.10 
  MOM 0.44 1.29 2.69 3.85 6.62 
 ∞ ML 0.45 1.32 2.71 3.84 6.64 

 

V4
2   ML 0.30 0.70 1.36 2.65 9.43 
 50 GRO 0.18 0.48 1.04 2.08 6.00 
  MOM 0.32 0.75 1.41 2.37 7.20 
  ML 0.34 0.82 1.70 3.34 9.31 
 75 GRO 0.21 0.57 1.35 2.56 6.05 
  MOM 0.36 0.86 1.71 2.97 7.51 
  ML 0.41 0.91 1.82 3.37 8.85 
 100 GRO 0.25 0.65 1.48 2.67 6.12 
  MOM 0.43 0.96 1.85 3.06 7.47 
  ML 0.52 1.12 2.04 3.20 7.56 
 200 GRO 0.33 0.80 1.67 2.69 5.79 
  MOM 0.54 1.17 2.09 3.08 6.82 
  ML 0.49 1.32 2.43 3.39 6.94 
 500 GRO 0.35 0.97 1.96 3.11 6.08 
  MOM 0.51 1.37 2.53 3.42 6.59 
  ML 0.46 1.30 2.61 3.68 6.60 
 1000 GRO 0.36 1.06 2.30 3.41 6.30 
  MOM 0.47 1.35 2.70 3.77 6.59 
 ∞ ML 0.45 1.32 2.71 3.84 6.64 
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Table 2(b). Critical values for X2,     V3
2  and     V4

2  based on 20,000 simulations and categories as 
specified in the text for K = 20 and α = 0.5, 0.25, 0.10, 0.05 and 0.01 
Statistic n Estimator 0.50 0.25 0.10 0.05 0.01 

X2  ML 16.42 20.35 24.62 27.44 34.00 
 50 GRO 16.87 20.87 25.12 28.00 34.52 
  MOM 16.44 20.35 24.55 27.40 33.72 
  ML 16.37 20.40 24.33 27.52 33.36 
 75 GRO 16.88 21.00 25.94 28.15 34.08 
  MOM 16.39 20.42 24.71 22.44 33.34 
  ML 16.33 20.43 24.73 27.65 33.33 
 100 GRO 16.90 21.09 25.45 28.35 34.03 
  MOM 16.37 20.45 24.75 27.60 33.28 
  ML 16.39 20.50 24.68 27.38 33.44 
 200 GRO 17.13 21.31 25.56 28.33 34.32 
  MOM 16.40 20.52 24.68 27.38 33.39 
  ML 16.34 20.51 24.81 27.73 33.58 
 500 GRO 17.58 21.83 26.23 29.23 35.14 
  MOM 16.37 20.55 24.86 27.73 33.58 
  ML 16.38 20.50 24.74 27.62 33.45 
 1000 GRO 18.42 22.65 27.05 29.93 36.02 
  MOM 16.40 20.52 24.80 27.66 33.51 
 ∞ ML 16.34 20.49 24.77 27.59 33.41 

 

V3
2   ML 0.46 1.32 2.65 3.73 6.42 
 50 GRO 0.49 1.43 2.91 4.08 6.94 
  MOM 0.47 1.37 2.74 3.83 6.64 
  ML 0.46 1.32 2.69 3.84 6.63 
 75 GRO 0.49 1.41 2.89 4.13 7.15 
  MOM 0.46 1.32 2.71 3.85 6.74 
  ML 0.46 1.32 2.73 3.82 6.41 
 100 GRO 0.50 1.42 2.92 4.10 6.92 
  MOM 0.46 1.33 2.74 3.85 6.50 
  ML 0.47 1.37 2.73 3.89 6.82 
 200 GRO 0.50 1.47 2.92 4.18 7.28 
  MOM 0.47 1.38 2.74 3.91 6.84 
  ML 0.45 1.34 2.75 3.90 6.77 
 500 GRO 0.48 1.43 2.95 4.18 7.33 
  MOM 0.45 1.34 2.76 3.92 6.86 
  ML 0.47 1.35 2.71 3.84 6.48 
 1000 GRO 0.50 1.44 2.90 4.11 6.96 
  MOM 0.47 1.35 2.72 3.85 6.51 
 ∞ ML 0.45 1.32 2.71 3.84 6.64 

 

