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Abstract  

Maternal asthma is associated with low birth weight, a risk factor for disease in adult 

life. To determine the mechanisms involved, the relationships between mother, placenta 

and fetus were examined in asthmatic and non-asthmatic pregnancies. 

Maternal asthma and its treatment (no glucocorticoid or glucocorticoid) was monitored 

throughout pregnancy. Fetal growth was examined during gestation, and at birth, 

neonatal size and sex were determined. Placental 11β-hydroxysteroid dehydrogenase 

type 2 (11β-HSD2) enzyme activity and umbilical vein plasma cortisol and estriol 

concentrations were measured. Placental cytokine, growth factor and glucocorticoid 

receptor (GR) mRNA were determined using quantitative RT-PCR.  

Birth weight of female neonates in the no glucocorticoid asthmatic group only, was 

significantly reduced compared to females of the non-asthmatic group. Male neonates 

were unaffected by asthma or its treatment. Asthmatic women pregnant with a female 

fetus showed a significant increase in circulating monocytes and glucocorticoid 

treatment as pregnancy progressed, while those pregnant with a male fetus did not, 

suggesting that maternal asthma worsens in the presence of a female fetus. 11β-HSD2 

activity was significantly reduced in placentae from female neonates of the no 

glucocorticoid group compared to other female neonates and was associated with a 

trend towards higher plasma cortisol, reduced fetal adrenal activity demonstrated by 

lower cord blood estriol, reduced placental GR expression, no alteration in placental or 

fetal insulin-like growth factors or their binding proteins and a significantly increased 

Th2:Th1 cytokine mRNA ratio, which was inversely correlated with 11β-HSD2 activity 

in all females. Reduced placental 11β-HSD2 activity may be an important component 

leading to decreased female fetal growth in pregnancies complicated by asthma. 

This study provides strong evidence for a fetal sex-specific effect on the maternal 

immune system which can have adverse effects on the female fetus. The female fetus 

alters maternal inflammatory pathways, which when not controlled by the use of inhaled 

glucocorticoids results in reduced placental 11β-HSD2 activity, contributing to 

suppressed fetal adrenal function and a late gestation decrease in female fetal growth.
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Literature Review Part 1: Asthma and Pregnancy 

1.1 The pathophysiology of asthma 

Asthma is a complex respiratory disease characterised by acute exacerbations and 

chronic alterations in airway structure and function. Symptoms of asthma include 

wheeze, cough and an inability to breath caused by narrowing of the airways due to 

smooth muscle contraction (1). Asthma is often characterised by bronchial 

responsiveness to stimuli (2), in the form of hypersensitivity to foreign substances 

resulting in the inappropriate production of IgE antibodies. Exposure to triggers, 

specific or non-specific, including allergens such as pollen, cold air, exercise and 

pollution results in the release of histamine and other factors from mast cells (3). Edema 

of the bronchioles and production of mucous follows, along with spasm of the bronchial 

smooth muscle, which makes breathing difficult (1, 3). 

Diagnosis of asthma relies on an objective demonstration of variable airway obstruction 

which may be spontaneously reversible or reversible with treatment (4). Spirometry is 

used for the diagnosis of asthma and for monitoring its progress over time, by 

comparing the degree of airway obstruction to predicted normal values (4, 5). By 

measuring inspired and expired volumes over time, spirometry allows an evaluation of 

how effectively and quickly the lungs fill and empty with air (6). The forced expiratory 

volume at one second (FEV1) is the volume of air maximally expired in the first second 

following a maximal inspiration, while the forced vital capacity (FVC) is the maximum 

volume of air exhaled or inspired (6). The FEV1:FVC ratio is used to gauge the degree 

of airflow limitation (6). Peak expiratory flow (PEF) refers to the maximum expiratory 

flow rate achieved (6). An example spirogram is shown in Figure 1.1. Asthmatics have 

a reduction in FEV1 relative to the FVC (6) and a reduced peak expiratory flow rate 

(PEFR) (4). 

Chronic alterations in the airway such as epithelial damage and collagen deposition, are 

known to occur in all asthmatics, including those with mild asthma (7-9). Inflammation 

of the airways is also a prominent feature of mild asthma (10) and mediates many of the 

changes in airway structure and function observed in asthmatic patients.  
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Figure 1.1 Example spirogram showing the FEV1 and FVC 

In spirometry, the patient performs a maximum inspiration followed by a maximum forced expiration 
until no more air can be exhaled (4). The FEV1 is the volume of air exhaled in the first second, while the 
FVC is the total volume of air expired during the procedure. Diagram adapted from Pierce and Johns, 
1995 (6). 

1.2 The role of inflammation in asthma 

Asthma is a chronic inflammatory disease, where inflammatory cells are either recruited 

to the airway or activated at the site (11). The major cells which infiltrate the airway and 

are involved in cell to cell signalling include mast cells, macrophages, eosinophils, T 

lymphocytes, basophils, neutrophils, epithelial cells and dendritic cells (2, 4). 

Inflammation causes the symptoms of wheezing, coughing and chest tightness in 

susceptible individuals (4). 

Airway epithelial cells and smooth muscle cells are themselves able to synthesise and 

release inflammatory mediators (11). However, T cells have an important role in the 

induction and maintenance of airway inflammation, particularly through their 

production of cytokines and chemokines (2). No inflammatory cytokine alone is 

responsible for all the characteristic effects of asthma (12). T helper cells can be 

subdivided broadly into T helper type 1 (Th1) and T helper type 2 (Th2) subsets, based 

upon their production of different kinds of cytokines (13-15). The Th1 cells produce 

interferon (IFN)-γ, tumour necrosis factor (TNF)-α, TNF-β, interleukin (IL)-2 and 

IL-12, while the Th2 cells produce IL-4, IL-5, IL-6, IL-10 and IL-13 (2, 13). It is 

thought that the Th2 cytokines (16), particularly IL-4, IL-5, IL-9 and IL-13 are the 

major inflammatory cytokines associated with asthma (12). 
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Increased circulating concentrations of IgE in asthmatics are a result of IL-4-stimulated 

synthesis by B cells (12, 17, 18). IL-4 also has an important role in the early stages of 

Th2 cell development (19) and contributes to the accumulation of macrophages, 

lymphocytes, eosinophils and neutrophils within the airway in mice, but does not appear 

to have a role in airway hyperreactivity (20, 21). In transgenic mice deficient in both 

IL-4 and IL-13, eosinophil infiltration, IgE and IL-5 production are abolished, while the 

absence of only one of these cytokines leads to a reduction in these processes (22). 

Eosinophils are important inflammatory cells which may be responsible for many 

chronic effects in asthmatic patients (23). IL-5 has a role in promoting the activation 

and survival of eosinophils (24). Over-expression of IL-5 in transgenic mice results in 

eosinophilia in the blood and tissues including spleen, bone marrow and lymph nodes 

(25). Conversely, IL-5 knockout mice do not develop blood and tissue eosinophilia 

following infection or allergen challenge (26, 27) and do not show signs of lung damage 

or airway hyperreactivity normally observed with allergen challenge (27). 

Anti-inflammatory cytokines may also have a role in the pathogenesis of asthma (28). 

IL-10, IL-12 and IFN-γ may play a role by suppressing Th1 cytokines (29), Th2 clone 

expansion (30) and Th2 cell differentiation, respectively (28). Asthmatic patients have 

reduced T cell production of IFN-γ which correlates with disease severity (31) and can 

be increased by glucocorticoid therapy (32). Production of IL-12 is also reduced in 

asthmatics (33). IL-12 may have a role in reducing IgE synthesis following allergen 

exposure (28). Reduced mRNA and protein expression of the anti-inflammatory 

cytokine, IL-10 is observed in alveolar macrophages of asthmatics and can be restored 

by glucocorticoid therapy (34). IL-10 inhibits eosinophil survival and the production of 

IL-4 and IL-5 (28, 35). 

Asthma is a complex disease involving a large number of inflammatory mediators, 

which operate directly and through interactions with other cells. 

1.3 The prevalence of asthma 

The prevalence of asthma worldwide is on the rise, particularly among children (36) and 

it is also increasing in the pregnant population (37-39). Recent estimates in the United 

States, based on national health surveys, suggest that between 3.7 and 8.4% of pregnant 

women had asthma between 1997 and 2001 (39). This was increased from 3.2% 
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between 1988 and 1994 (39). Similarly, earlier reports in the literature suggested that 

between 1% and 4% of pregnant women in North America had asthma (40-42), while 

more recent studies report a prevalence of around 7% (37, 43). The large variation in 

prevalence statistics is partly due to differences in the methodology used to assess 

current asthma status, which may range from physician diagnosed asthma to whether 

the patient has experienced an episode of asthma or asthma attack in the previous 12 

months. Kwon et al. found that of the women of child-bearing age who responded as 

having current asthma, only 61.3% also responded positively to having an episode of 

asthma in the previous year (39). Thus, the definition of current asthma is important in 

determining prevalence data. In 2001, the Centers for Disease Control and Prevention 

found that the self-reported asthma prevalence among women across the United States 

was 9.1% (44). 

In Australia, the rate of asthma is one of the highest in the world (36, 45). A 1995 study 

from Western Australia found that 12.4% of pregnant women currently had asthma, 

although only 8.8% had an attack or used asthma medication during pregnancy (46). At 

the John Hunter Hospital (Newcastle, New South Wales), asthma was estimated to 

affect approximately 12% of women (1995-1998 obstetrics database, unpublished data). 

Asthma is the most common respiratory disorder to complicate pregnancy and therefore 

represents a significant public health issue. The high prevalence of asthma in Australia 

makes this an ideal place for research into the effects of asthma during pregnancy on 

fetal development.  

1.4 The effect of asthma on pregnancy outcome 

In 1961, Schaefer and Silverman stated that “The pregnant woman can be reassured that 

her asthma will have no bearing on her pregnancy or on the outcome of her delivery” 

(47). However, between 1950 and 1962 there were 19 maternal deaths associated with 

asthma and pregnancy in England and Wales alone (48). Indeed, in the decades which 

followed, numerous epidemiological studies have demonstrated that asthmatic women 

are more at risk of many poor pregnancy outcomes including preterm labour or delivery, 

low birth weight, delivery by caesarean section, gestational diabetes, chorioamnionitis 

and pre-eclampsia. 
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The following sections contain a detailed review of over 20 studies which have 

previously examined pregnancy outcomes in pregnancies complicated by asthma. The 

methodology used in each of these studies differs widely. Many are retrospective, while 

others are prospective. These studies have produced conflicting results and many have 

not used standardised treatment, clinical management or classification systems. My 

thesis will address these deficiencies in the existing literature on asthma and pregnancy, 

by using standard asthma management protocols to prospectively study pregnant 

women with asthma who have been well-characterised and classified both by disease 

severity and treatment, independently. My study will concurrently collect data from the 

mother, placenta and fetus, which is a unique approach in this field of study.    

1.4.1 Population based studies 

Most studies of asthma during pregnancy are population based, large epidemiological 

studies; some with little information available about asthma severity, disease 

progression and medication use during pregnancy (49). Studies based upon medical 

record review have several disadvantages including the possibility that mild asthma may 

not have been documented (42, 49, 50), with such cases possibly included in the control 

population (51). Nonetheless, these studies may more clearly reflect asthma as it is 

managed in the general population (42, 50). Possible confounders such as maternal 

smoking or socioeconomic status are not always present in administrative records (50) 

and coding or data entry errors are possible (42, 50, 52). Furthermore, since these 

studies rely on retrospective analysis of data, no possibility exists to study the 

mechanisms involved (43). Despite these drawbacks, the large number of subjects used 

in these studies give them more power to detect associations between maternal asthma 

and adverse pregnancy outcomes, which may then be followed up with smaller 

prospective studies. Most of these prospective studies take many years to conduct (53), 

especially when the incidence of asthma is small in the study population. A summary of 

the adverse outcomes detected in population based or prospective studies of maternal 

asthma during pregnancy is shown in Table 1.1. Pregnancy outcomes which were 

investigated, but were not found to be significantly associated with maternal asthma are 

also given in Table 1.1. Studies in which asthmatic women were divided primarily 

based upon medication use will be discussed in Section 1.6. 

 



 

Table 1.1 Results of studies on adverse outcomes in pregnancies complicated by asthma 

Author, year 
(reference) 

Population Asthmatic
(n) 

Control 
(n) 

Definition of asthma Poor outcomes associated with 
asthma 

Poor outcomes not associated 
with asthma 

Gordon et al., 1970 
(40) 

New York, USA 
Prospective Study 

277 30861 Actively treated asthma Maternal mortality 
Perinatal mortality 

Preterm labour 
Low birth weight 
Low Apgar score 

Bahna & Bjerkedal, 
1972 
(54) 

Norway 
Medical Birth 

Registry 
1967-1968 

381 112530 Self report of asthma 
before or during the 

pregnancy 

Hyperemesis gravidarum 
Hemorrhage 

Toxemia 
Complicated labour 
Neonatal mortality 
Preterm delivery 
Low birth weight 
Hypoxia at birth 

Still-birth 
Perinatal mortality 

Infant mortality 

Stenius-Aarniala et 
al., 1988 

(55) 

Finland 
Prospective study 

1978-82 

198 198 American Thoracic 
Society criteria 

Pre-eclampsia 
Caesarean section 

Gestational diabetes 
Premature rupture of membranes 

Hemorrhage 
Preterm labour 

Low birth weight 
Low Apgar score 

Congenital anomalies 
Perinatal mortality 

Lao & Huengsburg, 
1990 
(56) 

Hong Kong 
Retrospective study 

1984-1987 

87 87 History of asthma Low birth weight 
Caesarean section 

Postpartum hemorrhage 
Perinatal mortality 
Preterm delivery 

Post-term delivery 
Complicated labour 

Mabie et al., 1992 
(57) 

Tennessee, USA 
1986-1989 

200 22651 Documented in hospital 
records 

 Preterm delivery 
Low birth weight 

Pre-eclampsia 
Perlow et al., 1992 

(41) 
California, USA 
Case controlled 

study 
1985-1990 

183 130 Doctor diagnosis Caesarean section for fetal distress 
Preterm labour/ delivery 

Premature rupture of membranes 
Low birth weight (steroid users) 

Gestational diabetes (steroid users) 

Congenital anomalies 
Low Apgar score 

Doucette & 
Bracken, 1993 

(58) 

USA 
Prospective study 

1980-1982 

32 3859 Self-report in 1st 
trimester 

Preterm delivery Low birth weight 
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Schatz et al., 1995 
(53) 

USA 
Prospective study 

1978-1990 

486 486 Spirometry & doctor 
diagnosis during study 

 Preterm labour/delivery 
Low birth weight 

Pre-eclampsia 
Perinatal mortality 

Jana et al., 1995 
(59) 

India 
Prospective study 

1983-1992 

182 364 Doctor diagnosis Low birth weight 
(severe asthmatics requiring 

hospitalisation) 

Gestational diabetes 
Antepartum hemorrhage 

Premature rupture of membranes 
Preterm labour 

Caesarean section 
Fetal distress 

Perinatal mortality 
Minerbi-Codish et 

al., 1998 
(60) 

Israel 
1993-1994 

101 77 Interview at 1 day post-
partum 

Respiratory & urinary tract infections 
Caesarean section 

(when presentation not cephalic) 

Low birth weight 
Preterm delivery 

Pregnancy induced hypertension 
Gestational diabetes 

Low Apgar score 
Demissie et al., 1998 

(38, 42) 
New Jersey, USA 
Historical cohort 

study 
1989-1992 

2289 9156 Hospital records Low birth weight 
Preterm labour/delivery 

Congenital anomalies 
Prolonged infant hospital stay 

Placenta previa 
Pre-eclampsia 

Caesarean section 
Transient tachypnea of the newborn 

 

Alexander et al., 
1998 
(37) 

Nova Scotia, 
Canada 

Retrospective 
cohort study 

1991-1993 

817 13709 Self-report at hospital 
admission 

Antepartum hemorrhage 
Postpartum hemorrhage 

Infant hyperbilirubinemia 

Low birth weight 
Neonatal respiratory distress syndrome 

(RDS) 
Congenital anomalies 

Pregnancy induced hypertension 
Caesarean section 

Kallen et al., 2000 
(61) 

Sweden 
Medical Birth 

Registry 
1984-1995 

15512 36985 Midwife interview & 
hospital discharge 

records 

Preterm delivery 
Low birth weight 

Prolonged pregnancy (>41 weeks) 
Pre-eclampsia 

Gestational diabetes 
Infant hypoglycemia 

Congenital anomalies 
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Liu et al., 2001 
(49) 

Quebec, Canada 
Retrospective 
cohort study 

1991-1996 

2193 8772 Hospital records Preterm birth 
Small for gestational age neonates 
Large for gestational age neonates 

Hypertension 
Chorioamnionitis 
Caesarean section 

Prolonged hospital stays 
Congenital anomalies 

Wen et al., 2001 
(50) 

Canada 
Historical cohort 

Study 
1989-1996 

8672 34688 Hospital records Preterm labour 
Pre-eclampsia 

Gestational diabetes 
Premature rupture of membranes 

Amniotic infection 
Caesarean section 

Hemorrhage 

Fetal death 

Sobande et al., 2002 
(62) 

Saudi Arabia 
(high altitude) 

Prospective case 
control study 

1997-2000 

88 106 Emergency room 
admission for asthma 

Low birth weight 
Low placental weight 

Pre-eclampsia 
Spontaneous abortion 

Induced labour 
Caesarean section 
Perinatal mortality 

Congenital anomalies 
Low Apgar score 

Preterm labour 

Sorensen et al., 2003 
(63) 

USA 
Case control study 

1994-1995 

20 (preterm) 
14 (term) 

292 (preterm) 
410 (term) 

Lifetime history of 
asthma diagnosis 

Preterm delivery  

Mihrshahi et al., 
2003 
(51) 

Sydney, Australia 
Prospective Study 

(>36 weeks 
gestation only) 

340 271 Doctor or hospital 
diagnosis 

Hypertension Low birth weight 
Gestational diabetes 

Complicated labour/delivery 
Low Apgar score 

Bracken et al., 2003 
(64) 

Connecticut & 
Massachusetts, USA 

Prospective study 
1997-2001 

832 1266 Lifetime history of doctor 
diagnosed asthma 

Preterm delivery 
(related to treatment) 

Intrauterine growth restriction (IUGR) 
(related to symptoms) 

 
 

Dombrowski et al., 
2004 
(65) 

USA 
Prospective study 

1739 881 Doctor diagnosis Neonatal sepsis (mild asthma group) 
Caesarean section (moderate and severe 

asthma group) 

Preterm delivery 
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The first large study of pregnant asthmatic women was published by Gordon et al. in 

1970 (40). Only patients with actively treated asthma were included in their analysis 

(n=277) and 16 of these patients had severe asthma characterised by regular attacks 

during pregnancy. When corrected for ethnic background, there was no increase in the 

incidence of preterm delivery or low birth weight in asthmatic mothers. The most 

striking finding of this study was the relatively large number of maternal (n=5) or 

perinatal deaths (n=16) from asthmatic mothers, which were more likely to occur in the 

severe asthmatics. Infants from this study were examined after birth and at 8 months of 

age, but no differences in Apgar scores, or psychological parameters were observed at 

these times. However, at one year of age, neurological examination revealed a tendency 

for more abnormalities to be found in infants of asthmatic mothers. Interestingly, seven 

times as many infants from asthmatic mothers compared to control mothers, had 

developed asthma within the first year of life (40).  

Following soon after Gordon et al.’s study was that of Bahna and Bjerkedal which used 

the Norwegian medical birth registry (1967-1968) to examine the pregnancies of 381 

asthmatics and more than 112000 controls who did not suffer from any diseases before 

or during pregnancy (54). Pregnancy complications including hyperemesis gravidarum, 

hemorrhage and toxemia were more frequent in asthmatic patients, as were 

interventions during labour, induced labour and complicated labour. There was a higher 

rate of neonatal mortality, low birth weight, premature birth and hypoxia at birth in 

infants from asthmatic mothers. A disadvantage was that information about asthma 

treatment was not available in this study (54). Numerous other groups have since 

carried out retrospective studies to examine adverse pregnancy outcomes in asthmatic 

women, with conflicting results. 

Lao and Huengsburg studied 87 asthmatic patients who delivered between 1984 and 

1987 in Hong Kong (56). Many of these patients (n=33) did not require medication for 

asthma and were considered to be in remission during the study period. All other 

patients were treated with bronchodilators and some with oral or inhaled steroids. 

Mothers with asthma were significantly more likely to have a low birth weight baby, 

epidural analgesia or a caesarean section. Taking into account asthma treatment, those 

women who did not use any medication had a higher incidence of low birth weight, and 

those taking medication had a higher incidence of caesarean section (56). 
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A self-report questionnaire administered in Italy in 1987 found that maternal asthma 

was a risk factor for low birth weight (66). However, when other variables were 

considered, this relationship was only found to hold in male infants, mothers who 

smoked and those who lived in an industrial town, suggesting that other risk factors 

contribute to the effect of maternal asthma on pregnancy outcome (66).  

The effects of asthma and asthma medication on pregnancy outcome were examined in 

a Californian perinatal database study between 1985 and 1990 (41). There were 31 

steroid dependent asthmatic women and 50 non-steroid dependent asthmatic women 

and 130 controls were selected from the reference population. Asthmatics who used 

steroids were more likely to have or develop diabetes during pregnancy. Asthmatics of 

both groups were more at risk of caesarean section, preterm labour or delivery and 

preterm premature rupture of the membranes (PPROM), compared to the control group. 

A statistically significant increase in low birth weight was only observed in the steroid 

dependent asthmatics, although there was a trend for this in the non-steroid dependent 

asthmatics also. Patients who only used over the counter medications were excluded and 

thus, this study represented a group of more severe asthmatics (41).  

Two studies from New Jersey, based upon analysis of hospital records between 1989 

and 1992 have examined neonatal outcomes (38) and maternal and pregnancy outcomes 

(42) in asthmatic women. Data from 2289 asthmatic women were collected and 

compared to 9156 control subjects. Maternal asthma was significantly associated with 

low birth weight, preterm delivery, small for gestational age (SGA) neonates, congenital 

anomalies and prolonged infant hospital stay. After adjustment for potential 

confounders, asthmatic mothers also had an increased risk of preterm labour, placenta 

previa, caesarean section, prolonged hospital stay (greater than the median of 3 days) 

and hypertensive disorders of pregnancy, including pre-eclampsia (42). An analysis of 

almost 25000 pregnant women in Canada also found a significant association between 

pregnancy induced hypertension (PIH) and asthma which was treated with inhaled 

steroids during pregnancy (67).  

Transient tachypnea of the newborn is a condition causing respiratory distress in the 

neonate and has been linked to the development of asthma in childhood (38, 68). 

Demissie et al. examined this neonatal outcome in the same group of asthmatic patients 

used to examine other pregnancy outcomes (42). There was no increased risk of 
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respiratory distress syndrome (RDS) or neonatal or infant death in the asthmatic 

population (38). Neonates from asthmatic mothers were more likely to have transient 

tachypnea after accounting for confounding risk factors such as caesarean delivery and 

premature birth. This association was stronger for male infants than female infants of 

asthmatic mothers, possibly because male sex is a known risk factor for this condition, 

as well as others such as RDS (69), due to differences in fetal lung maturation between 

the sexes (70).  

Schatz et al. (1991) earlier described an increased risk of transient tachypnea of the 

newborn, but not RDS, in a prospective study of 294 asthmatic women and 294 controls 

(71). This study did not find a link with either asthma severity or medication use. The 

association is of interest, since transient tachypnea of the newborn has previously been 

shown to be related to a higher incidence of asthma and atopic symptoms at 5 years of 

age (68). It is possible that there are links between the in utero environment in asthmatic 

pregnancies and the risk of developing childhood asthma in the offspring, independent 

of genetic factors. This is demonstrated by the fact that the development of atopy in 

children is more closely associated with maternal asthma or IgE levels rather than 

paternal asthma or IgE (72-74). Therefore, as well as the immediate implications of 

poor pregnancy outcomes on the offspring of asthmatic mothers, there may be long-

term implications for these children. Some studies have investigated the long-term 

effects of asthmatic pregnancies on offspring and found an increase in the incidence of 

left-handedness (75), wheezing at 15 months of age (71) and childhood respiratory 

diseases in general (76). Others have found no long-term developmental effects (77). 

Investigating the longer-term outcomes of pregnancies complicated by asthma is 

beyond the scope of this thesis, but is being followed up in our Australian cohort by Dr 

Vicki Clifton and colleagues. 

Mabie et al. examined aspects of asthma in 200 pregnancies in Tennessee from 1986 to 

1989 by medical record review (57). There was no increased rate of preterm delivery or 

low birth weight among asthmatic women compared to the general population rates, 

which were very high (17.7% and 6.3% respectively). However, intrauterine growth 

restriction (IUGR) was significantly more likely in women with moderate or severe 

asthma, who required hospitalisation during pregnancy, compared to women with mild 

asthma, who were not hospitalised for asthma during pregnancy. The caesarean section 

rate and incidence of postpartum exacerbations were also significantly increased in 
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moderate and severe asthmatics compared to mild asthmatics.  Interestingly, this group 

found that asthmatic women who had a caesarean delivery were 18 times more likely to 

have exacerbations of asthma postpartum compared to asthmatics who had a vaginal 

delivery. The mechanism for this effect is unknown (57). 

A retrospective cohort study from Nova Scotia, Canada, studied 817 asthmatic women 

and 13709 non-asthmatic women between 1991 and 1993 (37). Medical records were 

examined to assess medication use, which may be subject to errors, due to 

underestimation or overestimation by pregnant patients. Overall, the prevalence of 

asthma in this population increased from 4.8% in 1991 to 6.9% in 1993. Over 45% of 

asthmatic women did not use any medication to treat asthma, while 37.1% used β2-

agonists and 17% used steroids. Regardless of medication use, asthmatic women were 

found to be at increased risk of antepartum or postpartum hemorrhage, possibly due to 

alterations in platelet function in asthmatics (78, 79). In addition, neonates from 

asthmatic mothers who used steroids were found to be at increased risk of 

hyperbilirubinemia (37). This outcome was also examined by Stenius-Aarniala et al., 

who did not find an alteration in neonatal risk for hyperbilirubinemia in either mild or 

severe asthmatics (55). 

The effect of maternal asthma on pregnancy outcomes was examined in a population 

based study, using administrative data available from the Canadian Institute for Health 

Information from 1989 to 1996 (50). Maternal asthma was associated with all adverse 

outcomes examined; namely, preterm labour, PIH, pre-eclampsia, gestational diabetes, 

antepartum hemorrhage, membrane disorders (including PPROM), postpartum 

hemorrhage and caesarean delivery. The association of maternal asthma with preterm 

labour, abruptio placenta, PPROM, intra-amniotic infection and fetal death was found to 

be stronger in teenage mothers than adult mothers (50). Apter et al. also examined 

adolescents with severe asthma and found a high rate of exacerbations, hospitalisations 

and emergency room visits in these patients, which were associated with respiratory 

tract infections and lack of medication compliance (80). However, no evidence of an 

increased rate of PIH, preterm delivery or IUGR was found in asthmatic adolescents 

compared to general estimates for adolescent pregnancies (80).  

A study of 2193 asthmatic and 8772 non-asthmatic singleton pregnancies in Quebec 

was carried out from 1991 to 1996 (49). After adjusting for confounders such as 
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maternal age and pre-existing diabetes or hypertension, this study found that maternal 

asthma was associated with an increased incidence of preterm labour and delivery, SGA 

and large for gestational age neonates, PIH, chorioamnionitis, abruptio placentae and 

caesarean delivery. Interestingly, this group also analysed data separately based upon 

fetal sex and found that the risks of preterm birth and pre-eclampsia were higher in 

asthmatic women pregnant with a female fetus, compared to asthmatic women pregnant 

with a male fetus. The prevalence of asthma in this population was very low and similar 

among women pregnant with a female fetus (0.52%) and women pregnant with a male 

fetus (0.51%) (49). The cause of the increased risk to the female fetus is unknown and 

has not been examined in any other studies. 

Kallen et al. (2000) examined the effect of asthma on pregnancy outcomes using the 

medical birth registry and the hospital discharge register in Sweden (61). The medical 

birth registry identified women with asthma from midwife interviews during the first 

trimester, while a combination of this and the hospital discharge register was used to 

identify women who had been hospitalised for asthma and also had a pregnancy 

between 1984 and 1995. Asthmatic women identified by either or both of these methods 

were found to have an increased risk of preterm delivery, low birth weight, or prolonged 

pregnancy (>41 weeks gestation) (61). The approach used in this study would have 

identified women with very mild asthma as well as those with severe asthma requiring 

hospitalisation. However, despite this, the study did not separate subjects based on 

disease severity which may have been a contributing factor to the outcomes examined. 

A retrospective analysis of medical records by Beckmann for the period 1992 to 1997 in 

the USA assessed outcomes in 782 asthmatic women (43). Over 90% of these women 

were mild asthmatics (according to hospital records) and almost half did not use any 

asthma medication during pregnancy. Only 5.6% of the asthmatics used a β2-agonist 

and inhaled steroid for treatment. Lung function was assessed by peak flow 

measurements in each trimester in a small number of women and did not change during 

pregnancy, as has previously been described in pregnant women without asthma (81). 

There was an increased incidence of meconium staining, preterm labour and 

oligohydramnios among asthmatic women. This study lacked the numbers to be able to 

convincingly demonstrate a relationship between steroid use and outcomes associated 

with altered placental function, such as IUGR, PIH and oligohydramnios (43). 
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In 1993, over 1000 parents of children aged 5-11 years were surveyed in the United 

Kingdom with regard to the child’s history of respiratory disease and pregnancy related 

factors including birth weight and preterm delivery (76). Preterm birth was significantly 

more likely to be reported when the mother was asthmatic, but not when the father was 

asthmatic, compared to children of non-asthmatic parents. An obvious drawback of this 

study was the potential for recall errors on the part of the parent, given the amount of 

time that had passed since the pregnancy. In addition, preterm birth was assessed by 

asking the question “Was your baby born prematurely?” which could lead to errors as a 

result of the participant’s misunderstanding of the clinical definition of preterm birth. 

Maternal smoking was an additional risk factor for preterm delivery and no association 

was found between parental asthma and low birth weight (76). 

The risk of preterm delivery in asthmatic women was recently assessed in the USA by 

Sorensen et al. (63). Women participating in a prenatal screening program between 

1994 and 1995 were included in this case control study. The prevalence of asthma, 

defined as a lifetime history of asthma diagnosis, was compared in 312 women who 

delivered preterm and 424 control subjects who delivered at term. Significantly more 

preterm cases had a positive asthma history (6.4%) compared to control cases (3.3%), 

after adjustment for multiple confounders. A similar study was previously reported by 

Kramer et al., with histories of asthma symptoms or asthma diagnosis more commonly 

associated with idiopathic preterm labour and idiopathic recurrent preterm labour (82). 

However, the risk of preterm labour was not associated with increased serum IgE or 

altered response to inhaled methacholine challenge in the mother (82). A two-fold 

increase in the risk of preterm labour or delivery with no increased risk of low birth 

weight was also reported by Doucette and Bracken (58).  

The results of these population based studies indicate that maternal asthma is a risk 

factor for some poor pregnancy outcomes, particularly low birth weight, preterm labour 

or delivery, PIH or pre-eclampsia. 

1.4.2 Prospective studies 

There are few studies which have prospectively examined pregnant women with asthma 

in order to study the effects of asthma on pregnancy outcome and the changes in asthma 

which occur during pregnancy. These studies have the distinct advantage of being able 
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to assess lung function, treatment and asthma symptoms during pregnancy, while the 

intervention and/or close follow-up of asthmatic women ensures that asthma is well 

managed throughout pregnancy and is often well-characterised (53). However, due to 

the smaller sample sizes, significant associations between maternal asthma and adverse 

outcomes are frequently not observed. While the intervention itself may alter the risk of 

an adverse outcome, this remains the most ethical approach to asthma management. One 

problem when comparing prospective studies is that each population of asthmatics 

examined varies with regard to steroid use, general treatment and asthma severity, with 

some studies focussed on mild asthmatics and others on women with severe asthma. 

This makes comparison between studies difficult. In addition, standard classification 

systems are often not employed and the criteria used to assess disease severity differ 

between studies.  

A prospective study of asthmatic mothers was conducted by Stenius-Aarniala et al. in 

Finland between 1978 and 1982 (55). The study followed 181 asthmatic women during 

pregnancy, with 17 of these women having two pregnancies in the study. Data on the 

control population was obtained retrospectively from labour records and subjects were 

matched for age, parity and date of delivery. One of the disadvantages of this study was 

the fact that only 20% of study subjects were recruited during the first trimester, with as 

many as 26% of subjects recruited in the third trimester, making it difficult to follow 

changes in asthma during pregnancy. However, an advantage was that subjects were 

classified according to asthma severity as very mild, mild, moderately severe or severe. 

In addition, skin-prick tests and serum IgE was used to assess atopy in these women, 

with 62% being classified as atopic. Of these women, 59% had very mild or mild 

asthma. During pregnancy, 42% of subjects required more maintenance therapy than 

before pregnancy, while 18% required less therapy than before pregnancy. Postpartum, 

26% of subjects reported a worsening of asthma, while 34.5% reported an improvement. 

With regard to pregnancy outcomes, this study found a significantly higher incidence of 

pre-eclampsia in asthmatics (14.6%) compared to control subjects (4.5%). Mild pre-

eclampsia occurred more often in women with severe asthma (29%) compared to 

women with very mild asthma (8.7%). The use of systemic steroids may also have 

contributed to the high frequency of pre-eclampsia, which was 25% in asthmatic women 

using systemic steroids and 10% in asthmatic women who did not use systemic steroids. 
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Asthmatic subjects also had a higher rate of caesarean section, but no differences in 

perinatal outcome, including birth weight, were found (55). 

Over many years, Schatz and colleagues have performed the most comprehensive 

studies of the effects of asthma on pregnancy outcome as well as the effects of 

pregnancy on asthma progression. This group prospectively managed asthmatic women 

during their pregnancies, measured lung function by spirometry at several times and 

related these measurements to pregnancy outcome (83). In 352 asthmatic women who 

had at least three lung function measurements made during pregnancy, there was a 

correlation between mean percent predicted FEV1 and birth weight. Subjects with an 

FEV1 in the lowest quartile (<83% predicted) were significantly more likely to have an 

infant with a birth weight in the lowest quartile (<3150 g) or a ponderal index <2.2, 

indicative of asymmetric IUGR (84, 85). This finding was not related to steroid use. 

There was no relationship between low FEV1 and preterm delivery, PIH or pre-

eclampsia. A later publication by this group on 486 women with actively managed 

asthma and 486 controls, found no significant differences in the incidences of pre-

eclampsia, perinatal mortality, low birth weight, IUGR, preterm delivery or congenital 

malformations (53). This study was conducted over a period of 12 years and the 

asthmatic subjects were well-characterised and their asthma was actively managed. A 

further advantage was that control subjects also underwent pulmonary function testing, 

and were matched for maternal age, parity, smoking and delivery date (53). Despite the 

negative findings regarding adverse perinatal outcomes, many prospective studies from 

this group have provided valuable information about the physiological mechanisms 

which may be involved in altering outcome and course of asthma during pregnancy. 

Jana et al. examined 182 pregnancies complicated by asthma in India between 1983 and 

1992 and compared outcomes to 364 non-asthmatic pregnancies (59). Most women had 

well controlled asthma (90.5%) and were using medications including oral or inhaled 

β2-agonists, theophylline or steroids. There was no significant increase in the rate of 

preterm labour, low birth weight, caesarean section, perinatal mortality, hemorrhage or 

fetal distress in the asthmatic group compared to the control group. However, 15 of the 

asthmatics had a severe asthma attack during pregnancy which required hospitalisation 

and in these women there was a significant reduction in birth weight (59). 
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A prospective study in Israel comparing asthmatic mothers (n=101) and control mothers 

(n=77), collected data by interview at 1 day postpartum and from medical records (60). 

Asthmatic women were classified as mild (no inhaled steroid use), moderate (inhaled 

steroid use, no hospitalisations for asthma) or severe (inhaled steroid use with periodic 

or permanent systemic steroid use and possibly hospitalisations for asthma). Many 

women believed their asthma worsened during pregnancy (38%), while 20% believed it 

had improved. Significantly more asthmatic women suffered from urinary tract or 

respiratory infections (30.6% of women with mild or moderate asthma and 68.8% of 

women with severe asthma) compared to non-asthmatic women (approximately 5%). 

The marked effect of severity on infections may be related to suppression of the 

immune system following prolonged glucocorticoid use. There was no significant effect 

of asthma on other outcomes including preterm delivery, gestational age, birth weight 

and PIH (60).  

Pregnancy outcome of asthmatic patients residing at high altitude in Saudi Arabia has 

been studied (62). Sobande et al. hypothesised that the low oxygen environment at high 

altitude may further contribute to complications associated with asthma and pregnancy 

through a worsening of asthma. The pregnancies of 88 asthmatic women and 106 non-

asthmatic women were studied between 1997 and 2000. Asthmatic patients were 

managed by a medical specialist and were treated with the β2-agonist, salbutamol alone 

(n=57), in combination with oral theophylline (n=20) or with oral prednisolone (n=11). 

Asthmatic pregnancies were more likely to be complicated by pre-eclampsia, congenital 

malformations, low Apgar score or perinatal mortality and mean birth weights and 

placental weights were significantly reduced in asthmatics compared to non-asthmatics. 

Gestational age at delivery was not different between the groups. Asthma control was 

considered poor in 17% of asthmatic subjects. It is possible that the hypoxic 

environment contributed to an amplification of poor outcomes in these asthmatic 

women. However, women were selected for the study because they had visited the 

emergency room with asthma while they were pregnant, and the outcomes may simply 

have been observed due to the severity of the asthma. No comparison with a similar 

group of asthmatic women at low altitude was made (62) and thus the effect of high 

altitude on maternal asthma could not be properly examined. 

As part of the childhood asthma prevention study in Sydney, Australia, pregnant women 

with physician diagnosed asthma, and non-asthmatic pregnant women whose partners or 
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other children had asthma, were prospectively studied (51). In this study, women were 

recruited at 36 weeks; hence there was no evaluation of the effect of asthma on preterm 

labour or delivery. Of the 340 asthmatic women, 31% did not use any medication to 

control asthma during pregnancy, while 35% of women used short-acting β2-agonists 

alone and 31% used inhaled steroids. This study was complicated by the fact that 

several (21 out of 271) non-asthmatics were using short acting β2-agonists for wheezing 

during pregnancy, despite no previous doctor diagnosis of asthma. These women may 

have had mild asthma, but were not assessed during the study or excluded from 

analysis. Hypertension was significantly increased in the asthmatic group compared to 

the non-asthmatic group, after adjustment for confounders. There was no significant 

effect of asthma on other outcomes including pre-eclampsia, gestational diabetes, 

induced labour, caesarean delivery or any neonatal outcomes, including birth weight, 

which the authors conclude suggests that when the asthmatic pregnancy progresses to 

term there may be no major problems for the neonate (51).  

A recent prospective study from the USA examined pregnancy outcomes in 832 

asthmatic women and 1266 non-asthmatic controls (64). Asthma was defined as a 

lifetime history of doctor diagnosed asthma, and symptoms and medication use during 

pregnancy were recorded and each rated as intermittent, mild persistent, moderate 

persistent or severe persistent, according to the 2002 global initiative for asthma 

guidelines. Asthmatic women using at least two controller medications including an 

inhaled glucocorticoid (plus long acting β2-agonist or theophylline or leukotriene 

inhibitor and/or oral glucocorticoid) had a three-fold increase in risk of preterm 

delivery. The use of oral steroids daily resulted in a 2.2 week decrease in gestational age 

at delivery, while the use of theophylline daily resulted in a 1.1 week reduction in 

gestational age at delivery. There was no relationship between symptom scores and 

preterm delivery risk. However, there was an increased risk of IUGR in asthmatic 

women with high symptom and severity scores (symptoms daily) but no association 

with treatment. Interestingly, women who had not been diagnosed as asthmatic by a 

doctor, but who were experiencing symptoms and/or using medication for asthma were 

also found to be at significantly increased risk for IUGR compared to non-asthmatic 

women (64).   

The results of these prospective studies have not always supported epidemiological 

findings. However, associations between asthma and pre-eclampsia, and asthma and 
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low birth weight have been demonstrated. The association between maternal asthma and 

reduced fetal growth seems to be associated mostly with hospitalisations (59, 62), or 

reduced lung function in the mother (83). Fetal sex may be a confounder, and studies 

reporting no adverse perinatal outcomes may have done so due to a lack of separate data 

analysis for women pregnant with male and female fetuses. There are deficiencies in 

classification approaches in some prospective studies. Classification at enrolment (65), 

rather than constant monitoring of women, and classification which considers asthma 

throughout pregnancy is one difference between studies. In some studies, control 

patients were not assessed for the absence of asthma (51, 64). The use of standard 

classification systems and close monitoring of all patients, will improve the quality of 

data obtained from prospective studies of asthma and pregnancy.  

1.4.3 Possible mechanisms for the effect of maternal asthma 
on pregnancy outcomes 

Despite the conflicting results, it is apparent that asthmatic women may be at increased 

risk of poor pregnancy outcomes. However, the majority of the studies discussed did not 

directly examine the possible mechanisms involved, with the exception of the study of 

Schatz et al., where maternal lung function was measured and related to birth size (83). 