V4
2   ML 0.49 1.37 2.72 3.80 6.59 
 50 GRO 0.52 1.46 2.92 4.08 6.99 
  MOM 0.50 1.41 2.80 3.90 6.79 
  ML 0.46 1.34 2.74 3.82 6.40 
 75 GRO 0.49 1.44 2.92 4.11 7.04 
  MOM 0.47 1.38 2.82 3.93 6.68 
  ML 0.45 1.31 2.62 3.72 6.44 
 100 GRO 0.48 1.40 2.81 3.99 6.97 
  MOM 0.46 1.35 2.69 3.82 6.63 
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  ML 0.45 1.29 2.65 3.76 6.31 
 200 GRO 0.49 1.40 2.85 4.02 7.00 
  MOM 0.46 1.34 2.73 3.88 6.57 
  ML 0.46 1.32 2.69 3.77 6.28 
 500 GRO 0.49 1.44 2.92 4.16 7.03 
  MOM 0.47 1.37 2.77 3.90 6.48 
  ML 0.45 1.30 2.66 3.76 6.65 
 1000 GRO 0.50 1.44 2.93 4.19 7.35 
  MOM 0.46 1.34 2.73 3.87 6.84 
 ∞ ML 0.45 1.32 2.71 3.84 6.64 

 
 

It is often suggested that the classes be pooled so that the χ2 approximation can be 
used to give p-values for X2 when testing for grouped normality. We recommend that pooling 
not be done and that when the 0.5 criterion is not met, p-values should be found by parametric 
bootstrap. Recent discussions concerning finding p-values via parametric bootstrap, in a 
goodness of fit context, are given in Gurtler and Henze (2000) and Gulati and Neus (2001). 

It appears that the only goodness of fit tests for grouped normality in the literature are 
those based on the coefficients of skewness and kurtosis, and X2. However other tests can 
easily be constructed. Since the Anderson-Darling A2 test is very competitive for testing 
normality with ungrouped data, we will now compare powers of tests based on X2,     V3

2 ,     V4
2  

and a grouped version of the Anderson-Darling A2. Put Hj = jpp ˆ...ˆ1 ++ , j = 1, 2, … , K, and  
 

A2 = ( ){ }∑
−

=

−
1

1

2 1/ˆ
K

j
jjjj HHpRn , 

 
where for j = 1, 2, … , K, Rj = N1 + … + Nj – 

 

n ˆ p 1 + ...+ ˆ p j( ).  
Table 3(a) gives powers found using the parametric bootstrap technique as recently 

used by Gurtler and Henze (2000) and by Gulati and Neus (2001). Simulation runs of 1000 
were used for both the inner and outer loops of the bootstrap. Given the results in Table 2 we 
would expect powers of X2,     V3

2  and     V4
2  could also be found using appropriate χ2 critical 

values and this is done in Table 3(b). The powers in Tables 3(a) and 3(b) are in very good 
agreement, verifying the accuracy of the χ2 approximations for these alternatives and showing 
that the tests based on X2 and A2 generally have similar power. No pooling was done in the 
power calculations for X2,     V3

2  and     V4
2 . Use of     V3

2  and     V4
2  to amplify the X2 test would seem 

sensible as     V3
2  does well for skewed alternatives and     V4

2  does well for alternatives with 
kurtosis different to that of the normal distribution. The Anderson-Darling test also provides a 
good omnibus test for grouped normality. However p–values for the Anderson-Darling test 
cannot be found using a convenient χ2 approximation. The powers shown are for a N(0, 1) 
null but seem very similar to those for general N(µ, σ2) null hypotheses. 

The first alternative considered in Table 3(a) is the uniform with K = 8, 10 and 12, kj = 
j/K for j = 1, … , K – 1 and with x1 = k1/2, xK = kK-1 + x1. Other xj are class midpoints. The 
second alternative is the logistic distribution with K = 11, 13 and 15, kj = (j – 1)/2 – (K – 2)/4 
for j = 1, … , K – 1, x1 = (3k1 – k2)/2, xK = (3kK–1 – kK–2)/2 and with other xj equal to the class 
midpoints. Classes for the Normal, Laplace and Student’s t3 alternatives were as defined for 
the logistic. The gamma (5) and gamma (6) distributions give skewed alternatives for which 
we take K = 4, 5, and 6, kj = (7 – K) + 2(j – 1), x1 = k1/2, xK = kK–1 + x1 and other xj equal to 
the class midpoints. Another skewed alternative is the extreme value distribution with K = 6, 
8 and 10, kj = (j – 1)/2 – (K – 2)/4 for j = 1, … , K – 1 as for the logistic alternative. Here x1 = 
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(3k1 – k2)/2, xK = (3kK–1 – kK–2)/2 and other xj are equal to the class midpoints. The first four 
alternatives are symmetric and the last three are skewed. Random values from these 
distributions were obtained using the IMSL (1995) software package. 
Table 3(a). Parametric bootstrap powers against specified alternatives, for test size 0.05, n = 