Nonetheless, the following mechanisms have been presented by several authors to 

explain the adverse pregnancy outcomes observed with maternal asthma (42, 49, 50, 53, 

61, 63). A common pathway leading to hyperactivity of the smooth muscle in both the 

bronchioles and the myometrium has been proposed to explain the increased incidence 

of preterm labour in asthmatics (58, 82, 86). Bertrand et al. initially suggested this 

mechanism after finding evidence of airway hyperreactivity in the mothers of premature 

infants (86), but this was not found by another group examining airway responsiveness 

in mothers of premature or low birth weight children (87). At least one study has 

suggested an additional risk of prolonged pregnancy in asthmatic women (61), which 

could not be explained by this same mechanism.  

Hypoxia has been proposed to be a contributor to low birth weight, pre-eclampsia, 

congenital malformations, spontaneous abortions and placenta previa in asthmatic 

women (62). Hypoxemia or reduced PO2 is a feature of acute severe asthma or status 

asthmaticus (88-90) and of maternal smoking (91). A small decrease in maternal PO2 
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can have serious effects on the fetus (92), since the slope of the fetal oxygen 

dissociation curve is steep in the 50% oxygen saturation range (93). McClure and James 

demonstrated that administration of oxygen to mothers in labour resulted in increased 

umbilical cord O2 values at delivery, suggesting that there is a relationship between 

maternal and fetal oxygen (93). However, maternal hypoxia during asthmatic 

pregnancies has not previously been directly investigated in relation to fetal outcome.  

The release of bioactive mediators, such as inflammatory products could also be 

involved in these mechanisms. Poor pregnancy outcomes including low birth weight 

and preterm delivery are also features of many other inflammatory diseases including 

rheumatoid arthritis (94-96), malaria (95, 97-99), systemic lupus erythematosus (100), 

inflammatory bowel disease (101-103) and periodontal disease (104, 105). Moreover, 

elevated maternal serum levels or placental gene expression of inflammatory cytokines 

has also been associated with IUGR (98, 106-109). Placental membrane inflammation 

(histological chorioamnionitis and funisitis) was increased in HIV positive women and 

correlated with the high risk of preterm delivery (110). Bowden et al. found that women 

with active inflammatory arthritis during pregnancy had smaller babies at birth and up 

to 8 months of age compared to healthy control women or women whose disease was in 

remission (95). These data indicate that active inflammation during pregnancy may 

contribute to low birth weight. Despite this evidence, an inflammatory mechanism for 

reduced fetal growth has not previously been examined in asthmatic pregnancies, but 

will be investigated in this thesis. 

Asthma treatment, particularly with inhaled or systemic steroids has been widely 

investigated as a possible mediator of the adverse effects and will be discussed further 

in Section 1.6. Smoking, a contributor to low birth weight, has consistently been 

reported to be more common among asthmatics than non-asthmatics (37, 38, 43, 46, 51, 

60, 61). However, most studies have found that maternal smoking does not fully explain 

the association between asthma and adverse pregnancy outcomes.  

In this thesis, maternal asthma severity, inflammation, lung function and treatment with 

inhaled steroids will be examined in relation to fetal growth in asthmatic pregnancies. 

This an important area to research given the discrepancies in results for low birth weight 

risk with maternal asthma and the lack of mechanistic data related to this outcome. 

Uniquely, this study of asthma and pregnancy at the Mothers and Babies Research 
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Centre (Newcastle, Australia) is the first to examine possible placental mechanisms 

contributing to adverse outcomes in pregnancies complicated by asthma. Initial studies 

involved an examination of placental blood flow in asthmatic pregnancies using a 

perfusion method (111). The results showed that corticotropin releasing hormone 

(CRH)-induced vasodilation and potassium chloride (KCl) or prostaglandin F2α (PGF2α)-

induced vasoconstriction were significantly reduced in placentae collected from women 

with moderate and severe asthma, but unaffected in placentae from women with mild 

asthma compared to a non-asthmatic control group (111). Further investigation into 

alterations of placental function in asthmatic pregnancies is the subject of this thesis. 

The large number of adverse outcomes associated with asthma suggests there is a 

complex interaction of factors associated with the disease and possibly its treatment 

which may alter normal maternal physiology during pregnancy. 

1.5 The effect of pregnancy on asthma severity 

Physiological changes in the respiratory system occur during pregnancy. Specifically, 

alterations in pulmonary function and maternal-fetal gas exchange occur as a result of 

the presence and growth of the fetus as well as alterations in circulating hormones 

during the pregnancy. Although lung function as measured by FEV1, PEFR, vital 

capacity (VC) or FEV1:FVC does not appear to change significantly during pregnancy 

in asthmatics or non-asthmatics (43, 81, 112-116), there may be a decrease in the total 

lung capacity and in residual volume and functional residual capacity (112, 117, 118). 

Beginning in the first trimester and continuing throughout pregnancy, there is a 

significant rise in the minute ventilation or amount of gas expelled from the lungs each 

minute (112, 117-120). This is due to an increased tidal volume and unchanged 

respiratory rate (121-123), which contributes to dyspnea (124, 125) in up to 75% of 

women (112, 126). These changes are thought to be influenced by increases in 

circulating progesterone (117, 127, 128), since progesterone administration to non-

pregnant adults resulted in an increased sensitivity of the respiratory centre, in a similar 

manner to that observed in pregnant women (127). As a consequence of altered minute 

ventilation, respiratory alkalosis occurs with an increase in blood pH to 7.40-7.47 (129, 

130). In asthmatic women, any changes in FEV1 or FEV1:FVC during pregnancy are 

likely to be due to asthma itself, rather than normal changes associated with pregnancy 
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(122, 123). In addition, changes in PO2 or PCO2 may be more severe in a pregnant 

patient than a non-pregnant patient (120, 123, 131). The normal alkalosis of pregnancy 

may be further aggravated by maternal asthma, potentially resulting in alterations in 

placental blood flow and oxygen supply to the fetus (122). There has been one report of 

maternal alkalosis following hospitalisation with severe asthma which resulted in fetal 

demise and still-birth (132). It is important to understand how maternal asthma changes 

during pregnancy since this could impair fetal gas exchange and seriously affect fetal 

development.  

The consensus has remained for many years that one third of women experience a 

worsening of asthma during pregnancy, one third improve and one third remain 

unchanged (133, 134). A variety of methods have been used to obtain this data, 

including subjective patient questionnaires, daily symptom recording and objective 

measures of lung function. Few studies have employed more than one type of analysis 

of maternal asthma alterations during pregnancy. In 1964, Fein and Kamin assessed 

asthma severity according to requirements for treatment and reported that 12% of 

subjects improved, 21% worsened and 67% remained the same (135). Gibbs et al. 

reported that 43% of asthmatics improved, 18% deteriorated and 39% remained the 

same during pregnancy (136). Despite the variation in results reported by individual 

studies, it is clear that pregnancy itself can have a major impact on asthma in some 

women. Cases of severe life threatening asthma requiring first trimester termination 

have been reported and an improvement in maternal asthma within 24 hours of 

termination has been observed (137, 138). However, the course of an individual 

woman’s asthma during pregnancy remains unpredictable. Therefore, an understanding 

of the mechanisms which contribute to worsening or improved asthma during 

pregnancy is important for ensuring the best outcome for both mother and baby and this 

issue will be addressed in this thesis.  

In 1976, Sims and De Swiet performed lung function tests on asthmatic women during 

pregnancy and post-partum (115). With small study numbers, they found that there were 

no pregnancy-related changes in FEV1:VC ratio (an indicator of bronchospasm), or VC 

in either non-asthmatic or asthmatic women. Asthmatic women with abnormal 

spirometry had a tendency to improve post-partum, but this was not statistically 

significant (115).  
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Improvement in asthma during pregnancy has been reported by Juniper et al. (116). 

This study was conducted with 16 subjects, who were recruited prior to conception. 

They demonstrated an overall improvement in airway responsiveness to methacholine 

challenge in the second trimester compared to pre-conception, but no significant 

changes in FEV1 or FEV1:VC were observed. There was individual variation between 

the subjects, with the majority showing an improvement in objective measures and 

clinical symptoms of asthma during pregnancy, with a reversion to pre-pregnancy status 

post-partum. However, no relationship between airway responsiveness and serum 

progesterone or estriol concentrations was found (116, 139).  

Schatz et al. examined the progression of asthma in 330 women who recorded 

symptoms, wheezing and sleep/activity interference daily during pregnancy and up to 

12 weeks post-partum (134). Women subjectively rated their asthma as having 

improved, remained the same or worsened during the pregnancy. In women whose 

asthma worsened, there was a significant increase in the number of days of wheezing 

and interference with sleep and activity between 25 and 32 weeks gestation. In 

asthmatic women who felt their asthma improved during pregnancy, there was a 

decrease in wheezing and little change in interference with sleep or activity between 25 

and 32 weeks gestation. In all women, there was a fall in wheezing and interference 

with sleep and activity between 37 and 40 weeks. Most women who felt their asthma 

worsened had a subjective improvement post-partum, with significantly fewer days of 

wheezing at 5-12 weeks postpartum compared to 29-32 weeks. Conversely, most 

women who felt their asthma improved during pregnancy had a subjective worsening of 

asthma after pregnancy, with significantly more days of interference of activity in this 

period compared to 29-36 weeks gestation (134).  

Some women were assessed in two successive pregnancies and 60% followed the same 

course of asthma (worse, improved or the same) in the second pregnancy as the first 

(134). Williams reported a similar finding in 1967, with 63% of women followed for 

more than one pregnancy having a similar change in asthma each time (48). Early 

reports suggested that women whose asthma was not affected by pregnancy have 

“pollen-sensitive” asthma, those who improve during pregnancy have “ovarian asthma” 

(improved by the high hormone environment of pregnancy) and those who worsen 

during pregnancy must be sensitive to a product of the conceptus (140, 141). In the 

study from Schatz et al., a substantial minority of patients did not follow the same 
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course of asthma in subsequent pregnancies, suggesting that there must be a determinant 

of asthma which differed in the different pregnancies (134). A further study from this 

group has examined maternal and pregnancy characteristics such as smoking, maternal 

body weight, fetal sex, season of delivery and changes in nasal symptoms in pregnancy, 

to determine whether any of these factors may be causing the pregnancy-associated 

changes in asthma (142). Season of pregnancy or delivery has not been found to effect 

asthma progression (48, 142). Kircher et al. found that only the course of rhinitis during 

pregnancy correlated with the course of asthma during pregnancy (142). Rhinitis 

worsened or improved in more than 50% of patients whose asthma had also worsened 

or improved, respectively (142). This was not surprising, since there may be common 

systemic inflammatory mechanisms in asthma and rhinitis (143). The authors suggest 

that factors such as IgE which affect both the upper and lower airways may be 

important in changes that occur in asthma during pregnancy (142). Another group found 

that cockroach-specific IgE levels in serum were linked to clinical asthma severity 

during pregnancy, and may be useful as a predictive measure (144). Early studies from 

Gluck and Gluck (1976) also found a correlation between an increase in serum IgE and 

worsening asthma during pregnancy (133).  

Similar trends on asthma progression during pregnancy have been obtained from other 

studies (48, 56, 145). Lao and Huengsburg reported that amongst treated asthmatics, 

38.9% had no change, 29.6% had an increase and 31.5% had a decrease in the 

frequency and severity of symptoms or attacks during pregnancy (56). When compared 

to the group whose asthma did not change, asthmatic women who reported a worsening 

of asthma during pregnancy had a lower (not significant) percent predicted PEFR, while 

those women who reported an improvement in asthma during pregnancy had 

significantly higher percent predicted PEFRs (56).   

Data obtained in Western Australia indicated that during pregnancy, 16.4% of women 

experienced improved asthma, 35.4% experienced worsening asthma, 35.4% 

experienced no change in asthma and the remainder were unable to comment (46). 

Wheezing or asthma attacks were experienced by 62% of women during pregnancy. A 

large number of asthmatics were also smokers in this study, although smoking was not 

related to the changes in asthma during pregnancy (46).  
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Hospitalisation of asthmatic patients during pregnancy has been reported to occur in 

1.6% of patients and emergency room visits in 12.6% of patients (134). Wendel et al. 

reported that, with the use of objective pulmonary function tests, 62% of exacerbations 

during pregnancy required hospitalisation of the asthmatic patient (146). Stenius-

Aarniala et al. found that 9.3% of subjects had an acute asthma attack during pregnancy 

and this was more common in women who did not use inhaled steroids (147). They 

concluded that a mild attack of asthma, if promptly treated does not affect pregnancy or 

perinatal outcome (147).  

Several studies indicate that women with severe asthma are more likely to show signs of 

worsening asthma during pregnancy than women with milder asthma (48, 133, 148). In 

a recent study from Schatz and colleagues, the relationship between asthma severity 

classification and subsequent changes in asthma during pregnancy was assessed in over 

1700 pregnant asthmatics (148). Exacerbations of asthma occurred in over half of all 

severe asthmatics, while only 12% of patients with mild asthma had exacerbations 

during pregnancy. Re-classification of asthma from mild to either moderate or severe 

occurred in 30% of patients, while only 23% of patients who were initially moderate or 

severe were later re-classified as mild. Asthma morbidity, encompassing 

hospitalisations, symptoms, steroid requirements and unscheduled doctor visits, was 

found to be closely related to the pregnancy classification of asthma (148).  

There is little evidence that labour and delivery themselves have any major effect on 

maternal asthma. If an acute attack occurs at this time, normal medication use is 

recommended (149). The prospective study of 198 asthmatic women by Stenius-

Aarniala et al. found that 14% of patients with atopic asthma and 22% of patients with 

non-atopic asthma experienced asthma symptoms during labour (55). They reported that 

in all women, symptoms during labour were mild and well controlled by inhaled β2-

agonists (55). Similar data has been reported by other groups (57, 59) including Schatz 

et al. (1988) where 10% of women experienced mild symptoms during labour and 

delivery (134). The larger multi-centre study by Schatz et al. (2003) found that asthma 

symptoms were present during labour in 17.9% of all patients, with 46% of women with 

severe asthma experiencing symptoms during this time (148).  
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1.5.1 Possible mechanisms for the effect of pregnancy on 
maternal asthma 

The mechanisms which contribute to changes in asthma during pregnancy are not well 

understood, although increases in maternal circulating hormones may be involved. The 

pregnancy-associated rise in serum free cortisol may contribute to improvements in 

asthma during pregnancy (48, 126), since cortisol has anti-inflammatory properties. In 

addition, estradiol and progesterone concentrations increase significantly during 

pregnancy (92). Progesterone is known to contribute to increased minute ventilation 

during normal pregnancy (127) and is also a potent smooth muscle relaxant (150) and 

may therefore be expected to contribute to improved asthma during pregnancy. 

Alternatively, changes in β2-adrenoreceptor responsiveness and airway inflammation as 

a result of circulating progesterone may contribute to worsening asthma during 

pregnancy (151). Tan et al. found that in female asthmatics, there was a desensitisation 

and down-regulation of lymphocyte β2-adrenoceptors following administration of 

medroxyprogesterone (152). Alterations in asthma associated with changes in sex 

steroid production during the menstrual cycle have previously been observed (136, 

153), with up to 40% of women experiencing an exacerbation around the time of 

menstruation when progesterone and estradiol levels are low (154). However, the role of 

progesterone and estradiol in premenstrual exacerbations of asthma remains 

controversial (153). No correlation has been found between the occurrence of 

premenstrual asthma and the progression of asthma during pregnancy (48, 136). 

During pregnancy, exposure to fetal antigens, or alterations in immune function may 

predispose some women to worsening asthma. Successful pregnancy has previously 

been described as a Th2 phenomenon (155-158), and asthma itself is primarily a Th2 

mediated disease (16). Although in both asthma and pregnancy, the distinction between 

Th2 and Th1 is not definitive (159, 160), in this sense, asthma may be expected to 

become worse during pregnancy. Another inflammatory disease, rheumatoid arthritis, 

which is Th1 mediated, is known to go into remission during pregnancy in 75% of 

patients (161, 162). 

The fact that some women experience an improvement in asthma during pregnancy, 

while others experience a deterioration of asthma and that different patterns are 

observed in different pregnancies in the same mother (134, 145) casts doubt on the 



Chapter 1 - Literature Review 

28 

contribution of these major common hormonal or immune changes of pregnancy. 

However, studies in non-pregnant women have shown that a high proportion of 

asthmatics have an abnormal concentration of either progesterone or estradiol compared 

to non-asthmatics, and these changes are not consistent across the entire group (163). 

Such individual abnormalities may explain why the progression of asthma during 

pregnancy differs between women. 

A recent study suggested that maternal asthma symptoms during pregnancy may be 

influenced by the fetus. In a blind prospective study, Beecroft et al. (164) studied 34 

pregnant women with moderate or severe asthma who were using regular treatments. A 

questionnaire was administered in the second trimester which assessed symptoms, 

cough, nocturnal waking, frequency and amount of drug treatment and history of doctor 

visits. There were significantly more mothers of girls who reported shortness of breath, 

nocturnal waking and a worsening of cough and asthma in general, while mothers of 

boys were more likely to report an improvement in asthma (164). In a letter to the 

British Medical Journal, Dodds et al. (165) reported that re-analysis of their Canadian 

population based study (37) indicated that fewer asthmatic women pregnant with boys 

required steroids for treatment (14%) compared to asthmatic women pregnant with girls 

(20%). Although equal proportions of women pregnant with males or females used no 

drug treatment for asthma, there was a trend towards more women pregnant with a male 

to use β2-agonists alone (40% of subjects) compared to women pregnant with a female 

(35%), suggesting better managed asthma in the women pregnant with a male fetus 

(165). These data require further clarification in larger sample groups. 

Although there is little information in the recent literature, the possible influence of fetal 

sex on maternal asthma during pregnancy may not be a novel concept. In 1961, the 

following comment was made by Dr Schaefer in a discussion of his publication on 

seven cases of asthma in pregnancy: “There have been reports that asthma becomes 

worse only when the patient is pregnant with a female child and shows no change or 

gets better when she is pregnant with a male child” (47). These authors and others (48) 

did not find any data to support this statement in their own patients, nor did they give 

any references to identify this older literature. However, reference to this older literature 

was also made by Green in 1934 (140) and Derbes and Sodeman in 1946 (166). They 

reviewed much of the non-English language literature dating back to the 1920s and 

found that in several studies sex of the fetus had an effect on maternal asthma during 
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pregnancy. In particular, a study by Lami (1937) found that in a very small number of 

asthmatic patients, those pregnant with a female fetus had mild cases of asthma early in 

pregnancy, while those pregnant with a male fetus were more likely to have more severe 

asthma (167). On the other hand, Derbes and Sodeman referred to work by Weinstein 

where one woman was unaffected by her asthma during two pregnancies with a male 

fetus, and had problems with her asthma during two pregnancies with a female fetus 

(166). No consistent pattern was observed in their own series of observations of 22 

asthmatic women during a total of 60 pregnancies (166). Green suggested that where 

asthma attacks during pregnancy were associated with a particular fetal sex, the factor 

responsible came from the sexual organs of the fetus (140), since in 1932, Dorn and 

Sugarman had found that fetal sex could be predicted by the change that occurred when 

urine from pregnant women was injected into immature rabbit testicles (168). There 

were few other reports of asthma and pregnancy in the English language literature from 

1904-1961 (Index Medicus, 1904-1926, Cumulated Index Medicus 1928-1956, Medline 

1953-1961) and the others did not examine the effect of fetal sex on maternal asthma 

(141, 145, 169). However, in 1930, Williamson reported case histories of 13 women 

with asthma and 14 women with hay fever (170). He was surprised to find that some 

women had differing histories of urticaria (an allergic skin condition) during their 

pregnancies which were related to the sex of the child. He commented “It is curious to 

note, that the same mother during gestation with a male child would be free from the 

discomfort of urticaria or ‘food poisonings’ and yet be most sensitive if pregnant with a 

female child or vice versa” (170). Further investigations into the effects of fetal sex on 

maternal asthma are warranted and will be carried out as part of this thesis.  

1.6 The treatment of asthma during pregnancy 

Many studies confirm that asthma which is well controlled is less likely to result in 

adverse outcomes than poorly controlled asthma (57, 59, 171, 172). For example, one 

study found that birth weight was decreased in asthmatics who had at least one asthma 

attack during pregnancy compared to asthmatics who did not have an attack or require 

emergency therapy (172). Thus, in addition to avoiding possible asthma triggers (131), 

treatments may have an important role to play in controlling maternal asthma 

exacerbations during pregnancy. On the other hand, they may have undesirable effects 

on the fetus, which should be examined.  
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Several types of medication are used to treat asthma. In this review, theophylline, β2-

agonists and glucocorticoids will be discussed. Most emphasis will be placed on the use 

of inhaled glucocorticoids during pregnancy, since these were the preventative 

medications used by asthmatic women in my study and are of most interest in possibly 

having an effect on fetal growth and development.  

1.6.1 Theophylline 

Theophylline is a bronchodilator, which directly relaxes the smooth muscle of the 

bronchi and pulmonary vessels (4). It acts by inhibiting phosphodiesterase, an enzyme 

which degrades cAMP and through this mechanism leads to smooth muscle relaxation 

(173). Theophylline is no longer widely used, except in a sustained release formula for 

treating nocturnal asthma. It has generally been replaced by the more effective and safer 

long acting β2-agonists (4).  

Dombrowski et al. found that among a small number of asthmatics, the use of 

theophylline was associated with a decrease in the development of pre-eclampsia (174). 

They suggested that the ability of theophylline to reduce vascular reactivity and platelet 

aggregation via increasing cAMP may be responsible for this trend (174). However, 

another study examined theophylline use in pregnant asthmatics and found that patients 

using this drug were more likely to have an asthma exacerbation than patients not using 

theophylline, and more likely to develop pre-eclampsia (175). Although asthma severity 

was not specifically described in these women, the authors explain these findings as 

being possibly due to the higher prevalence of severe asthmatics among the 

theophylline users and therefore the effect on pre-eclampsia may have been independent 

of theophylline use (175). 

The pharmacokinetics of theophylline changes with pregnancy, with a significant 

increase in half life during the third trimester as a result of a 25% reduction in clearance 

(176). Consequently, the doses of theophylline used during pregnancy require alteration 

to maintain appropriate plasma levels (177). Schatz et al. found no effect of first 

trimester use or any exposure to theophylline during pregnancy on congenital 

malformations (178). However, there was a relationship between theophylline use and 

preterm birth in this study (178). Theophylline crosses the placenta as shown by similar 

serum levels in maternal and cord blood at delivery (179, 180) and has been shown to 
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have a prolonged half life in premature infants (181). In a study of asthmatic women, 

theophylline was present in neonates at similar levels as their mother, but there was no 

evidence of its toxic effects, as demonstrated by normal Apgar scores and neonatal heart 

rates (180).   

1.6.2 β2-agonists 

β2-adrenergic receptor agonists (β2-agonists) are bronchodilators used for the immediate 

relief of asthma symptoms (4, 173). The most commonly used short-acting inhaled 

β2-agonist is salbutamol (albuterol), while long-acting β2-agonists such as salmeterol 

(serevent) are also becoming more commonly used (4). They induce relaxation and 

bronchodilation in airway smooth muscle by binding to β2-adrenergic receptors (173), 

which causes the release of intracellular cAMP (182). 

Schatz et al. confirmed the safety of inhaled β2-agonists in 259 pregnant women with 

asthma (183). Most of these women used metaproterenol (83%), while other β2-agonists 

used included isoetharine (27%), epinephrine (13%), albuterol (8%) and isoproterenol 

(4% of subjects). More than one bronchodilator was used by 32% of subjects. The 

incidence of adverse outcomes was compared in women who used regular (one or more 

puffs per day) or intermittent (less than one puff per day) β2-agonists during pregnancy, 

with asthmatic women who did not use β2-agonists and control non-asthmatic women. 

There was no effect of use or dose of β2-agonists on congenital malformations, perinatal 

mortality, preterm delivery, low birth weight or complications during labour. A later 

study confirmed that first trimester use or any exposure to β2-agonists during pregnancy 

was not associated with congenital malformations (178). 

The short-term effect of inhaled albuterol on the maternal and fetal circulation was 

examined in 12 asthmatic women by Rayburn et al. (184). They found no alterations in 

maternal blood pressure, maternal heart rate, fetal umbilical artery systolic/diastolic 

(SD) ratios or fetal heart rate within 2 hours of albuterol inhalation, the time at which 

serum concentrations were expected to peak (184). 

No studies have examined the use of the long acting β2-agonists (such as salmeterol), 

either alone or in combination with inhaled steroids (for example, the fluticasone 

propionate and salmeterol combination drug, seretide) in asthmatics during pregnancy. 

An epidemiological study of salmeterol use in over 15000 patients, reported that among 
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this population, there were 65 women who used salmeterol while pregnant (185). No 

adverse outcomes were reported; however, no information was given about the analysis 

of outcomes as this was not the primary aim of the study (185). 

1.6.3 Glucocorticoids 

Inhaled glucocorticoids (corticosteroids, steroids) are the major anti-inflammatory 

preventative medication used to treat asthma (4), while oral glucocorticoids are used as 

emergency therapy, when asthma is non-responsive to β2-agonists and inhaled 

glucocorticoids (4). Inhaled glucocorticoids are effective for the long-term management 

of asthma as they have effects on many cells including the bronchial epithelium, 

mucosal inflammatory cells and the submucosa (186). The inhaled route of 

administration is preferred over the oral route, as direct inhalation to the lung results in 

fewer systemic side effects (187).  

Pregnant asthmatic women may use several inhaled synthetic glucocorticoid derivatives 

to control asthma, including budesonide, beclomethasone dipropionate and fluticasone 

propionate. In some pregnant women, prednisolone or prednisone may be used orally 

(usually periodically) to treat severe cases of asthma. The glucocorticoid drugs have 

similar chemical structures to cortisol as shown in Figure 1.2 (188-190). 
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Figure 1.2 Chemical structures of cortisol and synthetic glucocorticoid drugs 

 

Early studies in the literature focussed on the effects of glucocorticoid medication used 

by pregnant women on fetal development. Warrell and Taylor reported an increase in 

risk to the fetus attributable to oral prednisolone use (2.5-30 mg per day) during human 

pregnancy (191). Women using prednisolone had a higher incidence of still-birth, fetal 
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distress or placental insufficiency than women with the same disease who did not use 

prednisolone (191). A study of women using prednisone treatment for infertility and 

pregnancy maintenance demonstrated an increase in low birth weight infants (192). 

However, in this study, prednisone was administrated at a relatively high dose of 10 mg 

daily throughout pregnancy. In other studies where prednisone was ceased after 

conception, no alteration in birth weight was found (193, 194). Similarly, neonates of 

pregnant women treated with dexamethasone for congenital adrenal hyperplasia were 

not found to have reduced birth weights compared to their untreated counterparts (195). 

Asthmatic women using oral steroids during pregnancy (an average of 10 mg per day, 

n=70) were found to have a slightly higher incidence of preterm delivery, but no 

significant increases in congenital malformations were observed compared to general 

population estimates (196). Another study found no adverse outcome in 37 infants up to 

2 years of age, of asthmatic mothers who used prednisone (5-60 mg per day) during 

pregnancy (197). In 1997, oral steroids were found to be independently associated with 

pre-eclampsia in asthmatic women (178). Recent epidemiological data demonstrated a 

significant association between first trimester systemic glucocorticoid use and an 

increased risk of cleft lip (with or without cleft palate) in neonates (198). 

Inhaled glucocorticoid use has also been examined in pregnant asthmatic women. 

Inhaled beclomethasone to treat severe asthma was found to be safe in 45 pregnancies 

(199). In this study, the average dose used was 400 μg per day. However, withdrawal 

from oral prednisolone was not possible in most patients due to the severity of asthma. 

As a result, in this study and others (200), examination of the safety of the inhaled 

glucocorticoid medication is complicated by the concomitant use of additional drugs 

during pregnancy. 

Schatz et al. have analysed the effect of commonly used asthma and allergy medications 

in prospectively studied pregnant asthmatic women (178). An advantage of this study 

was that the analysis took into consideration the effects of multiple medication use, 

asthma severity and other risk factors. The use of inhaled, oral or intranasal steroids, 

inhaled or oral β2-agonists, theophylline, cromolyn, antihistamines and decongestants 

was not associated with congenital malformations or any adverse perinatal outcomes, 

including reduced birth weight (178). 
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A randomised controlled trial has been conducted comparing β2-agonist use alone 

(albuterol, n=27) with the combination of β2-agonist and inhaled steroid (albuterol plus 

beclomethasone, n=33) in asthmatic women who experienced an acute exacerbation 

requiring hospitalisation during pregnancy (146). Although all women in both groups 

required re-admission, the addition of inhaled beclomethasone therapy reduced asthma 

exacerbations and the re-admission rate by 55% (146).  

A study conducted by Stenius-Aarniala et al. examined the relationship between inhaled 

steroid use, acute asthma exacerbations during pregnancy and pregnancy outcome 

(147). Patients who were already using anti-inflammatory medication (inhaled 

beclomethasone or budesonide) were less likely to have an acute mild asthma attack 

during pregnancy, than patients who were not using inhaled steroids. Approximately 

one third of patients who had an acute exacerbation were using inhaled steroids before 

the exacerbation, while overall, 61.5% of patients who did not have an exacerbation 

during pregnancy used inhaled steroids. The use of steroids was therefore observed to 

reduce the risk of asthma attacks during pregnancy. In this study, no details of asthma 

classification were given, making it difficult to assess the influence of asthma severity 

on these exacerbations (147). Studies in pregnant women indicate the effectiveness of 

inhaled steroid medications in controlling asthma exacerbations (146, 147).  

A Danish population based study collected data from a birth registry and a prescriptions 

database (1991-1996) to study the use of asthma medications by pregnant women and 

relate this to perinatal outcome (201). Data was restricted to primiparae to ensure that 

prescribed medications were intended for the mother and not for any of her other 

children. Less than 2% of all Danish women were prescribed asthma medications during 

pregnancy. Asthma treatment was defined as one of five levels: 1) inhaled β2-agonist, 2) 

inhaled steroid, 3) systemic β2-agonist, 4) systemic steroid, 5) theophylline. Data was 

analysed based on whether asthmatic women increased medication during pregnancy 

(prescribed treatment of a higher level than prior to pregnancy), or decreased 

medication during pregnancy (prescribed treatment of a lower level than prior to 

pregnancy). The results showed that asthmatic women who decreased medication 

during pregnancy (78 out of 342 asthmatics) had smaller babies in terms of birth weight 

and length, with a lower mean gestational age compared to non-asthmatic women, or 

asthmatic women who increased medication during pregnancy. This was particularly 

evident among the 22 women who decreased their medication use from inhaled steroid 
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to inhaled β2-agonist. This study was limited by a lack of information regarding 

compliance and the reasons for alterations in asthma management (201). These may 

have included a clinical improvement in lung function and asthma symptoms, or may 

have been due to a pregnancy-related reduction in prescribing as a result of fears of drug 

use during pregnancy.  

A recent study from Sweden confirms that the use of budesonide in pregnant women 

does not affect gestational age, birth weight, birth length or the rate of still-births or 

multiple births (202). This data came from 2968 women who used inhaled budesonide 

during pregnancy and was compared to 7719 women who used asthma medications 

other than steroids, and a control population of over 293000 women. The authors 

acknowledged that comparison with asthmatic mothers of similar severity who did or 

did not use budesonide would be of benefit since inadequate asthma control may be a 

confounder. Another Swedish medical birth registry study previously reported no 

increase in congenital malformations in women who used inhaled budesonide during 

early pregnancy (203). Similarly, Silverman et al. reported no adverse outcomes in 

pregnant women using budesonide (400 μg daily) in a randomised trial of treatment in 

newly diagnosed mild asthmatics (204). 

No studies have examined the use of fluticasone propionate for asthma during 

pregnancy. However, Ellegard et al. examined the use of a fluticasone nasal spray in 

women with pregnancy rhinitis and found no influence on circulating maternal cortisol, 

or on fetal growth or pregnancy outcome (205).  

Despite reports indicating the safety of glucocorticoid use for asthma treatment during 

human pregnancy, there still remains apprehension about using these medications 

during pregnancy, both in pregnant women themselves (206-208) and in doctors (122, 

126, 147, 206, 207, 209). Patterson et al. presented a case report of a pregnant asthmatic 

woman who continued with theophylline treatment rather than taking inhaled 

beclomethasone, due to her obstetrician’s advice against using additional medication 

(210). In this case, the advice led to fear and non-compliance in the patient and she was 

subsequently hospitalised with an acute episode of asthma (210). A recent survey of 501 

asthmatic women of child-bearing age reported that 82% of women who used inhaled 

glucocorticoids were concerned about their effects on the fetus, including congenital 

malformations, fetal death, low birth weight and preterm delivery (211). However, 
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women also felt concern about the consequences of discontinuing medication on their 

own health, but despite this, many were likely to discontinue medication while 

pregnant, without first seeking advice from their physician (211). The problem of 

unfounded fears of the effects of asthma drugs on the fetus was acknowledged by the 

working group on asthma and pregnancy from the National Institutes of Health (149). 

Publicity surrounding teratogenic effects of drug use in early pregnancy and concern 

about litigation contributes to these fears (209, 212). A comparison of emergency 

department visits by pregnant and non-pregnant asthmatic women found that although 

there were similar symptom durations and PEFRs in both groups, those who were 

pregnant were significantly less likely to be treated with systemic steroids either in the 

emergency department or following discharge from hospital (122). In addition, the 

pregnant asthmatics were more likely to experience an on-going exacerbation in the 

following two week period compared to non-pregnant asthmatics (122). These studies 

suggest that despite continuing advice that pregnant women with asthma should be 

treated in the same way as non-pregnant asthmatic women, this has not completely 

translated into clinical practice. Further data demonstrating the safety of inhaled 

glucocorticoid use for both the fetus and mother in asthmatic pregnancies may facilitate 

improved asthma management in pregnant women.  

In spite of the lack of randomised trials of asthma treatments in large groups of pregnant 

asthmatic women, inhaled glucocorticoids are considered safe to use during pregnancy, 

as the risk of a poor pregnancy outcome appears greater when asthma is not well 

controlled. Some early reports (135) and most recent reviews and recommendations on 

asthma management suggest treating asthma in pregnant women in a similar manner to 

non-pregnant women (4, 149). Recent literature has also highlighted the importance of 

educating pregnant women about their asthma (123, 212, 213). Education has numerous 

benefits including improvement of patient compliance with medications (131). 

Incorporating patient education into the clinical management of pregnant asthmatic 

women was conducted in conjunction with my study. These strategies are designed to 

result in the best possible outcome for both mother and fetus.  

Despite conflicting results in previous epidemiological and prospective studies, it is 

clear that maternal asthma is a risk factor for poor pregnancy outcomes and that asthma 

itself may be altered by pregnancy. However, the mechanisms, both maternal and 

placental, which contribute to changes in asthma during pregnancy and changes in 
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pregnancy outcomes with asthma, remain unknown. Although some authors have 

proposed maternal mechanisms which may contribute to poor outcomes and to changes 

in asthma with pregnancy, no group has previously collected data simultaneously from 

the mother, placenta and fetus in asthmatic pregnancies. This approach will provide 

more detailed information of the changes and interactions which occur in these 

pregnancies, leading to more effective treatment and management of asthmatic women 

and improved outcomes for their babies.  

The major focus of this thesis will be to address whether maternal asthma is associated 

with reduced fetal growth and to examine the maternal and placental mechanisms 

contributing to this outcome.  
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Literature Review Part 2: Fetal Growth 

1.7 Low birth weight 

Low birth weight is defined by the World Health Organization as birth weight less than 

2500 g (214). A small for gestational age (SGA) neonate is less than the 10th centile 

(percentile) for its gestational age in relation to the reference population (85). Low birth 

weight may also be referred to as intrauterine growth restriction (IUGR) (85). The 

incidence of low birth weight at term is 11% in developing countries with an estimated 

13.7 million low birth weight infants born each year, a rate six times higher than in 

developed countries (215). In Taiwan, the prevalence of low birth weight was 

approximately 5% in 1996-1997 (216), while in the USA it has recently been estimated 

to affect approximately 5-6% of live births in Caucasians and 10-12.5% of live births in 

African Americans (217, 218), with 3% and 7% representing SGA infants in each 

population, respectively (218). 

Cell number increases maximally during embryonic and fetal development up to 16 

weeks gestation, with very little change after 32 weeks (85). From 16 to 32 weeks there 

is also an increase in cell size, which becomes more dominant after 32 weeks (85). Fetal 

growth restriction may be symmetrical (Type I) or asymmetrical (Type II). Symmetrical 

growth restriction, where the entire body is proportionally small (219), accounts for 

25% of IUGR cases and often results from an alteration in growth in early gestation, 

during the period of cellular hyperplasia and may be the result of genetic anomalies, 

severe malnutrition, or maternal smoking (85). Sub-optimal first trimester growth, 

represented by a small crown-rump length measurement, is a good predictor of birth 

weight less than 2500 g at term, or birth weight below the 5th centile (220). 

Asymmetrical fetal growth was first recognised by Gruenwald in 1963 who found that 

growth restricted infants had higher brain weight and lower thymus weight than 

premature infants of the same size (221). Such asymmetric growth restriction may occur 

during the periods of cellular hypertrophy later in gestation and is often the result of 

uteroplacental insufficiency secondary to other maternal complications (85). In 

asymmetric growth restriction, there is sparing of the brain and other vital organs such 

as the heart, with other parts of the body such as the liver and muscle reduced in size 

(85, 219).  
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Fetal growth can be assessed in several ways with common measurements including 

crown-heel length, head circumference, weight-height ratio, skin fold thickness and 

ponderal index (85). The ponderal index (birth weight (g) / [birth length (cm)]3 × 100), 

which is unaffected by race or infant sex, is used to assess the thinness or obesity of the 

neonate, with symmetrically small neonates having a normal ponderal index and those 

with asymmetric growth restriction having a reduced ponderal index due to a normal 

length and low weight (85).  

Low birth weight independent of prematurity, is a significant contributor to neonatal 

morbidity and mortality (85, 221-224) and is responsible for a large health care cost, 

both in economic and social terms (225). A population increase of just 100 g in mean 

birth weight via maternal nutritional supplementation has been shown to reduce 

neonatal mortality by 30-50% (226). The risk of postnatal death in term infants 

weighing 2000-2499 g has been estimated to be increased two-fold compared to infants 

weighing 2500-2999 g and increased four-fold compared to infants weighing 

3000-3499 g (227). In Gambia, a randomised controlled trial of maternal dietary 

supplements significantly increased mean birth weight by 136 g and mean head 

circumference by 3.1 mm, which was associated with a significant overall reduction in 

still-births and perinatal mortality (228). Low birth weight has been shown to be 

associated with an increased risk of mortality up to 15 years of age, which is mostly 

accounted for by higher infant mortality rates (229). Low birth weight also contributes 

to increased morbidity including birth asphyxia, meconium aspiration, persistent fetal 

circulation, hypoglycemia, hypothermia and hypocalcemia (85, 222, 224, 230, 231).  

1.8 Developmental origins of adult disease 

Recent interest in the developmental origins or fetal origins of adult disease, also known 

as the Barker hypothesis, has revealed that low birth weight or small size at birth is a 

predictor for the development of and/or death from diseases in adult life, including 

diabetes (232), cardiovascular disease (233), atherosclerosis (234), hypertension (235), 

stroke (236) and coronary heart disease (237, 238) and may also be related to markers of 

ageing (239). This concept, which proposes that events in utero can determine long-

term outcomes into adulthood, is known as fetal programming. It is thought that 

glucocorticoids may play a major role in programming. Adaptation of the fetus to its 
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environment in utero is believed to lead to changes in body structure, physiology and 

metabolism which persist into extra-uterine life. Thus, low birth weight infants of 

asthmatic mothers may be at increased risk of mortality in both neonatal and adult life. 

Barker’s initial studies examined the geographical relationship in England and Wales 

between current death rates from heart disease or stroke and prior infant or maternal 

mortality rates (240, 241). The rate of ischemic heart disease in 1968-78 was closely 

correlated with neonatal and post-neonatal mortality in 1921-25 (240). In addition, the 

geographical distribution of death rates from stroke was more closely correlated with 

past maternal mortality than with any other cause of death, suggesting that the health of 

mothers may be linked to the risk of disease in their offspring (241). Similar data has 

been reported recently and prenatal factors have been proposed to contribute to the 

geographical distribution of stroke mortality in both the United States and England and 

Wales which cannot be fully explained by adult lifestyle (236).  

In 1989, Barker et al. published results of follow-up studies of almost 10000 children at 

age 10, born in 1970 and over 3000 adults at 36 years of age, born in 1946 (237). They 

found an inverse relationship between birth weight and systolic blood pressure, which 

was stronger in the 36 year old adults and independent of current weight. In the 

children, increased systolic blood pressure was not related to gestational age and 

therefore was associated only with a reduction in fetal growth (237). A study from 

another group found a similar relationship between systolic blood pressure in children 

aged 5-8 years and birth weight but only when standardised for current weight (242).  

Further studies from Barker et al. examined over 5000 men born in Hertfordshire 

between 1911 and 1930 and found that mortality from ischemic heart disease was more 

common in men with low weights at birth and one year of age (238). A similar trend 

was noted for death from chronic obstructive lung disease, but not death from lung 

cancer (238). The relationship between higher systolic blood pressure and low birth 

weight has been found to be consistent in children aged 0-10 years, and adults at 36 

years, 46-54 years and 59-71 years but to become more pronounced with age (243). 

Blood pressure in adult life is also linked to placental size (244) and to the ratio of fetal 

to placental size (245). In 449 men and women born in Lancashire, England between 

1935 and 1943, systolic and diastolic blood pressures were strongly related to both 

placental weight and birth weight independent of gestational age, current alcohol 
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consumption and current body mass index (BMI), with the highest blood pressures in 

those with a low birth weight but high placental weight (244). Within each social class, 

the relationships between blood pressure and placental and birth weights were similar 

(244). Placental weight was inversely correlated with length to head circumference 

ratio, suggesting the possibility that changes in the fetal circulation such as diversion of 

blood flow to the brain at the expense of other parts of the body may permanently alter 

arterial structure and blood vessel development (232, 244, 246, 247).  