100 and various numbers of classes K 

   MOM    ML    GRO  

Alternative K X2     V3
2      V4

2  A2 X2     V3
2      V4

2  A2 X2     V3
2      V4

2  

Uniform (0, 1) 8 0.21 0.06 0.31 0.21 0.20 0.05 0.34 0.19 0.11 0.05 0.13 

 10 0.32 0.06 0.47 0.32 0.34 0.05 0.51 0.30 0.23 0.05 0.25 

 12 0.38 0.07 0.56 0.36 0.36 0.04 0.56 0.35 0.27 0.04 0.29 

Logistic 11 0.06 0.07 0.08 0.06 0.06 0.06 0.07 0.06 0.06 0.06 0.12 

 13 0.07 0.07 0.10 0.08 0.05 0.06 0.11 0.08 0.07 0.06 0.13 

 15 0.08 0.08 0.16 0.11 0.06 0.07 0.15 0.11 0.07 0.07 0.18 

Laplace 11 0.40 0.08 0.62 0.46 0.36 0.07 0.64 0.46 0.38 0.08 0.66 

 13 0.53 0.09 0.72 0.59 0.46 0.09 0.73 0.60 0.48 0.10 0.75 

 15 0.57 0.12 0.83 0.72 0.57 0.14 0.80 0.69 0.59 0.14 0.81 

Student’s t3 11 0.21 0.07 0.42 0.27 0.18 0.08 0.41 0.25 0.21 0.08 0.46 

 13 0.30 0.10 0.64 0.39 0.26 0.08 0.62 0.38 0.30 0.09 0.64 

 15 0.43 0.15 0.78 0.51 0.44 0.15 0.78 0.54 0.49 0.16 0.79 

Normal 11 0.06 0.06 0.06 0.04 0.05 0.06 0.06 0.06 0.05 0.06 0.06 

 13 0.06 0.05 0.06 0.04 0.06 0.05 0.05 0.06 0.06 0.05 0.05 

 15 0.05 0.06 0.06 0.05 0.04 0.04 0.06 0.06 0.05 0.06 0.04 

Gamma (5) 4 0.24 0.25 0.05 0.23 0.23 0.23 0.01 0.23 0.21 0.27 0.02 

 5 0.51 0.60 0.07 0.49 0.52 0.61 0.07 0.53 0.52 0.61 0.07 

 6 0.64 0.78 0.07 0.59 0.64 0.77 0.05 0.62 0.63 0.77 0.05 

Gamma (6) 4 0.22 0.22 0.07 0.22 0.20 0.23 0.06 0.23 0.20 0.23 0.01 

 5 0.39 0.51 0.06 0.41 0.39 0.48 0.06 0.38 0.39 0.49 0.06 

 6 0.36 0.62 0.02 0.47 0.36 0.62 0.02 0.44 0.37 0.64 0.02 

Extreme 

Value 

6 0.21 0.32 0.07 0.25 0.23 0.32 0.06 0.27 0.10 0.36 0.04 

 8 0.33 0.61 0.05 0.47 0.31 0.61 0.03 0.45 0.31 0.63 0.03 

 10 0.39 0.81 0.05 0.61 0.36 0.79 0.03 0.64 0.40 0.81 0.04 
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Table 3(b). Powers against specified alternatives, for test size 0.05 and n = 100 using χ2 

critical values and 10,000 Monte Carlo simulations 

   MOM   ML   GRO  

Alternative K X2     V3
2      V4

2  X2     V3
2      V4

2  X2     V3
2      V4

2  

Uniform (0, 1) 10 0.32 0.05 0.49 0.29 0.05 0.45 0.45 0.06 0.28 

Logistic 13 0.06 0.06 0.11 0.06 0.06 0.09 0.10 0.07 0.15 

Laplace 13 0.46 0.10 0.74 0.43 0.10 0.72 0.48 0.11 0.75 

Student’s t3 13 0.28 0.09 0.62 0.26 0.09 0.60 0.31 0.11 0.64 

Gamma (5) 5 0.51 0.60 0.07 0.52 0.61 0.07 0.52 0.61 0.06 

Gamma (6) 5 0.39 0.51 0.05 0.40 0.51 0.05 0.45 0.53 0.05 

Extreme 

Value 

8 0.33 0.62 0.04 0.32 0.61 0.04 0.59 0.71 0.04 

 