Barker et al. also studied the Hertfordshire and Lancashire cohorts in relation to the 

development of Syndrome X, or the combination of non-insulin dependent diabetes 

mellitus, hypertension and hyperlipidemia (232). In Hertfordshire, men aged 64 years 

with higher birth weights had lower 2 hour plasma glucose and insulin concentrations 

and lower blood pressures, while 56 of the men had Syndrome X and this was related to 

lower weights at birth and one year of age (248). In Lancashire, men and women at age 

50 with Syndrome X had lower birth weights as well as a small head circumference and 

low ponderal index at birth. The proportion of subjects with Syndrome X fell with 

increasing birth weight in the Hertfordshire and Lancashire cohorts (232). The 

association between fetal growth and diabetes may be related to alterations in fetal 

pancreas development and a reduction in insulin secreting capacity (232). 

Other studies have found higher plasma glucose in children who were thin at birth with 

a low ponderal index (249) and in adults of reduced birth weight (250, 251). Alterations 

in β-cell development and function during undernutrition in fetal life may result in 

permanent changes such as a reduced capacity for insulin production which becomes a 

disadvantage when nutrition is abundant (248). Alternatively, a genetic predisposition to 

low insulin production may result in both reduced fetal growth and glucose intolerance 

later in life (248). 

It is becoming increasingly clear that the effects of small size at birth on adult diseases, 

is compounded by rapid rates of childhood growth (252-254). Barker et al. found that 

adults from Helsinki who had been born small and had the largest BMIs in childhood 

were at greatest risk for type 2 diabetes, hypertension and death or hospitalisation due to 

coronary heart disease (252). They suggested that developmental plasticity allows an 

appropriate phenotype for the current environment (in utero); however, when nutrition 

improves after birth, compensatory growth occurs. The combination of these events 
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results in physical and physiological changes which contribute to the increased risk of 

developing metabolic and cardiovascular diseases later in life (252). Evidence for a 

mechanism connecting small size at birth to obesity later in life comes from a study of 

“thin-fat” Indian babies, in which low birth weight was associated with low ponderal 

index (thinness) and reduced abdominal and mid-arm circumference, but marked 

sparing of subscapular skin fold thickness, a representative depot of central fat (255). 

Babies in India and the United Kingdom with birth weights less than the 10th centile 

exhibited both brain-sparing and fat-sparing characteristics, possibly putting them at 

risk of insulin resistance and cardiovascular disease in adulthood (255). 

Maternal diet during pregnancy may have an adverse effect on fetal growth and 

consequences for adult blood pressure. Several studies have demonstrated that a 

particularly high or low protein diet during pregnancy has adverse effects on blood 

pressure in offspring (256, 257). Maternal undernutrition has been examined in women 

who were pregnant at the time of the Dutch famine in 1944 and 1945, where babies 

exposed during mid or late gestation were found to have reduced birth weights 

compared to babies born before the famine or conceived after the famine (258, 259). 

Follow up studies of the offspring indicate that at approximately 50 years of age, the 

highest rates of impaired glucose tolerance and type 2 diabetes were in those exposed to 

maternal famine in late gestation (258). In addition, offspring exposed to maternal 

famine during early gestation had an increased prevalence of coronary heart disease, 

respiratory disease, hypertension, diabetes and cancer and a poorer perception of their 

own health at 50 years of age, which is a predictor of mortality (259). 

Numerous other adult consequences of small size at birth have been described in 

humans, including an increased risk of renal failure (260), depression in men but not 

women (261), atherosclerosis (262) and the development of pre-eclampsia while 

pregnant (263). Women of low birth weight were found to be 2.3 times more likely to 

develop pre-eclampsia than those who weighed 2500-2999 g at birth, with the risk 

further decreasing with increasing birth size (263). However, there was also an 

important effect when adult weight was considered, with lean women of low birth 

weight having no increased risk and overweight women of low birth weight having a 

16-fold increase in risk for pre-eclampsia (263). Reduced birth weight in combination 

with high adult weight may produce the greatest risk for disease in adult life. 
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Low birth weight has also been linked to behavioural problems at school such as lack of 

motivation, aggression and concentration difficulty at age 10 (264) and low IQ at 6 

years of age in children with no neurologic impairment (265). The study by Breslau et 

al. examined outcomes for children across a range of birth weights, in an inner city area 

and suburban area of Michigan (264). In both populations, low birth weight was 

associated with an average IQ score five points lower than normal birth weight children, 

resulting in 10% of low birth weight children having an IQ more than one standard 

deviation below the mean. In addition, a gradient effect was observed, with the largest 

reduction in the very low birth weight group (<1500 g) (264). 

Reduced fetal growth may have an effect on the development of respiratory diseases in 

childhood and adult lung function. However, the available data is contradictory, with 

some studies showing an increased risk of developing asthma or having reduced lung 

function in smaller neonates (266-271) and others showing an increased risk of asthma 

or atopy in larger neonates (272, 273). A study from Barker et al. demonstrated that 

lower birth weight was associated with reduced adult FEV1 at 59-70 years of age and 

death from chronic obstructive airways disease was also related to lower birth weight 

(274). In an Indian study, adult lung function (FEV1), was reduced with decreasing birth 

weight in men and women, while a small head circumference at birth was associated 

with reduced FEV1:FVC ratio in men but not women (275). These changes in adult lung 

function may be related to permanent effects of maternal undernutrition on lung 

development and structure, and differences between men and women may relate to sex-

specific differences in lung growth in utero (274, 275). Lopuhaa et al. found that men 

and women who had been exposed to famine in mid-gestation had a higher rate of 

obstructive airways disease, suggesting that fetal nutrition affects lung development, 

although they found no evidence of changes in serum IgE or lung function in adulthood 

(276). Potential mechanisms linking low birth weight to poor lung function later in life 

have been studied in the sheep model of IUGR induced by chronic placental 

insufficiency or maternal anemia (277). In these studies, fetal growth restriction resulted 

in alterations of lung structure and function, including a thickened air-blood barrier, 

enhanced surfactant gene expression (277) and a reduction in total lung capacity (278). 

Alterations in susceptibility to disease in childhood and adulthood in relation to fetal 

growth may be related to impaired development in utero or in infancy, or increased 

susceptibility to postnatal disease (265). Children of asthmatic mothers may be at 
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particular risk of disease in adult life due to an increased likelihood of low birth weight. 

Therefore, an understanding of the mechanisms which cause low birth weight is 

important for the development of future interventions which may give these and other 

small infants a better chance of a healthy life, both in their immediate future and in the 

long-term. The mother, placenta and fetus are all integral components in the regulation 

of fetal growth during human pregnancy.  

1.9 The role of the mother in fetal growth regulation 

The mother has a very important role to play in supplying oxygen and essential 

nutrients to the fetus via the placental blood supply. Maternal genes have an important 

specific influence over fetal growth (219), and maternal size, (particularly height which 

represents genetic potential for growth and uterine capacity), is a major determinant of 

fetal size (279, 280). In a study of pregnancies involving ovum donation, Brooks et al. 

found that the only factors contributing to birth weight were gestational age and 

recipient mother’s weight, while the weight of the donor mother was not related to birth 

weight (281). This study suggested that the uterine environment was very important to 

the control of fetal growth (281). Many maternal factors influence fetal growth, 

including height and weight, race and parity (85, 282, 283), age (216, 283), energy 

intake and gestational weight gain (217).   

The mother is the supplier of nutrients to the fetus and maternal diet and caloric intake 

have an essential role to play (214, 284). The placenta also has an essential role in 

transferring these nutrients to the fetus, which will be discussed in section 1.10. 

Adequate caloric intake is essential during all of pregnancy and an increase is necessary 

during the second and third trimesters when most fetal and placental growth occurs 

(284, 285). Additional protein intake is specifically required for growth of maternal, 

placental and fetal tissues (285). Some studies have suggested that protein 

supplementation does not in itself increase fetal growth in undernourished communities 

(286), while others have shown a relationship between low protein intake in late 

pregnancy and reduced birth weight (287).  

Nutrient availability in maternal blood is clearly an important regulator of fetal growth 

and supplementation of calories or vitamins to undernourished women increases birth 

weight (228, 286). In Nepal, pregnant women supplemented with folic acid and iron had 
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an increased mean birth weight of 37 g and a 16% reduction in the rate of low birth 

weight compared to control subjects given vitamin A alone (288). The effect of multiple 

micronutrient supplementation (folic acid, zinc, iron, vitamin A and 10 other 

micronutrients) was not found to be of additional benefit compared to folic acid and 

iron (288). This study suggested that iron deficiency may be an important cause of 

reduced fetal growth (288).  

Glucose is an important nutrient in the control of fetal growth. Studies of diabetic 

women have shown that low blood glucose levels during pregnancy as a result of 

excessively tight glycemic control leads to a greater incidence of SGA neonates, while 

having high blood glucose levels contributes to a high incidence of macrosomia (289, 

290). 

During the Dutch famine in 1944 and 1945, pregnant women were undernourished due 

to compulsory food rationing, which was as low as 400-800 calories per day at the 

height of the famine (258). Consequently, maternal weight gain and fetal growth were 

significantly reduced, when the exposure to famine occurred during the second or third 

trimester (258). In the 1960s, Scottish women in Motherwell were advised to increase 

their red meat intake and decrease consumption of carbohydrates during pregnancy in 

an attempt to avoid pre-eclampsia (257). As pregnancy progressed women doubled their 

meat consumption, while carbohydrate consumption fell by one third. As a consequence 

these women had reduced weight gain during pregnancy compared to women in other 

parts of Scotland and their babies were of reduced birth weight (257). 

Many other maternal factors unrelated to nutrition can also alter fetal growth. For 

example, living at altitude (291, 292) or having low arterial oxygenation (293), having 

pre-eclampsia (294), PIH, anemia (295, 296) or infections such as malaria (95, 97-99) 

or rubella (85), cigarette smoking (297-301), excess alcohol consumption (302) or using 

drugs such as cocaine (303-305) also increase the risk of having a low birth weight baby 

(217). Many of these conditions may contribute to altered fetal growth via changes in 

placental function. 

It has been understood for many years that cigarette smoking is associated with reduced 

birth weight, with early reports suggesting a doubling of low birth weight rate in 

smokers compared to non-smokers and an increase in low birth weight with increasing 

number of cigarettes smoked (297, 298, 306). The entire birth weight distribution curve 



Chapter 1 - Literature Review 

47 

is shifted to the left, such that maternal smoking affects the entire range of birth weights 

(307). MacMahon et al. (1965) established that women who smoked before pregnancy 

but not during pregnancy had babies of similar size to non-smoking mothers and that 

paternal smoking also had no influence on birth weight (307). Infants born to smoking 

mothers are approximately 150-200 g lighter than infants of non-smokers (297, 300, 

308-310), representing one of the largest preventable effects on birth weight (280). 

Neonates born to smoking mothers are usually symmetrically growth restricted, having 

reduced weight, head circumference and abdominal circumference (85). Higher levels 

of carbon monoxide in maternal blood which cross the placenta to the fetus (311), 

leading to fetal tissue hypoxemia along with the vasoconstrictive effects of nicotine 

(299) are thought to contribute to these changes in fetal growth (297, 300). Astrup et al. 

found a negative relationship between levels of carbon monoxide bound to hemoglobin 

and birth weight in 176 smoking mothers (309). Smoking may reduce fetal growth by 

altering uteroplacental blood flow, as Lehtovirta and Forss demonstrated reduced 

placental blood flow at the time of smoking a cigarette which returned to normal within 

15 minutes (312). Zaren et al. found reductions in ultrasound measured biparietal 

diameter (BPD) and mean abdominal diameter were evident from 33 weeks and 25 

weeks gestation respectively (313). Mean birth weight was reduced by 167 g in light 

smokers (1-9 cigarettes per day) and by 241 g in heavy smokers (≥ 10 cigarettes per 

day) (313).  

Sexton et al. conducted a randomised clinical trial to investigate whether a reduction in 

maternal smoking would improve fetal growth (314). In this trial, women in the 

intervention group received health information and counselling and 43% stopped 

smoking by late pregnancy, compared to only 20% in the control (no intervention) 

group. The significant reduction in the number of cigarettes smoked per day 

corresponded to a decrease in salivary thiocyanate levels, a biochemical marker of 

smoking and associated with this was a significant increase in birth weight (by 92 g) 

and birth length (by 0.6 cm) compared to the control group, confirming that smoking 

cessation overcomes some of the reduction in fetal growth in smokers (314). Smoking is 

known to be more prevalent among asthmatics than non-asthmatics (37, 38, 43, 46, 51, 

60, 61) and this may be a confounder, further contributing to reduced fetal growth in 

some women. 
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Maternal arterial oxygenation and high altitude residence also have an effect on fetal 

growth. Babies born at high altitude are of lower birth weight than their low altitude 

counterparts (291, 315) regardless of socioeconomic status (316) and the effect of 

altitude on birth weight is independent of existing risk factors such as maternal 

smoking, PIH and nulliparity (317). The mean difference in birth weight between high 

altitude (2744-3350 m) and lower altitude (915-1524 m) in Colorado was 241 g, a 

difference which could not be explained only by a reduction in gestational age (317). A 

study from Yip found a three-fold increase in the low birth weight rate at the highest 

altitudes in the US (2500-3100 m) compared to the lowest altitudes (<500 m) with a far 

greater increase in the proportion of low birth weights due to IUGR than prematurity 

(291). This study also demonstrated that the entire birth weight distribution was shifted 

to the left, so that a greater proportion of births fell below 2500 g, indicating that 

altitude affected all births and not just an “at risk” sub-group (291). Altitude is a strong 

predictor of IUGR (291, 318), through changes in third trimester fetal growth (292, 

319). Krampl et al. performed serial ultrasound measurements of fetal size from 14 to 

42 weeks gestation in several hundred women at sea level and at 4300 m in Peru and 

found that the reduction in fetal growth occurs from approximately 25 weeks gestation 

(320). The effect of altitude was greater on abdominal circumference than on head 

circumference and mean birth weight was reduced by approximately 400 g (320). 

Hypoxia is an important factor involved in altering fetal growth at altitude and may also 

be involved in asthmatic pregnancies. The combination of hypoxia and pregnancy 

appears to be important in alterations in maternal physiology, including changes in 

immune pathways (321). Coussons-Read et al. found that maternal serum levels of the 

pro-inflammatory cytokines, TNF-α and IL-6 were increased at high altitude (3100 m) 

compared to moderate altitude (1600 m), and the anti-inflammatory cytokine, IL-10 was 

decreased by the third trimester, while none of these parameters differed between 

moderate and high altitude residents at 3 months postpartum (321). Moore et al. found 

that maternal hypoventilation and a decreased maternal arterial O2 content in the third 

trimester was directly related to infant birth weight at 3100 m (293). In women living at 

high altitude in Peru, an increased ventilatory response to hypoxia during pregnancy 

was associated with a rise in birth weight through increases in maternal oxygenation 

(322). 
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Decreased arterial oxygen content as a result of high altitude exposure may also 

decrease uterine blood flow which could contribute to reduced nutrient transport to the 

fetus (323). Uterine blood flow is altered at high altitude with less common iliac flow 

reaching the uterine artery (324). Although uterine artery flow velocity increased, the 

uterine artery diameter was smaller, resulting in lower volumetric flow in late 

pregnancy (324). Uterine blood flow velocity was found to be correlated with birth 

weight at 1600 m (324). In 2001, Moore et al. reported that despite lower arterial O2 

content in Tibetan compared to Han Chinese residents at high altitude (3658 m), the 

Tibetan women had a higher uterine artery blood flow velocity and a greater distribution 

of blood flow to the uterine artery, which contributed to babies of higher birth weight 

compared to the Han Chinese (325). Women who develop pre-eclampsia at high altitude 

have less blood flow distributed to the uterine artery compared with normotensive 

women (324). Studies of the placenta from high altitude pregnancies have demonstrated 

that there is less remodelling of the uteroplacental arteries compared to those at 

moderate altitude (326). These studies suggest that physiological adaptations to high 

altitude residence which increase blood flow to the feto-placental unit are beneficial for 

fetal growth. 

1.10 The role of the placenta in fetal growth 
regulation 

The placenta is the site where nutrients and waste products are exchanged between 

mother and fetus. Morphometric studies have shown that the placental villous surface 

area for exchange is approximately 11 m2 at term (327). This surface area is decreased 

in cases of fetal growth restriction (327) as is the mid-pregnancy or term placental 

volume (327, 328). Placental weight is an important predictor of fetal weight, with SGA 

neonates having significantly reduced placental weights and placental weight to birth 

weight ratios than appropriately grown neonates of the same birth weight (329). This 

suggests that adequate placental growth is required for adequate fetal growth. Several 

aspects of placental function are critical for human fetal growth. They include adequate 

trophoblast invasion, an increase in uteroplacental blood flow during gestation, 

transport of nutrients such as glucose and amino acids from mother to fetus and the 

production and transfer of growth regulating hormones. In addition, the placenta plays a 
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very important role in limiting the transfer of the maternal hormone cortisol which may 

have a negative effect on the growth of the fetus.  

1.10.1 Trophoblast invasion and uteroplacental blood flow 

One week after fertilisation, the blastocyst enters the uterus (330). The blastocyst 

contains the inner cell mass, which will develop into the fetus, and an outer layer of 

trophoblast, which will become the placenta (330). The trophoblast layer implants into 

the uterus, by releasing proteolytic enzymes which digest cells of the endometrium 

allowing subsequent penetration by the trophoblast (1, 330). Adequate trophoblast 

invasion is required to sustain fetal growth. When the blastocyst adheres to the uterus, 

the fetal trophoblast cells differentiate into villous or extravillous cells (331). The 

extravillous cytotrophoblasts migrate and invade into the maternal uterine epithelium, a 

process which is essential for increased uteroplacental blood flow as pregnancy 

progresses (331). In this process, maternal uterine spiral arteries are transformed into 

larger, low resistance vessels (332), capable of transporting the increased maternal 

blood to the placenta (333). Part of the modification and remodelling of spiral arteries 

involves a replacement of the muscular and elastic walls of the arteries with a fibrinoid 

layer embedded with trophoblast cells (334-336), allowing low pressure intervillous 

flow (333, 336). The absence of trophoblast induced changes in decidual or myometrial 

segments of spiral arteries is a feature of some pregnancies complicated by fetal growth 

restriction (337). 

Growth of the uterus, placenta and fetus requires an increase in uterine blood flow 

during pregnancy in order to meet metabolic demand (333, 338). During pregnancy, 

total blood volume (339) and cardiac output increase by approximately 40% (331) and 

the total uteroplacental blood flow represents 25% of cardiac output (333). Thaler et al. 

found that uterine artery volume flow rate increased by over three-fold during 

pregnancy, partly influenced by an increased artery diameter and reduced resistance to 

flow (340). Palmer et al. found that the diameter of the uterine artery had increased two-

fold by 21 weeks gestation, and further increased between 30 and 36 weeks gestation 

(341). In addition, flow velocity of the uterine artery increased throughout gestation and 

was eight times greater by 36 weeks compared to non-pregnant values (341). 

Uteroplacental blood flow was shown to be reduced by up to 50% in women with pre-

eclampsia (342), a group susceptible to IUGR, and uterine artery volumetric flow was 
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also reduced by one third in late gestation in high altitude pregnancies (324). In addition 

to increased uterine blood flow during pregnancy, the development of new blood 

vessels also occurs in the uterus, possibly promoted by human chorionic gonadotropin 

(hCG) (343) and IGF-II (344). In IUGR, there is a decrease in number and surface area 

of terminal villi, representing a malfunction of vascularisation in these pregnancies 

(344-346). 

Umbilical vein blood flow can be measured by Doppler ultrasound techniques and has 

been shown to be decreased in IUGR fetuses in relation to fetal size (347), representing 

reduced perfusion of the fetal tissues (348). In a study of 70 human fetuses, Barbera et 

al. found a strong correlation between absolute umbilical vein flow and fetal head and 

abdominal circumferences, with an increase in umbilical vein diameter and mean 

velocity throughout pregnancy (349). They also found an exponential increase in flow 

from 97.3 ml/min at mid-gestation to 529.1 ml/min in late gestation, but no 

corresponding increase in flow per kg of fetal weight, suggesting that increasing flow is 

driving the increase in fetal size in late gestation (349). Di Naro et al. also demonstrated 

reduced umbilical vein flow in IUGR fetuses, both in absolute terms and when adjusted 

for abdominal circumference (350). In addition, they found that the cross-sectional area 

of the umbilical cord and of the umbilical vein itself was lower in IUGR fetuses than 

normally grown fetuses (350). These studies suggest the importance of uteroplacental 

blood flow in maintaining appropriate fetal growth through the supply of oxygen and 

nutrients. A previous study from our group demonstrated alterations in placental blood 

flow in some women with asthma and this potentially contributes to changes in fetal 

growth (111). 

1.10.2 Nutrient transport 

Glucose, amino acids and lipids are some of the most important nutrients which are 

transported from mother to fetus via the placenta. These nutrients may be delivered by 

passive diffusion; however, concentrations of many amino acids are higher in fetal than 

maternal plasma, suggesting the existence of active transport mechanisms across the 

placenta (351, 352). Amino acid transporters within the fetal (basal) and maternal 

(microvillous) facing syncytiotrophoblast plasma membranes actively transport 

numerous amino acids across the placenta (353). System A, found mostly on the 

microvillous membrane, is sodium dependent and transports neutral amino acids such as 
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alanine, proline, glycine and serine (353, 354). Neutral amino acids may also be 

transported by system ASC, found mostly on the basal membrane (355). System L is 

sodium independent, transporting phenylalanine and branched chain amino acids (353). 

Systems y+ and y+L transport cationic amino acids such as arginine across the 

microvillous and basal membranes respectively (353, 355, 356). Amino acids may also 

be metabolised and processed by the placenta. For example, leucine is deaminated in the 

placenta, and the deaminated product and leucine itself are both transferred to the fetus 

(357). 

In SGA fetuses there are alterations in amino acid transport by the placenta and uptake 

by the fetus. Jansson et al. found that in vitro uptake of lysine in the basal membrane 

and leucine in both the basal and microvillous membranes was decreased in placentae 

from IUGR pregnancies, suggesting reduced activity of amino acid transporters (358). 

Fetal plasma collected at mid-gestation from SGA fetuses showed a reduction in 

essential amino acids with lower levels of alpha-aminonitrogen and decreases in 

branched chain amino acids such as valine, leucine and isoleucine along with lycine, 

serine (359, 360) and phenylalanine (361). Economides et al. found that fetal 

concentrations of many amino acids including branched chain, basic and essential 

amino acids that cannot be produced by the fetus, were reduced (352). Moreover, the 

ratio of non-essential to essential amino acids was increased with increasing fetal 

hypoxemia, assessed by umbilical vein PO2 (352). In IUGR, the activity of system A in 

the microvillous membrane is reduced (362, 363), while the expression and activity of 

glucose transporters in the syncytiotrophoblast is not changed (355, 364). 

Glucose transport from mother to fetus is related to the concentration gradient and is 

carried out by transporters found on the maternal and fetal sides of the trophoblast 

(365). Nicolini et al. found that while maternal glucose concentrations were similar 

between normal and growth restricted pregnancies, the fetal glucose concentration was 

significantly reduced in the growth restricted group (366). Hypoglycemia in SGA 

fetuses may be related to reduced supply and transfer of glucose across the placenta 

(367). The glucose transporter, GLUT1, is found in abundance in the microvillous 

membrane of the syncytiotrophoblast at levels three times higher than the basal 

membrane (364, 368). In a perfusion study of preterm IUGR placentae, it was found 

that baseline glucose consumption was two-fold higher in IUGR, suggesting that 

placental consumption of glucose may contribute to alterations in maternal-fetal 
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concentration differences in glucose (369). However this study also demonstrated no 

change in glucose transfer to the fetal side of the placenta (369), confirming previous 

studies showing no alteration in glucose transporter expression or activity in IUGR 

placentae (364, 370, 371). Another study found that in IUGR, the maternal-fetal glucose 

concentration gradient was increased in relation to clinical severity, possibly 

representing an adaptation to maintain glucose uptake across the placenta (365). 

Fatty acids, which are essential components of plasma membranes and used for energy, 

are also transported to the fetus across the placenta (372, 373). In the third trimester, 

fatty acids are required for changes in fetal tissue composition, particularly that of the 

brain and adipose tissue (374). The n-3 and n-6 fatty acid structures can only be 

acquired from the maternal diet and placental transfer (373). Free fatty acids may be 

transferred across the placenta via passive diffusion, due to the concentration gradient 

between mother and fetus (375) and there are fatty acid binding proteins and fatty acid 

transfer proteins in the microvillous and basal membranes (373, 376). The essential 

fatty acid, linoleic acid was found to be significantly higher in IUGR placentae 

compared to those from appropriately grown fetuses (377) which may have implications 

for fetal brain development (378). However, there is no clear evidence for reduced fatty 

acid concentrations or placental transport in fetal growth restriction (373). 

While the transport of amino acids and other nutrients is clearly critical for fetal growth, 

alterations in placental transport in asthmatic pregnancies will not be examined in this 

thesis. However, the placental production and metabolism of key growth regulating 

hormones such as the insulin-like growth factors and cortisol will be examined in this 

study. 

1.10.3 Placental production of growth factors and growth 
regulating hormones 

Insulin-like growth factors (IGFs) 

The IGF axis is of major importance in both fetal and placental growth. Insulin-like 

growth factors I and II (IGF-I and IGF-II) are polypeptides with a sequence similar to 

that of insulin (379), which have mitogenic properties, inducing somatic cell growth and 

proliferation (380, 381). They may also have the ability to influence the transport of 
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glucose and amino acids across the placenta (382). Alterations in the IGF axis are 

associated with fetal growth restriction in animal models and human studies. 

Knockout and transgenic mice studies have demonstrated that IGF-I and IGF-II are 

required for optimal fetal and placental growth (383-386). Null mutations in the gene 

encoding IGF-I result in mice that are 60% smaller than their wild-type littermates 

without altering placental size (384, 385). Inactivation of the IGF-II gene also results in 

a 60% reduction in fetal weight (383) with reduced placental growth also evident from 

embryonic day 13.5 (383, 384). When both IGF-I and IGF-II were knocked out, the 

birth weight was further reduced to 30% of normal size (385). Knocking out the IGF-I 

receptor either alone, or in combination with IGF-I or IGF-II, resulted in postnatal death 

due to respiratory failure and a 50% reduction in fetal size (385). Recent work has 

demonstrated that selective mutation of the placental promoter of the IGF-II gene (P0 in 

mice) results in a proportionate reduction in size of all parts of the placenta by 

embryonic day 12 and in fetal size by day 16, despite the fact that this transcript 

comprises only 10% of all placental IGF-II mRNA (386, 387). The reduced placental 

growth was as great as when all IGF-II was absent, suggesting that the P0 transcript is 

essential for determining the action of IGF-II on the placenta (386). This study also 

showed that mice carrying the mutation had reduced placental passive transport but 

increased active transport of amino acids, possibly reflecting a compensatory 

mechanism to increase fetal growth (386). Overexpression of the IGF binding protein, 

IGFBP-1 in transgenic mice results in a transient decrease in mid-gestation fetal growth 

(388). 

The type 1 IGF receptor is similar in structure to the insulin receptor (389), being a 

transmembrane heterotetrameric (α2β2) glycoprotein (390-393) with disulfide links and 

an intracellular tyrosine kinase domain (393, 394). It is able to bind both IGF-I and 

IGF-II through an extracellular α subunit; however its affinity for IGF-I is 15-20 times 

greater than for IGF-II (395). The type 2 IGF receptor is a single-chain polypeptide 

which has a high affinity for IGF-II, but does not bind IGF-I or insulin (385, 396). This 

receptor is identical to the mammalian mannose-6-phosphate receptor (397). Recent 

studies in humans have indicated that a mutation in the IGF type 1 receptor gene which 

results in reduced functioning of the receptor is associated with poor prenatal and 

postnatal growth (398, 399). 
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IGF-I and IGF-II circulate in pregnant women at higher levels than in non-pregnant 

women (400) and concentrations increase even further by the third trimester (401-404), 

suggesting that these hormones may have a role in fetal growth regulation in addition to 

their well characterised effects on postnatal growth (401). Levels of IGF-I and IGF-II in 

the maternal circulation are mainly derived from the liver (405). Fetal serum 

concentrations of IGF-I, IGF-II and IGFBP-3 increase significantly with advancing 

gestation, with the greatest rise in IGF-I (406). 

The actions of the IGF-I and IGF-II are regulated by one of six insulin-like growth 

factor binding proteins (IGFBP-1-6) (407). IGFBP-2, 4, 5 and 6 are present in low 

concentrations in plasma (407). IGFBP-3 complexes with IGF-I or II and an acid-labile 

subunit acting as a reservoir for IGFs in the circulation (407, 408) and increases in 

maternal plasma during pregnancy (409). IGFBP-1 is dynamically regulated in human 

plasma and its levels can vary more than 10-fold in response to changes in insulin (407). 

IGFBP-1 binds IGF-I and II with greater affinity than either of the IGF receptors and 

thus prevents the IGFs from exerting their mitogenic actions (407).  

During pregnancy, IGFBP-1 is the major regulator of IGF-I action, since it is the main 

product of the decidua (410, 411), the main IGFBP in the amniotic fluid (412-415) and 

a major binder of IGFs in fetal plasma (412, 416, 417). IGFBP-1 can exist in one of 

several phosphorylated forms. Jones et al. first described the existence of up to five 

phosphorylated forms in addition to a non-phosphorylated form of IGFBP-1 finding that 

amniotic fluid and fetal serum contained large amounts of the non-phosphorylated form, 

while decidual cells contained only the phosphorylated forms (418). This group also 

showed that the mix of phosphorylated forms of IGFBP-1 had six-fold higher affinity 

for IGF-I than the non-phosphorylated form (418). Subsequently, Westwood et al. 

demonstrated the importance of post-translational phosphorylation of IGFBP-1 in 

pregnancy by showing that plasma from non-pregnant adults only contained the highly 

phosphorylated species, while pregnant plasma also contained a non-phosphorylated 

and three less phosphorylated variants, with concentrations at least double that of non-

pregnant individuals and higher in multi-fetal pregnancies (417, 419, 420). The highly 

phosphorylated isoform has the highest affinity for IGF-I which is greater than that of 

the IGF type 1 receptor, resulting in an inhibition of IGF activity, while the non-

phosphorylated form has a similar affinity for IGF-I as its receptor (417, 421). 

Dephosphorylation of IGFBP-1 may represent a mechanism by which IGF-I is released 
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and its bioactivity increased during pregnancy. Maternal serum concentrations of 

IGFBP-1 increase in the first trimester, peak at mid-gestation and remain constant until 

delivery, falling after birth (422).  

The human placenta produces IGF-I and IGF-II which may act as local growth 

regulators (423). The mRNA abundance of IGF-II is greater than that of IGF-I in the 

placenta at all gestational ages (411). IGF-II is found throughout the chorionic villi, 

chorionic plate, basal plate and fetal membranes, while all IGFBPs are found in the 

decidua, with IGFBP-1 in greatest abundance (410, 411). IGFBP-1 produced by the 

maternal decidua may be involved in cell to cell communication with IGF-II produced 

by fetal trophoblast cells, due to the close spatial positioning of the two mRNAs (411). 

The autocrine or paracrine actions of IGF-II and IGFBP-1 may be especially important 

during implantation and trophoblast invasion (424, 425). In the syncytiotrophoblast, 

type 1 IGF receptors are found mainly on the microvillous membrane, facing the 

maternal side (426). IGFBP-3 has been localised to both the microvillous and basal 

membranes and IGFBP-1 is predominantly found on the basal surface, facing the fetal 

side (427).  

Immunohistochemistry and in situ hybridisation studies have shown that placental 

expression of IGF-I is increased in some cases of IUGR, possibly as a compensatory 

mechanism for reduced fetal growth (428, 429). However, another study showed that 

secretion of IGF-I from decidual explants is reduced in cases of IUGR and a correlation 

with birth weight was observed (430). However, across the birth weight spectrum, no 

correlation between decidual secretion of either IGF-I or IGFBP-1 and birth weight was 

noted by the same group, suggesting that reduced IGF-I in IUGR represents a discrete 

hormonal profile (431). Abnormal production of IGF-I from the placenta has been 

proposed to play a role in some cases of IUGR (432). Across a group of normal and 

diabetic pregnancies, placental IGF-II mRNA was positively correlated with placental 

weight (433). 

The role of the IGF axis in fetal growth has been studied in monozygotic twin 

pregnancies where the twins are genetically identical and share a common uterine 

environment. Twin to twin transfusion syndrome (TTTS) accounts for a high rate of 

perinatal mortality in monochorionic twins and causes the growth of one twin to be 

compromised as it donates blood to the other (434, 435). Fetal serum IGF-I 
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concentrations are thought to be primarily determined by genetic influences, while 

IGF-II and IGFBP-1 concentrations are determined both by maternal environment and 

genetic factors (436). Bajoria et al. found that donor twins with TTTS had significantly 

lower levels of IGF-II and significantly higher levels of IGFBP-1, particularly the 

inhibitory phosphorylated isoform, than their recipient twin (435). In addition, there was 

a positive correlation between birth weight and IGF-II and a negative correlation with 

IGFBP-1 (435). Similarly, another study of monozygotic twins with discordant growth 

found lower IGF-II, similar IGF-I and increased total IGFBP-1 in the growth restricted 

twin compared to the normally growth co-twin (437). Given that the IGF-I levels in 

cord blood were similar and are thought to be genetically determined, altered placental 

production or placental regulation was proposed to contribute to changes in IGF-II and 

IGFBP-1 in growth restricted twins (435). Inadequate placental dephosphorylation of 

IGFBP-1 may lead to alterations in the mitogenic activity of IGF-I and of placenta 

nutrient transfer stimulated by IGF-I (435, 438). 

Alterations in the IGF axis are also observed in dichorionic twins and in singletons of 

low birth weight. Two studies in dichorionic twins with discordant birth weight have 

found that the smaller twin had lower cord blood levels of amino acids and IGF-I and 

higher levels of IGFBP-1 (437, 439) and that IGFBP-1 concentration was negatively 

associated with total essential amino acids (439). Numerous studies have found a 

positive relationship between cord blood IGF-I and birth weight in normal term 

singleton infants (440-450) and some have also found a relationship between cord blood 

IGF-I and other parameters of size such as birth length (444, 449), crown-rump length 

(451), ponderal index (442) or placental weight (442, 443, 451), but not head 

circumference (452). In pregnancies complicated by IUGR, umbilical cord blood IGF-I 

is reduced compared to pregnancies with normal fetal growth (403, 453-456). These 

differences may be apparent earlier in gestation as measurements of fetal IGF-I and 

IGF-II by cordocentesis showed that fetal IGF-I and third trimester IGF-II were reduced 

in cases of growth restriction (403). Some studies have not been able to demonstrate any 

relationship between cord blood IGF-I and birth weight in normal term infants (457, 

458). In addition, the relationship between IGF-II and birth weight is not clear with 

some groups finding a positive correlation in term singletons (441, 448) and others 

finding no significant correlation (440, 442) or no difference between normally grown 
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and growth restricted groups (453). A correlation has been demonstrated between cord 

blood IGF-II and placental weight (445). 

The relationship between cord blood IGFBPs and fetal growth has also been examined. 

IGFBP-3 correlates positively with birth weight (442, 446, 448, 459), while IGFBP-1 is 

inversely correlated with birth weight in term (443, 450, 460) and preterm infants (461, 

462). Increased cord blood IGFBP-1 (456) and reduced IGFBP-3 have been observed in 

IUGR neonates (403, 454, 456). Iwashita et al. also observed an increase in 

phosphorylated isoforms of IGFBP-1 and a reduced proportion of non-phosphorylated 

to total IGFBP-1 in SGA fetuses, suggesting that the bioactivity of IGFBP-1 is 

increased in cases of poor fetal growth (463). 

Many studies have described some relationship between cord blood IGFs or IGFBPs 

and birth weight, but whether there is any relationship between fetal growth and 

maternal concentrations of these factors is more controversial. Boyne et al. found a 

positive correlation between maternal IGF-I concentration and birth weight and a 

negative correlation between maternal IGFBP-1 and birth weight, at 35 weeks gestation 

but not earlier in gestation (450). Reduced maternal IGF-I (404, 464-466), IGF-II (466) 

and elevated IGFBP-1 (465) in cases of fetal growth restriction have been described. 

However, other studies could not demonstrate any association between maternal IGF-I 

or IGFBP-1 measured at any stage of pregnancy, with neonatal birth weight or the 

development of IUGR (454, 467, 468). Similarly, several studies report no correlation 

between maternal IGFBP-3 and fetal growth (446). Despite this, it is clear that the IGF 

axis has a crucial role to play in modulating normal fetal growth during human 

pregnancy, with IGF-I and IGFBP-1 implicated as having central roles in fetal growth 

and IGF-II possibly having an important role in placental growth. These factors 

potentially play a role in altered fetal growth in asthmatic pregnancies and will be 

investigated in this thesis. 

1.10.4 Placental metabolism of glucocorticoids 

Glucocorticoids and the fetus 

Glucocorticoids are essential for the development and maturation of fetal organs before 

birth. Late pregnancy in humans and in many animal species is characterised by a rise in 

cortisol levels, which parallels the increased maturity of fetal organs (469). Studies in 
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the sheep demonstrated that infusion of adrenocorticotropic hormone (ACTH), cortisol 

or dexamethasone into the preterm fetus resulted in delivery of lambs within 4-7 days 

(470, 471). These animals had accelerated adrenal growth and maturation of the lungs 

comparable to term lambs, suggesting an effect of glucocorticoids on fetal lung 

development (470, 471). Glucocorticoids also contribute to maturation of other organs 

including the thymus, gastrointestinal tract (472, 473), liver (474) and kidney (475). 

Incubation of human fetal lung explants with dexamethasone stimulates fatty acid 

synthesis and fatty acid synthetase activity, which are involved in surfactant production 

(476). Many of the studies on fetal organ maturation by glucocorticoids have been 

carried out in animals such as the sheep, which may differ significantly from the human.  

In humans, betamethasone administration to women at risk of preterm delivery has 

confirmed the effectiveness of glucocorticoids in maturing the fetal lungs since it lowers 

the incidence of neonatal RDS and its associated mortality (477, 478). Glucocorticoid 

treatment has been shown to result in an increase in the ratio of lecithin to 

sphingomyelin in amniotic fluid, an indicator of fetal lung development and surfactant 

synthesis (479, 480). Today antenatal glucocorticoids are commonly given to women in 

preterm labour to mature the fetal lungs and successfully reduce the risk of neonatal 

morbidity and mortality (481). Recent research interest, however, has focussed on the 

potentially harmful effects of these treatments on the fetus and particularly on fetal 

growth. 

Glucocorticoids may have adverse effects on the fetus. Women using prednisone during 

pregnancy have been reported to have an increase in still-birth, fetal distress, placental 

insufficiency (191) and low birth weight neonates (192). Antenatal dexamethasone 

treatment has been associated with a reduction in birth weight, by as much as 161 g in 

infants delivered between 30 and 32 weeks (482). In addition, multiple doses of 

antenatal glucocorticoids have been linked to reduced fetal growth compared to single 

doses (483). However, recent evidence from randomised controlled trials suggests that 

there is no additional decrease in fetal growth when repeated courses of antenatal 

steroids are used compared to single doses (484, 485). French et al. found that repeated 

courses of betamethasone were associated with a 9% reduction in birth weight and a 4% 

reduction in head circumference in preterm infants born prior to 33 weeks gestation 

(486). In addition to reduced growth, neonates who receive antenatal glucocorticoids 

have also been shown to have an increased incidence of gastroesophageal reflux (487) 
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and modifications in fetal heart rate (488, 489). In vitro studies suggest that effects on 

the fetal vascular system may be due to the vasodilatory properties of glucocorticoids 

(490, 491). The use of oral or inhaled glucocorticoids by pregnant women with asthma 

may contribute to reduced fetal growth or altered fetal development. 

Numerous animal studies have demonstrated that synthetic glucocorticoids can inhibit 

fetal growth. Synthetic glucocorticoid treatment to pregnant ewes in mid-gestation 

results in reduced fetal weight (492), with the greatest effect in animals receiving 

repeated doses (493). Four doses of betamethasone reduced birth weight by 27% in 

sheep (494). Reduced body weight or organ weight at birth following glucocorticoid 

treatment during pregnancy has also been demonstrated in mice (192), rats (495), 

rabbits (496), rhesus monkeys (497) and guinea pigs (498). Other effects of 

glucocorticoid administration in animals included decreased brain weight, neurological 

damage (499-501) and placental lesions (502). Fowden et al. examined the mitogenic 

effect of endogenous cortisol on sheep fetal growth (503). In late gestation, the crown-

rump length decreased in parallel with the fetal cortisol surge and this decrease in 

growth was prevented by fetal adrenalectomy (503). This study linked the rise in 

cortisol in late gestation with a reduction in fetal growth in sheep. The effects of 

glucocorticoids on fetal growth may be mediated by changes in IGF-I. In pregnant rats, 

treatment with betamethasone or dexamethasone decreased maternal plasma IGF-I, 

which was related to reduced liver to body weight ratio (504, 505). Indirectly or 

directly, glucocorticoids have a beneficial effect on fetal organ maturation before birth 

but also have the potential to reduce fetal growth.  