 
Table 3 compares the performance of MOM, ML and GRO estimators. Powers based 

on the ML and MOM estimators were very similar. However use of GRO estimators and χ2 
critical values often gave powers different to what the parametric bootstrap suggested they 
should be. For example, see the uniform, logistic and extreme value alternatives. Again we 
suggest that the GRO approach with χ2 p-values is only an approximation to the better p-
values available if ML or MOM estimators are used. In our experience ML and MOM 
estimators are very similar but if a data set occurred when V1 and V2 were not very close to 
zero with ML estimation then we suggest the use of MOM estimators. Klar (2000) gives 
reasons why MOM estimators should be used if tests involving higher order moments, such as 
tests based on V3 and V4, are of interest. 

For the alternatives considered here, powers usually increase with K, but in practice 
we assume K is given and so we will not investigate this effect here.  
 
 
4. An Improved Model and Additional Example 
 
In this section we will emphasise the desirability of using the significant components of X2 to 
construct an improved model. For the Pearson and Lee (1903) mothers’ heights data, Table 1 
gives expected counts, Ej = 

 

nˆ p j , j = 1, … , 9, using the grouped normal model. The analysis 
in section 2 suggested that possibly the data differ from normality in regard to kurtosis, and 
the component V4 is significantly large, using either MOM or ML estimation. We may 
therefore expect an appropriate kurtosis correction will significantly improve the model. 
Consider the kurtosis corrected model 
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p j
* = C pj{1 + θ4g4(xj)}, j = 1, … , K. 

 
where 

 

p j
* = 0 if pj{1 + θ4g4(xj)} < 0 and where C is such that ∑ j jp*  = 1. Barton (1955) 

suggested a similar model, although he did not suggest avoiding the negative frequencies. 
It is routine to show that V4 is the score test statistic for testing H: θ4 = 0 against K: θ4 ≠ 0 for 
the model {

 

p j
*}, as it is for models of the form {C(θ4) exp[θ4g4(xj)] pj}; see Rayner and Best 

(1989, p. 72). Moreover it is routine to show that for the model {

 

p j
*}, E[V4] = θ4√n, so that V4 

properly normalized is a good ‘indicator’ of θ4. 
 

Table 4. Comparison of observed frequencies (Nj) of heights of mothers with Ej and 

 

E j
* 

Class (j) Class limits Nj Ej 

 

E j
* ( ) jjj EEN /2−  ( ) *2* / jjj EEN −  

1 (-∞, 55] 3 0.8 2.0 5.50 0.45 

2 (55, 57] 8 10.1 12.0 0.42 1.36 

3 (57, 59] 53 63.5 56.9 1.73 0.26 

4 (59, 61] 215 204.3 196.8 0.56 1.68 

5 (61, 63] 346 336.6 353.4 0.26 0.15 

6 (63, 65] 277 284.3 287.4 0.19 0.38 

7 (65, 67] 120 123.0 111.5 0.07 0.64 

8 (67, 69] 24 27.2 27.2 0.38 0.38 

9 (69, ∞) 7 3.2 5.7 4.34 0.29 

 
 

Table 5. Bohemian income data 

Class interval (-∞, 1.53] (1.53, 2.15] (2.15, 2.71] (2.71, 3.32] (3.32, 3.74] 

Frequency 14 16 29 28 9 

Class interval (3.74, 4.18] (4.18, 4.53] (4.53, 4.70] (4.70, ∞)  

Frequency 1 1 1 1  

 
With the {

 

p j
*} model expected counts are given by 

 

 

E j
* = 

 

np j
* = nCpj{1 + V4g4(xj)/√n}, 
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and Table 4 compares the observed frequencies, Nj, with Ej and 

 

E j
*. In terms of the 

differences |Nj – 

 

E j
*|, as seen, for example, on a histogram, it may not appear that the {

 

E j
*} 

are an improvement on the {Ej}. However if we compare 

 

XCN
2  = ( )∑ −

j jjj EEN /2  with 

 

XICN
2  = ( )∑ −

j jjj EEN *2* / , and the contributions to these metrics from each class, it is clear 

the kurtosis corrected {

 

E j
*} give a better fit in the tails of the distribution. Using the improved 

model reduces the X2 metric from 

 

XCN
2  = 13.45 to 

 

XICN
2  = 5.59.  