Placental 11β-hydroxysteroid dehydrogenase (11β-HSD) 

Maternal cortisol concentrations are 5-10 times higher than fetal cortisol concentrations 

(506-508). This difference is maintained by the presence of the placental enzyme, 

11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), which controls the passage of 

cortisol from mother to fetus. Two isoforms of 11β-HSD have been cloned and 

characterised in humans (509, 510) which interconvert glucocorticoids with their 11-

keto metabolites (Figure 1.3). The type 1 enzyme (11β-HSD1) is NADP(H) dependent, 

catalyses the bi-directional interconversion of cortisol and cortisone, but acts primarily 

as an oxoreductase, converting cortisone to cortisol (511). This is due to its higher 

affinity for cortisone (Km in the nanomolar range) compared to cortisol (Km in the 
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micromolar range) (512). The type 2 enzyme (11β-HSD2) is a high affinity, NAD 

dependent, uni-directional enzyme, catalysing only the dehydrogenase reaction, 

converting cortisol to cortisone (513). 11β-HSD1 and 2 are members of the short-chain 

alcohol dehydrogenase super family (514), are quite different in amino acid sequence, 

sharing about 21% homology (515) and the genes encoding them are found on 

chromosome 1 (509) and 16 (516) respectively. 
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Figure 1.3 Interconversion of cortisol and cortisone by 11β-HSD 

11β-HSD2 catalyses the oxidation of cortisol to its inactive 11-keto derivative, cortisone, with the use of 
NAD as a cofactor. 11β-HSD1 catalyses the reduction of cortisone to cortisol with NADPH as a cofactor. 

The type 1 11β-HSD isozyme is mostly found in tissues such as the liver (517), adipose 

tissue (517), lung (518) and testis (519) with its main function being to increase the 

availability of glucocorticoids for the glucocorticoid receptor (GR), allowing pre-

receptor control of local glucocorticoid action (515). 11β-HSD1 is also found in 

gestational tissues; predominantly the decidua (517, 520) and chorion (521), as well as 

the endothelium of placental villous tissue (521), where it modulates the effect of 

cortisol on other placental pathways including prostaglandin biosynthesis and 

metabolism (522, 523).  

The type 2 11β-HSD isozyme is found in specific tissues such as the kidney (524-526), 

colon (527), adrenal (517) and the placenta (526, 528). Its presence in mineralocorticoid 

target tissues, especially the kidney, is necessary to protect the mineralocorticoid 

receptor (MR) from occupation by cortisol (529, 530). Cortisol has a much higher 

plasma concentration than aldosterone, the “natural” mineralocorticoid, but the two 

compounds have equal affinity for the MR (531). The 11-keto metabolites formed by 

11β-HSD2 are unable to bind to the MR, while aldosterone is not metabolised by 

11β-HSD2 and therefore remains active. Over activation of the MR by cortisol leads to 
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sodium retention and potassium excretion in the renal tubules, resulting in hypertension 

and suppression of the renin-angiotensin system (532). This can occur following excess 

ingestion of licorice which contains the 11β-HSD inhibitor, glycyrrhetinic acid (533) 

and in a congenital disease known as apparent mineralocorticoid excess (AME) which 

results from mutations of the 11β-HSD2 gene (534, 535). 

In the placenta the main function of 11β-HSD2 is to protect the fetus from the 

potentially harmful effects of endogenous maternal glucocorticoids (536). Synthetic 

glucocorticoids such as dexamethasone and betamethasone are not thought to be 

extensively metabolised by placental 11β-HSD2, possibly due to protection from their 

9-halogen group (537, 538) (see Figure 1.2). No studies have been published regarding 

the placental metabolism of synthetic glucocorticoids used for asthma treatment during 

pregnancy such as beclomethasone, budesonide and fluticasone. Preliminary studies 

from our group suggest that beclomethasone is partially metabolised by the placenta, 

but that budesonide and fluticasone are not (539). If these glucocorticoids reach the 

placenta but are not metabolised into inactive forms, they may have adverse affects on 

the fetus and may contribute to reduced fetal growth in asthmatic women using inhaled 

or oral glucocorticoid medication. 

In addition to its barrier role, 11β-HSD2 in the placenta may also protect the MR as in 

tissues such as the kidney (540, 541). Hirasawa et al. co-localised 11β-HSD2 and MR 

immunoreactivity and mRNA in the placenta (540). This group suggests a role for 

11β-HSD2 in regulation of maternal-fetal electrolyte and water transport in the placenta 

in addition to its barrier role (540). Driver et al. have also found mineralocorticoid-

responsive genes and a functional MR in human cytotrophoblast cells, suggesting that 

11β-HSD2 is involved in placental sodium transport (541, 542). 

The ability of the placenta to metabolise cortisol and other glucocorticoids to 11-keto 

products was first described by Osinski in 1960 (528). An immunohistochemical study 

by Krozowski et al. found that 11β-HSD2 was localised to syncytiotrophoblast cells 

lining the chorionic villi (526). Similarly, Hirasawa et al. detected 11β-HSD2 

immunoreactivity in syncytiotrophoblast from 5 weeks to term (540). In placental bed 

biopsies, 11β-HSD2 immunoreactivity was found in fused syncytiotrophoblast, invasive 

extravillous trophoblast and trophoblast lining the maternal spiral arteries (542). Sun et 

al. found 11β-HSD2 mRNA (but not 11β-HSD1) in the placenta and no expression of 
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11β-HSD2 in the amnion, chorion or decidua (521). Activities of both type 1 and 2 

enzyme were demonstrated in the human perfused placenta by Sun et al. (543), while 

Benediktsson et al. found that most of the maternally administered cortisol was 

converted to cortisone with no cortisone to cortisol conversion detected (536). Dodds et 

al. also demonstrated cortisol to cortisone conversion in the perfused placenta, which 

could be eliminated by co-perfusion with the inhibitor glycyrrhetinic acid (544). 

Immunohistochemical studies have localised 11β-HSD1 to the chorion trophoblast, 

amnion epithelial cells, the endothelium of placental and umbilical blood vessels and 

the decidua (521). Others have confirmed the presence of 11β-HSD1 in decidual 

stromal cells (517, 542). 11β-HSD1 mRNA was detected in the greatest amount in 

chorion and also in amnion and placenta (521). 

Human studies on the expression and activity of the 11β-HSD isozymes in the placenta 

and fetal membranes throughout gestation have produced conflicting results. In 1973, 

Beitins et al. demonstrated that at term, 75% of the cortisol found in the fetus was of 

fetal origin, while all the cortisone in the fetus was of maternal origin (545). This 

suggested that placental 11β-HSD2 was acting as an effective glucocorticoid barrier at 

term and that fetal cortisol was mainly derived from the fetal adrenal and not from a 

maternal source (545). Similar work from Murphy et al. (1974) indicated that high 

levels of 11β-HSD activity were present in early gestation (13-18 weeks), with 85% of 

infused maternal cortisol converted to cortisone by the placenta (546). Giannopoulos et 

al. (1982) examined placental 11β-HSD activity and found that type 2 activity 

predominated and that this activity decreased from early (8-12 weeks) to late (38-40 

weeks) gestation (547). Similarly, Blasco et al. (1986) described a decrease in placental 

11β-HSD2 activity from early to late gestation (548). Studies have shown an increase in 

11β-HSD1 conversion of cortisone to cortisol in the fetal membranes with advancing 

gestational age (549, 550). No labour-associated changes in 11β-HSD2 mRNA 

abundance or enzyme activity have been described (521, 551, 552). 

More recent studies have described an increase in 11β-HSD2 activity (553, 554) and 

mRNA abundance (555) in the placenta from mid to late gestation. Shams et al. 

compared samples collected in the first and second trimester from terminations with 

preterm samples (27-36 weeks gestation) and term placenta (39-40 weeks gestation) 

(554). They did not examine any trends within the term group, but found an overall 
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increase in placental 11β-HSD2 activity across the whole of pregnancy (554). Similarly, 

Schoof et al. compared a preterm group with a term group, with a wide range of 

gestational ages from 18 to 41 weeks, finding an overall increase in 11β-HSD2 mRNA 

(555). In 2003, Kajantie et al. published a report on 107 small preterm placentae (22-32 

weeks) and demonstrated a fall in placental 11β-HSD2 activity rate as gestation 

progressed (556). In the guinea pig, a species with a similar hemomonochorial placental 

structure to the human, 11β-HSD2 activity falls significantly in late gestation (557). Our 

group has proposed that there is a decrease in 11β-HSD2 activity in the last few weeks 

of human gestation and an increase in placental 11β-HSD1 mRNA abundance with 

spontaneous labour (552). This may be a mechanism by which cortisol concentrations 

rise at term to regulate fetal maturation and activate pathways associated with labour 

(552). 

Placental 11β-HSD2 and fetal growth 

Reductions in 11β-HSD2 activity have been associated with reduced human fetal 

growth. Shams et al. demonstrated that there was a significant reduction in enzyme 

activity in placentae from pregnancies complicated by IUGR compared to normally 

grown term deliveries and appropriately grown preterm deliveries (554). Further work 

demonstrated that there were also reductions in 11β-HSD2 mRNA levels but no 

mutations in the gene (558). Studies in rats have demonstrated a relationship between 

11β-HSD2 activity and birth weight (495). One human study found a positive 

correlation between placental 11β-HSD2 activity and birth weight (559). However, a 

larger study from this group was unable to confirm this result (560). In the latter report, 

all but one neonate weighed more than 2500 g, suggesting that the correlation of 

11β-HSD2 activity and birth weight may not be apparent within the normal weight 

range, but may become more obvious when studying low birth weight infants (560). 

Hofmann et al. found no correlation between placental 11β-HSD2 activity and birth 

weight in healthy term pregnancies, or in pregnancies complicated by PIH or IUGR 

(561). However, others have reported reduced 11β-HSD2 activity or mRNA in 

placentae from patients with pre-eclampsia, where there was decreased fetal growth, 

compared to normotensive pregnancies (562, 563). In small preterm infants (22-32 

weeks gestation), a positive correlation between relative birth weight (expressed in 

standard deviation units compared to population standards) and placental 11β-HSD2 

total activity and activity rate was observed (556). In addition, lower birth weight was 



Chapter 1 - Literature Review 

65 

associated with reduced umbilical cord vein cortisone, also suggesting a reduction in 

transplacental cortisol to cortisone conversion in association with reduced fetal growth 

(556). 

One of the clinical features of patients suffering from AME, which results from 

mutations of the 11β-HSD2 gene, is moderate IUGR (564, 565). Kitanaka et al. found 

that 17 out of 18 AME patients had a birth weight less than 2700 g (564). Stewart et al. 

studied 11β-HSD2 activity in placenta obtained from a 28 week twin still-birth in a 

family with two other children with AME (565). Placental 11β-HSD2 activity was 

approximately 15% of that in five gestational-age matched controls and 

immunohistochemical staining for 11β-HSD2 was virtually absent in the AME placenta 

(565). Both siblings with AME and the placenta were shown to have a point mutation in 

exon V of the 11β-HSD2 gene (565). There have been other reports of still-birth in 

families with 11β-HSD2 mutations and AME (566). These studies suggest that reduced 

11β-HSD2 activity may be related to reduced fetal growth and possibly an increased 

risk of fetal death. The role of placental 11β-HSD2 in fetal growth regulation in 

asthmatic pregnancies will be a focus of this thesis, as decreased activity or mRNA 

expression may be associated with reduced fetal growth. 

Glucocorticoids and fetal programming 

Glucocorticoids are thought to be involved in the fetal programming of adult disease. 

Although no human studies have investigated placental 11β-HSD2 in relation to 

outcomes in later life, animal studies have implicated decreased 11β-HSD2 activity as 

having a role in fetal programming. 

In rats, Benediktsson et al. showed a positive correlation between placental 11β-HSD2 

activity and term fetal weight and a negative correlation with placental weight (495). 

Treatment of pregnant rats with dexamethasone, a steroid not extensively metabolised 

by placental 11β-HSD2, resulted in a decrease in maternal weight gain, reduced birth 

weight and significantly raised blood pressure 140-150 days after birth compared to 

untreated rats (495). This study proposed that the relationship between low birth weight, 

high placental weight and increased adult blood pressure may be mediated by 

glucocorticoid exposure in utero (495). 

Levitt et al. found that administration of dexamethasone to rats in late pregnancy 

resulted in an 11% reduction in birth weight and elevated blood pressure in offspring at 
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16 weeks of age (567). The same group later demonstrated that inhibition of placental 

11β-HSD2 by carbenoxolone treatment throughout pregnancy gave similar results 

(568). They observed a 20% decrease in birth weight and elevated blood pressure in 

adult offspring. When mothers were adrenalectomised, this effect did not occur, 

highlighting the importance of exposure to maternally derived glucocorticoids (568). 

Male offspring were also found to be hyperglycemic later in life (569). Similar studies 

by another group found that maternal carbenoxolone treatment in pregnant rats resulted 

in smaller offspring with glucose intolerance in later life and reduced hepatic 11β-HSD1 

and reduced renal 11β-HSD2 gene expression (570). In sheep, mid-gestation 

dexamethasone treatment inhibited placental 11β-HSD2 gene expression and reduced 

birth weight (493). 

Maternal protein restriction has been shown to decrease birth weight and placental 

11β-HSD2 activity in rats (571). In early adulthood, offspring also had raised systolic 

blood pressure (571). This study proposed that maternal undernutrition results in fetal 

glucocorticoid exposure and this leads to the programming of hypertension in later life 

(571). Further work demonstrated that a low protein maternal diet reduced 11β-HSD2 

gene expression in the rat placenta and in the fetal and neonatal kidney and adrenal 

(572). The authors suggested that altered exposure of the fetus and in particular, the 

fetal kidney, to glucocorticoids may lead to the observed increase in GR protein and 

mRNA expression in the kidney, which was a possible mechanism for raised blood 

pressure in later life (572). 

Prenatal exposure to maternally derived glucocorticoids may also alter other aspects of 

postnatal development. Smith and Waddell found that treatment of pregnant rats with 

either dexamethasone or carbenoxolone led to reduced birth weight and a delay in the 

onset of puberty in females (573). Particular research attention has focussed on 

glucocorticoid-mediated alterations to the fetal hypothalamic-pituitary-adrenal (HPA) 

axis. Carbenoxolone treatment during pregnancy in rats leads to increased basal 

corticosterone levels, reduced GR mRNA in the hypothalamus and alterations in stress 

induced behaviour in the offspring (574). Similarly, maternal undernutrition in rats 

leads to reduced placental 11β-HSD2 mRNA, reduced neonatal weight, adrenal atrophy, 

reduced GR and MR mRNA in the hippocampus and increased neonatal plasma 

corticosterone at birth (575). 
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Treatment of pregnant guinea pigs with dexamethasone at the time of rapid fetal brain 

development (days 50 and 51 of a 70 day gestation) results in an immediate increase in 

plasma cortisol in females and a decrease in plasma cortisol in male fetuses (576). In 

addition, increased hippocampal MR and GR gene expression was observed, but only in 

female fetuses (576). When pregnancies progressed to term, female offspring exhibited 

a reduced brain to body weight ratio, while male and female offspring both had reduced 

heart to body weight ratios (498). Fetal exposure to dexamethasone resulted in reduced 

plasma ACTH in females, increased plasma cortisol in males and decreased plasma 

cortisol during isolation stress in female offspring at 18 days of age (498). There are 

sex-specific differences in the regional and temporal expression of brain GR and MR 

(577) and sex-specific changes in hippocampal GR expression were observed in 

offspring exposed to dexamethasone (498). Repeated doses of dexamethasone or 

betamethasone during guinea pig pregnancy also resulted in inhibition of the fetal HPA 

axis (578). Similar alterations in HPA function of offspring can be induced by prenatal 

exposure to stress, such as noise and light stress (579) and restraint stress (580) in rats. 

Evidence from all this work demonstrates that fetal exposure to glucocorticoids during 

the period of rapid brain development permanently alters HPA function (498, 581). 

Studies in humans have also related low birth weight and prenatal stress to altered HPA 

activity in later life. Low birth weight has been associated with elevated cortisol levels 

at birth (582) and elevated plasma cortisol concentrations or HPA activity in adult life 

in several populations (583, 584). Another group has found that the effect of birth 

weight on adult plasma cortisol is dependent on gestational age at birth (585, 586). In 

those born before 39 weeks gestation, lower birth weight was associated with higher 

total and free plasma cortisol, while in those born after 40 weeks gestation, lower birth 

weight was associated with lower plasma cortisol (585). In children, increased urinary 

excretion of glucocorticoids was found in those who had the lowest or highest birth 

weights (587). Maternal first trimester exposure to the stress of war has been associated 

with an increased risk of the offspring developing schizophrenia in adult life (588). Lou 

et al. found that maternal stress during mid-gestation affected birth weight and was 

associated with small head circumference, suggesting a specific effect on the brain 

(589), thus linking prenatal stress, reduced growth and altered brain development. 

Approximately 10% of maternal cortisol does cross to the fetus and increases in 

maternal cortisol levels may therefore contribute to increased fetal cortisol levels during 
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pregnancy (508). Therefore, despite the presence of the placental 11β-HSD2 enzyme 

barrier, an increase in maternal glucocorticoids as a result of stress could contribute to a 

significant change in fetal glucocorticoid exposure (508), which would be compounded 

by reduced placental 11β-HSD2 activity. 

Regulation of placental 11β-HSD2 

Placental 11β-HSD2 is clearly an important modulator of fetal glucocorticoid exposure 

and it is regulated by many hormones and factors associated with pregnancy, including 

estradiol, progesterone and prostaglandins. Studies in other tissues and cell lines have 

demonstrated regulation of this enzyme by inflammatory cytokines. Some of these 

regulators are also associated with asthma and therefore it is possible that women with 

asthma are particularly susceptible to altered placental 11β-HSD2 during pregnancy. 

In syncytiotrophoblast cell cultures, progesterone dose-dependently reduced 11β-HSD2 

activity through a non-receptor mediated mechanism and also reduced 11β-HSD2 

mRNA abundance, an effect which was reversed by treatment with progesterone 

receptor antagonists (590). In addition, Pepe and Albrecht reported that 11β-HSD2 

activity in human and baboon placental homogenates was inhibited by progesterone 

(591). Estradiol was found to significantly decrease activity but not mRNA of 

11β-HSD2 in placental cells (590). Nitric oxide (NO) donors (sodium nitroprusside and 

S-nitroso-N-acetyl penicillamine) have been shown to inhibit 11β-HSD2 mRNA and 

activity in syncytiotrophoblast cells cultured for 72 hours, through a cGMP mediated 

pathway (592). Activators of the cAMP pathway such as forskolin were demonstrated to 

increase 11β-HSD2 activity and mRNA expression in JEG-3 choriocarcinoma cells 

(593) and syncytiotrophoblast cells (590), while activation of the protein kinase C 

pathway by phorbol 12-myristate 13-acetate (PMA) had no effect on placental 

11β-HSD2 (590, 593). 

Hardy et al. examined the effect of the prostaglandins, PGE2 and PGF2α and the 

leukotriene, LTB4 on 11β-HSD2 activity and gene expression in JEG-3 cells (594). 

They found that PGE2 and PGF2α reduced 11β-HSD2 activity to 75% of the untreated 

level. Blocking prostaglandin synthesis with the cyclo-oxygenase inhibitor 

indomethacin, however, did not reverse the effect, but also resulted in inhibition. LTB4 

treatment resulted in a dose dependent inhibition of 11β-HSD2 activity. Importantly, 

this study showed that there were no corresponding changes in the mRNA abundance of 
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11β-HSD2 by treatment with PGE2, PGF2α or LTB4, indicating that their effect was 

post-translational (594). 

Recent work from Alfaidy et al. showed that oxygen may be an important regulator of 

placental 11β-HSD2 (595). In this study, incubation of first trimester placental villous 

explants or trophoblast cell cultures from term placentae under 20% O2 led to a 

significant increase in 11β-HSD2 protein expression and activity compared to 

incubation under 3% O2 (595). Similarly, Hardy and Yang found that 11β-HSD2 protein 

and activity more than doubled when cytotrophoblast cells differentiated into 

syncytiotrophoblasts under 20% O2 (596). However, when cells were cultured under 1% 

O2, they did not differentiate and 11β-HSD2 was not increased (596). 

11β-HSD2 activity is inhibited by calcium in placental microsomes and in JEG-3 cells 

via a post-translational mechanism (597). Calcium is a common second messenger for 

leukotrienes and prostaglandins, previously shown to inhibit placental 11β-HSD2 

activity (594). Inhibition by calcium was reversed by the addition of a calcium chelator 

and inhibition did not alter the binding capacity for cortisol and could not be overcome 

by the addition of extra cofactor, indicating that the effect was mediated through a 

change in the enzyme’s catalytic efficiency (597). The catecholamines epinephrine and 

norepinephrine also inhibit placental 11β-HSD2 through a decrease in mRNA in 

trophoblast cells (598). Since catecholamines are released during stress, this may be a 

mechanism linking prenatal stress and altered fetal development. 