It is interesting to note that using the {

 

p j
*} model, straightforward calculations show 

that 
 

( )∑
=

−
K

j
jjj EEN

1

2* /  = 

 

XCN
2  – 2

4V , 

 

from which it easily follows that 

 

XICN
2  = 

 

XCN
2  – 2

4V  + O(n-0.5). Roughly speaking, since these 
arguments generalise to corrections for other components, the reduction in X2 from using a 
model that corrects the significant components is the sum of the squares of those components. 

D’Agostino and Massaro (1992, p. 332) fit a logistic distribution to the grouped 
Bohemian income data shown in Table 5. We now test this grouped data for normality. It is 
readily found that X2 = 8.07 with p-value 0.23 using MOM or ML estimation and the 
approximating 

 

χ6
2  distribution. On this evidence alone we would conclude that the data are 

consistent with normality. However it is instructive to calculate the components of X2. We 
find 2

3̂V  = 0.04 and 2
4̂V  = 6.45, the latter being highly significant and suggesting that non-

normality is due to an excessive peak towards the centre of the data. This example 
demonstrates the value of looking at not only X2 but its components as well. As with the 
mothers’ heights data we could also obtain an improved model using V4. 
 
 
5. Conclusion 
 
On the basis of the power study in section 3 it appears that X2 provides a good omnibus test of 
normality with grouped data, while     V3

2  and     V4
2  are useful for suggesting whether or not the 

alternative is respectively symmetric or, relative to the normal, unusually peaked. From our 
simulations here we suggest that χ2 approximations to the null distributions of the test 
statistics X2,     V3

2  and     V4
2  will be reasonable for testing grouped normality if all class 

expectations are greater than 0.5 and method of moments or maximum likelihood estimation 
is used.  
 The suggestion to use X2,     V3

2  and     V4
2  to test for grouped normality is hardly new, 

although previously skewness and kurtosis coefficients may not have been calculated as 
components of X2. However with modern computing capabilities and bearing in mind the 
results above, we make four suggestions on how to improve on the classical approach.  

1. Use method of moments or maximum likelihood estimation rather than the 
grouped frequency estimation of the normal mean and variance. 

2. Do not pool the data so that p-values can be found using the χ2 approximation to 
the distribution of X2. Instead find p-values using the parametric bootstrap when 
the smallest expectation is less than 0.5. 
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3. If appropriate give an improved model based on V3 and/or V4, as illustrated in 
section 4 above. 

4. Check that higher order moment differences do not exist by finding a p-value for 
X2 –     V3

2  –     V4
2  using either a 

 

χK−5
2  or a parametric bootstrap approximation. 
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Appendix A: Bivariate Newton-Raphson Estimation 
 
(i) Maximum Likelihood Estimators 
Suppose initial estimates (µ0, σ0) have been found as in the Introduction. Calculate the 
corresponding pj, j = 1, … , K and based on these calculate the logarithm of the likelihood:  
ln L = constant + ∑ =

k

j jj pN
1

ln . The constant is a multinomial coefficient that does not 

depend on (µ, σ). The maximum of ln L is found by simultaneously solving ∂ln L/∂µ = 0 and 
∂ln L/∂σ = 0. To solve these equations first find 



Grouped Normal GOF                                                                                                            Best, Rayner and Thas 
 

 
 

13 

 

r11 = 

 

∂2 ln L
∂µ2 , r12 = 

 

∂2 ln L
∂µ∂σ

, r21 = 
∂σ∂µ

∂ Lln2

 = r12 and r22 = 

 

∂2 ln L
∂σ 2 , 

 

and form the 2 × 2 matrix R = 

 

r11 r12

r21 r22

 

 
 

 

 
 . Let f0 be the vector f = (∂ln L/∂µ, ∂ln L/∂σ)T 

evaluated at e = (µ, σ)T = (µ0, σ0)T = e0. If R0 is just R evaluated at e = e0 the Newton-Raphson 
method gives a new vector e1 = (µ1, σ1)T = e0 – 

 

R0
−1f0. In the same way calculate f1 and R1 

using e1 and then find e2 = e1 - 

 

R1
−1f1 and further ei until a convergence criterion is satisfied, 

usually in five or fewer iterations. We now give the quantities f and R analytically. For j = 1, 
… , K write yj = (kj – µ)/σ and zj = exp(–

 

y j
2 /2)/√(2π). Then 

 

 

∂p j

∂µ
 = – (zj – zj-1)/σ, 

 

∂p j

∂σ
 = – (yj zj – yj–1 zj–1)/σ, 

2

2

∂µ
∂ jp

 = 
∂σ
∂ jp

/σ, 
∂µ∂σ
∂ jp2

 =  – {(

 

y j
2  – 1)zj – ( 2

1−jy  – 1)zj–1}/σ2 and 

 

∂2 p j

∂σ 2  = 2
1

3
1

3

σ
−−+− jjjj zyzy

 + 2

 

∂p j

∂σ
/σ. 

 
It follows that 
 

 

∂ ln L
∂µ

 = ∑
=


















K

j

j

j

j p
p
N

1 ∂µ
∂

, 
∂σ

∂ Lln  = ∑
=


















K

j

j

j

j p
p
N

1 ∂σ
∂

, 

 

∂2 ln L
∂µ2  = ∑

= 



















−









K

j

jj
j

j

j pp
p

p
N

1

2

2

2

2 ∂µ
∂

∂µ
∂

, 

 

∂2 ln L
∂µ∂σ

 = ∑
= 



























−









K

j

jjj
j

j

j ppp
p

p
N

1

2

2 ∂σ
∂

∂µ
∂

∂µ∂σ
∂

 and 

 

∂2 ln L
∂σ 2  = ∑

= 



















−









K

j

jj
j

j

j pp
p

p
N

1

2

2

2

2 ∂σ
∂

∂σ
∂

. 

 
(ii) Method of Moments Estimators 
To find these estimators we need to simultaneously solve the two non-linear equations V1 = 0 
and V2 = 0, that is, solve 
 

F = 

 

x j p jj=1

k∑  - µ = 0 and G = ( )∑ =
−

k

j jj px
1

2µ  – σ2 = 0. 

 
We proceed as above, but now with f = (F, G)T and 
 

r11 = 

 

∂F
∂µ

, r12 = 

 

∂F
∂σ

, r21 = 

 

∂G
∂µ

 and r22 = 

 

∂G
∂σ

. 

 
This time only first order partial derivatives are needed. 
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Appendix B: Explicit formula for g4(xj) 
Define, as previously,  
 

µ = 

 

x j p j
j=1

K

∑  and µr = 

 

x j − µ( )r
p j

j=1

K

∑  for r = 2, 3, 4, … , 

 
and then put 
 

c1 = µ2µ4 – 

 

µ3
2  – 

 

µ2
3, c2 = µ3µ4 – 

 

µ2
2µ3 – µ 2µ5, 

c3 = µ3µ5 – 

 

µ2
2µ4 – 

 

µ4
2  – µ2

 

µ3
2 , and c4 = 

 

µ2
2µ5 – 2µ2µ3µ4 + 

 

µ3
3. 

 
Now put e = c1(c1µ6 + c2µ5 + c3µ4 + c4µ5) and define a, b, c and d by 
 

– ae = 4415316217
2
1 µµµµ ccccccc +++ , 

– be = 

 

c1c2µ7 + c2
2µ6 + c2c3µ5 + c1c4µ4  + ( ) 14

2
25362 / ceµµµµµµ −− , 

– ce = 

 

c1c3µ7 + c2c3µ6 + c3
2µ5 + c3c4µ4  + ( ) 1545

2
263432 / ceµµµµµµµµµ +−− , 

– de = 

 

c1c4µ7 + c2c4µ6 + c3c4µ5 + c4
2µ4  + ( ) 16

2
25324

2
3

2
42 / ceµµµµµµµµµ −+− . 

 
It can be shown that g4(xj) is  
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) .

2222222 2
2

2
34

2
56

2
78

234

dbdcbcaddacbcabbaa

dxcxbxax jjjj

+++++++++++++

+−+−+−+−

µµµµµµµ

µµµµ
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