ATP has been shown to increase placental 11β-HSD2 activity in microsomes via a 

mechanism independent of phosphorylation (599). Tremblay et al. found that retinoic 

acids, the major metabolites of vitamin A, dose-dependently stimulated 11β-HSD2 

activity in JEG-3 cells via an increase in mRNA expression (600). 

The regulation of 11β-HSD2 activity has been studied in other cell types. In the kidney, 

progesterone and its metabolites such as 5α-dihydro-progesterone have been shown to 

inhibit microsomal 11β-HSD2 (601). Hypoxia also inhibited 11β-HSD2 activity in a 

renal epithelial cell line and this study also demonstrated reduced renal 11β-HSD2 in 

healthy men as a result of ascending to high altitude (602). In bronchial epithelial cells, 

dexamethasone was found to increase 11β-HSD2 mRNA and protein and dose 

dependently increase activity over 72 hours (603). Previous work in osteosarcoma cells 

indicated that the pro-inflammatory cytokines TNF-α and IL-1β dose-dependently 
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inhibit both activity and mRNA expression of 11β-HSD2 (604). However, the effect of 

these and other inflammatory cytokines on 11β-HSD2 have not previously been 

examined in the placenta. 

Glucocorticoids have an important role to play during fetal development, promoting 

maturation of organs required for extra-uterine survival. An important pre-receptor 

mechanism exists to control the actions of glucocorticoids during pregnancy in the form 

of placental and fetal 11β-HSD2. Alterations in the activity of the placental 11β-HSD2 

barrier which result in an increase in maternal glucocorticoids crossing to the fetus, can 

have a deleterious effect on fetal growth and postnatal development. This pathway will 

be examined in asthmatic placentae. 

1.11 The role of the fetus in growth regulation 

The fetus itself may have a role in growth regulation. The fetal tissues also express IGFs 

and 11β-HSD2, allowing the fetus to adjust local levels of growth factors and 

glucocorticoids, thereby modulating cellular growth and differentiation in an autocrine 

or paracrine manner. 

The mid-gestation human fetus (16-19 weeks) contains 11β-HSD2 mRNA and activity 

in the kidney, lung (605), gonad, liver, adrenal (606) and colon (607-609), while 

11β-HSD1 mRNA has not been found in any fetal tissues at mid-gestation (608). In 

many fetal tissues, 11β-HSD2 is co-localised with the GR (610) or with the MR (611). 

The presence of placental 11β-HSD2, high levels of 11β-HSD2 activity in fetal tissues 

and the absence of 11β-HSD1 in the fetus all contribute to a predominance of cortisone 

over cortisol in the fetal circulation (612). The presence of 11β-HSD2 enzyme in the 

fetal tissues may serve to locally regulate the positive and negative effects of 

glucocorticoids on the fetus. 

Receptors for IGFs have also been identified in the human fetus from as early as the 

first trimester (613, 614), which allow IGF-I and IGF-II to exert growth promoting 

effects on fetal cells (615). IGF-I and IGF-II have mitogenic actions in cultures of fetal 

fibroblasts, fetal myoblasts (616, 617) and fetal adrenal cortical cells (618). IGF-I itself 

has been localised to many human fetal tissues, with high expression in the lung and 

intestine (617, 619). In addition, IGF-II has been found in the fetal kidney, liver, adrenal 

and muscle (617, 620) and may be present in larger quantities than IGF-I (621). IGF-II 
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is thought to be the dominant regulator of fetal adrenal growth, due to high expression 

in mid-gestation and regulation by ACTH (618). IGF-I and IGF-II mRNA expression 

was also found in all fetal tissues examined by Han et al. except cerebral cortex (622). 

IGFBP-1 has been localised to most fetal tissues including liver, lung, muscle, kidney, 

pancreas, adrenal and intestine (623) and de novo synthesis of IGFBP-1 to 4 has been 

observed in fetal liver and kidney explants (624). IGFBP mRNA expression studies 

suggest that IGFBP-1 is predominantly found in the fetal liver, while the other IGFBPs 

are located in most tissues of the fetus (625). IGFs may be complexed to IGFBP-1 on 

the surface of fetal cells as the pattern of immunostaining for fetal IGFs and IGFBP-1 

was found to be similar in most sites (623). The presence of IGF-I and IGF-II mRNA 

and protein in most fetal tissues suggests a local role for them in modulating growth. 

Fetal sex is known to affect fetal growth, with male fetuses on average being larger than 

female fetuses (280, 626, 627). This difference may not be evident until after 30 weeks 

(279, 626), but increases as gestation progresses (627) with some studies reporting a 

150-200 g weight difference by 38 weeks (279, 627). Cogswell and Yip reported that 

among white neonates, males were 135 g heavier than females, while among black 

neonates there was a 125 g difference between males and females (280). In addition, 

males had a greater variation in birth weight distribution, with an increased tendency for 

higher birth weights (280). Despite the difference in birth weight between male and 

female infants, the survival rate is greater for females than males (280, 628). 

There are fetal sex differences in the IGF axis. IGF-II concentrations in umbilical cord 

serum from male neonates were significantly higher than female neonates (440) and 

cord plasma IGF-I was higher in female neonates than males (449). A recent study of 

987 healthy singletons found that IGF-I and IGFBP-3 concentrations in cord blood were 

higher in females than males (629). In this study, there was no difference in IGF-II 

between male and female neonates, while growth hormone (GH) concentrations were 

higher in males than females (629). Given that males are larger at birth and both IGF-I 

and IGFBP-3 correlate with birth size, these findings are counterintuitive, but do 

suggest that there are sexually dimorphic patterns of fetal growth regulation. 

One possible mechanism by which the male fetus becomes larger than the female fetus 

was recently proposed by Tamimi et al., who studied maternal dietary intake during the 

second trimester of pregnancy (630). They suggested that the fetus may be able to 
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modulate its mother’s nutritional input, since women pregnant with a male fetus had a 

higher energy intake compared to women pregnant with a female fetus (630). After 

adjustment for confounding factors, this related to an extra 796 kJ per day contributed 

by 8% higher protein, 9.2% higher carbohydrates and over 10% higher lipid intakes in 

women pregnant with a male fetus compared to women pregnant with a female fetus 

(630). 

Other studies have demonstrated that maternal smoking (631, 632) or caffeine 

consumption (633) have different effects on growth of the male and female fetus. Vik et 

al. studied second and third trimester caffeine consumption of mothers with SGA 

infants and mothers with normally grown infants (633). They found that the risk of 

having an SGA infant was increased in women who consumed high levels of caffeine at 

33 weeks gestation. However, when data was analysed based on fetal sex, only the male 

fetus was at risk of being born small in association with high maternal caffeine intake 

(633). Spinillo et al. examined a variety of risk factors for fetal growth restriction and 

found that overall, IUGR was more frequent in female fetuses, and that females were 

more sensitive to hypertension-induced growth restriction (632). On the other hand, 

males were more affected by low maternal pre-pregnancy weight or BMI and maternal 

smoking (632). Other groups have also found that maternal smoking was more likely to 

affect males than females (313, 631). Zaren et al. made serial ultrasound measurements 

throughout pregnancy and showed a significant decrease in biparietal diameter (BPD) 

from 18 weeks gestation with heavy maternal smoking in males fetuses, but no 

significant difference in BPD in female fetuses (313). However, mean abdominal 

diameter in female fetuses of heavy smokers was significantly decreased from 25 

weeks, while no decrease was observed in males until 33 weeks gestation (313). All 

aspects of male neonatal size were reduced in the presence of maternal smoking and 

while females had reduced birth weight and length, there was no significant difference 

in their head circumference, skin fold thickness or femur length compared to female 

neonates from non-smoking mothers (313). These studies suggest that the regulation of 

fetal growth may be different for male and female fetuses. 

Placental 11β-HSD2 may also differ depending on the sex of the fetus, thus possibly 

contributing to different fetal growth regulation in males and females. In mice, there is 

greater placental 11β-HSD2 activity when the fetus is female than when the fetus is 

male (634). It is possible that factors responsible for fetal growth regulation in asthmatic 
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pregnancies are also altered in a fetal sex-specific manner. This could contribute to 

increased susceptibility to low birth weight in the male fetus, as observed with maternal 

smoking (632) and caffeine intake (633), or to an increased susceptibility to low birth 

weight in the female fetus, as observed with hypertension-associated IUGR (632). 

Together the mother, placenta and fetus interact during pregnancy to modulate fetal 

growth. Maternal nutrients are essential for growth and development of the fetus, and 

transport of these nutrients occurs via the placental blood supply. The placenta is also 

important in the production and transport of growth promoting hormones. A barrier 

function for the placenta, through the activity of 11β-HSD2 is of major importance in 

preventing the high concentrations of anti-mitogenic glucocorticoids found in the 

mother from reaching the fetus in an active form. Disturbances in fetal growth 

regulation can result in adverse outcomes for the neonate and these adverse outcomes 

may persist into adult life. It is therefore important to understand the regulation of fetal 

growth, and particularly the role of mother, placenta and fetus in complicated 

pregnancies, such as those in asthmatic women. As a result, a better outcome for the 

fetus may be achieved, which may have long-term health benefits into adulthood. 
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2.1 Background 

Asthma is a disease which affects a large number of pregnant women around the world. 

Epidemiological studies have highlighted the fact that asthmatic women are more at risk 

of a poor pregnancy outcome than non-asthmatic women. These poor outcomes include 

low birth weight and preterm delivery. Low birth weight is known to be a risk factor for 

the development of diseases in adulthood, including diabetes and heart disease. The 

offspring of asthmatic mothers are therefore more at risk of morbidity and disease both 

in the short-term and the long-term. Currently the mechanisms which contribute to low 

birth weight in asthmatic pregnancies are unknown. Fetal sex is known to influence 

fetal growth, with males on average born larger than females. Fetal growth regulation 

may be fetal sex-specific. However, no other group has previously examined alterations 

in placental function in relation to maternal asthma and fetal sex. 

Much of the literature concerning the effects of asthma on pregnancy outcomes is 

population based and does not address the underlying mechanisms which contribute to 

these outcomes in asthmatic women. The literature has focussed on a discussion of the 

epidemiological facts, the necessity of asthma control and the safety of glucocorticoid 

therapy during pregnancy. By taking the approach of studying large cohorts of women, 

subtle changes in birth weight in sub-groups of asthmatic women are not observed, and 

therefore the mechanisms contributing to such an outcome cannot be properly 

examined. Thus, the purpose of this study is to address an area which is lacking in the 

literature by closely examining the roles which the mother, placenta and fetus have to 

play in the regulation of fetal growth in pregnancies complicated by asthma. 

My study of pregnant women with asthma will follow Australian asthma management 

guidelines, which are comparable to those of the National Heart Lungs and Blood 

Institute. The study will prospectively follow asthmatic women during pregnancy, 

collecting data on the mother’s asthma, fetal and neonatal growth and placental 

function, from the same group of women. Allowing pregnant women to be managed 

according to individual needs, will produce a broad spectrum of subjects with range of 

asthma severities and medication requirements. Consequently, this approach will allow 

data to be analysed based on asthma severity and asthma treatment (inhaled 

glucocorticoid use) separately, which will improve our understanding of the role these 

factors play in altering fetal growth in pregnant women with asthma.  
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2.2 Hypotheses 

This study will address the following hypotheses: 

1. That fetal growth is reduced in pregnant women with asthma and that reduced 

birth weight is specifically related to either asthma severity or inhaled 

glucocorticoid treatment. 

2. That susceptibility to altered fetal growth in asthmatic pregnancies differs 

between male and female fetuses. 

3. That changes in maternal inflammation and lung function associated with asthma 

contribute to reduced fetal growth. 

4. That alterations in placental function including reduced placental 11β-HSD2 

activity contribute to changes in fetal growth and altered HPA axis function in 

asthmatic pregnancies, via increased maternal cortisol reaching the fetus. 

 

2.3 Aims 

This study will examine fetal growth in asthmatic pregnancies and address the 

following aims: 

1. To determine whether alterations in fetal growth in pregnant women with asthma 

relate to a sub-group of women taking a particular treatment or to a sub-group of 

women based on asthma severity.  

2. To examine the susceptibility of male and female fetuses to altered fetal growth 

associated with maternal asthma. 

3. To determine if changes in fetal growth can be detected at 18 and 30 weeks 

gestation by ultrasound, or by measurements made at birth. 
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In order to investigate the mechanisms regulating fetal growth in pregnancies 

complicated by asthma, the endocrine and immune relationships between mother, 

placenta and fetus will be addressed further in the following specific aims: 

The Mother 

1. To determine whether there are changes in the requirement for inhaled 

glucocorticoids for asthma treatment as pregnancy progresses. 

2. To determine whether there are changes in maternal lung function as gestation 

progresses. 

3. To determine whether there are changes in circulating inflammatory cells in the 

mother as gestation progresses. 

4. To profile maternal plasma proteins at 18 and 30 weeks gestation using a 

proteomic technique to determine the effect of fetal sex and maternal asthma on 

circulating proteins. 

The Placenta 

1. To determine the activity, mRNA abundance and protein expression of placental 

11β-HSD2 and establish whether alterations in 11β-HSD2 are involved in fetal 

growth regulation in asthmatic pregnancies. 

2. To determine the mRNA abundance of placental IGF-I, IGF-II and IGFBP-1 and 

establish whether alterations in the IGF axis are involved in decreased fetal 

growth in asthmatic pregnancies. 

3. To determine the mRNA abundance of placental cytokines, including the Th1 

cytokine, TNF-α, Th2 cytokines involved in asthma including IL-4, IL-5 and 

IL-10 and other cytokines such as IL-1β, IL-6 and IL-8 and establish whether 

these change in the presence of maternal asthma or are related to alterations in 

11β-HSD2 activity. 

4. To determine the mRNA abundance of the glucocorticoid receptor sub-types, 

GR-α and GR-β and the mineralocorticoid receptor (MR) in the placenta in the 

presence of maternal asthma. 

5. To profile proteins present in the placenta using a proteomic technique to 

determine the effect of fetal sex and maternal asthma on placental proteins. 
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The Fetus 

1. To examine fetal and neonatal outcome in asthmatic pregnancies. 

2. To determine whether there are alterations in the levels of cortisol crossing the 

placenta in asthmatic pregnancies and to determine whether the amount of 

maternal cortisol crossing to the fetus is related to placental 11β-HSD2 activity. 

3. To determine whether there are alterations in fetal HPA axis function in asthmatic 

pregnancies by measuring cord blood estriol.  

4. To determine whether there are alterations in cord blood concentrations of the IGF 

binding proteins, IGFBP-1 and IGFBP-3 and establish whether these relate to fetal 

growth in asthmatic pregnancies. 

5. To profile proteins present in the cord blood using a proteomic technique to 

determine the effect of fetal sex and maternal asthma on circulating fetal proteins. 

 

The major premise of this study is that the mother, placenta and fetus all contribute to 

the regulation of human fetal growth and that the relationships between mother, 

placenta and fetus may be altered in pregnant women with asthma. Figure 2.1 outlines 

the major aspects of mother, placenta and fetus which will be examined in this study. 
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Figure 2.1 Aspects of the relationship between mother, placenta and fetus to be Figure 2.1 Aspects of the relationship between mother, placenta and fetus to be 

examined in this study 

This study will examine the endocrine and immune relationships between mother, placenta and fetus in 
asthmatic pregnancies. In the mother, various aspects of asthma will be investigated including 
inflammation, lung function and treatment with inhaled steroids. In the placenta, local inflammatory 
pathways, glucocorticoid receptor and growth factor expression will be examined along with the mRNA 
and protein expression and activity of the placental barrier enzyme 11β-HSD2, which prevents the high 
levels of cortisol found in the mother from reaching the fetus by inactivating cortisol to cortisone. In the 
fetus, growth and HPA axis development will be examined. 
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3.1 Subject recruitment 

Pregnant asthmatic and non-asthmatic women were recruited from the John Hunter 

Hospital Antenatal Clinic in the first trimester by Sr Carolyn Kessell (Research Nurse, 

Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle). All 

women gave written, informed consent for participation (Appendix 1, Appendix 2) and 

ethical approval was provided by the Human Research Ethics Committees of the 

University of Newcastle (ethics approval number H3901097, Appendix 3) and Hunter 

Area Health Service (ethics approval number 9709173.07). Information on maternal 

age, weight, height, parity, gravidity, blood pressure and pregnancy outcomes was 

obtained from the patient’s medical records. Women donated plasma at approximately 

18 and 30 weeks gestation. Plasma was stored at –20°C until use. 

3.2 Assessment of maternal asthma 

Subjects were managed according to a standard treatment procedure in a combined 

antenatal/asthma management clinic (635). This standard procedure has been 

demonstrated to be beneficial for the implementation of asthma management guidelines 

within our hospital setting, leading to improved delivery of health care to asthmatic 

patients (635). The major steps of this program include assessing asthma severity during 

a stable period, achieving best lung function by altering bronchodilator and anti-

inflammatory treatment, maintaining best lung function by avoiding triggers and using 

the minimum required medication, developing an action plan to manage acute asthma 

exacerbations, educating patients and reviewing individual asthma management 

regularly (635, 636). The use of this standard management procedure was ethically 

sound, and designed to provide maximum care for pregnant asthmatic women. It has 

previously been found to result in significantly improved asthma control and 

management skills in asthmatic adults at the John Hunter Hospital (635). 

Most control, non-asthmatic subjects attended the Asthma Management Service (AMS) 

once at approximately 18 weeks to have lung function assessed, while asthmatic women 

visited the AMS two or more times depending on asthma severity and individual 

requirements. At these visits, FEV1 and FVC were measured by Sr Kessell using a 

Vitalograph Spirometer (Vitalograph Ltd, Buckingham, UK). The percent predicted 

FEV1 was calculated based upon reference values and corrected for sex, age and height 
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(5). In addition, a history of asthma was taken, medication use and compliance assessed 

(Appendix 4) and asthmatics received education about asthma control and management 

skills and an asthma action plan (Appendix 5). The degree of asthma control was 

assessed using women’s self-report of the frequency of night symptoms, morning 

symptoms and limitation of physical activity in the previous week. Women also 

reported the number of days per week and times per day that reliever medication (β2-

agonist) was used. Sr Kessell assessed the women’s inhaler technique and categorised 

this as optimal, adequate or inadequate. Asthmatic women with poor asthma control or 

requiring extra attention attended the AMS up to eight times as required. Classification 

of asthma severity was assigned by Prof Peter Gibson (Department of Respiratory and 

Sleep Medicine, John Hunter Hospital, Newcastle) according to the Australian asthma 

management guidelines (637), which are comparable to the guidelines of the National 

Heart Lungs and Blood Institute (638). Women were assigned an asthma severity rating 

of mild, moderate or severe according to symptoms, asthma history and other features 

including FEV1 and PEF, as outlined in Table 3.1. Women were assigned to the most 

severe category which applied for any one of these criteria. 

Table 3.1 Criteria used to assign asthma severity classifications 

Criteria Mild Asthma Moderate Asthma Severe Asthma 
FEV1 >80% predicted 60-80% predicted <60% predicted 

PEF variability  <25% >25% 
Night-time symptoms None Up to once per week Frequent 

Symptoms on 
awakening None  Every day 

β2-agonist use Infrequent Most days 3-4 times per day 
Daytime symptoms <4 times per week Most days Every day 

Other No severe attacks in the 
previous year  Limited physical 

activity 
 

3.3 Assessment of maternal asthma treatment 

Asthmatic women used a variety of inhaled glucocorticoid medication to treat their 

asthma. The drugs used were budesonide, beclomethasone dipropionate or fluticasone 

propionate. Oral steroid medication (prednisone) was used periodically by a small 

number of subjects. All asthmatic women used the short acting inhaled β2-agonist 

salbutamol for symptom relief when required. Women who used a long acting β2-

agonist or the combination inhaled glucocorticoid and long acting β2-agonist medication 
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(fluticasone propionate plus salmeterol) were excluded from all analyses presented in 

this thesis. 

Inhaled glucocorticoid use and oral prednisone intake before pregnancy were recorded 

retrospectively and intake during pregnancy was monitored during the AMS visits with 

Sr Kessell. Inhaled glucocorticoid dose was calculated for each trimester and expressed 

as the mean daily dose of beclomethasone dipropionate (BDP) or equivalent, where 

1 µg BDP was considered equivalent to 1 µg budesonide or 0.5 µg fluticasone 

propionate. This calculation takes into account the increased potency of fluticasone 

propionate (639). Subjects were classified according to average cumulative dose 

throughout pregnancy as no glucocorticoid (no inhaled glucocorticoids used during 

pregnancy), low (<400 µg inhaled glucocorticoids per day), moderate (400-1500 µg 

inhaled glucocorticoids per day) or high (>1500 µg inhaled glucocorticoids per day). 

The calculation used to derive average cumulative dose is given in Appendix 6. For 

some data analysis, the low, moderate and high dose groups were combined into one 

group (glucocorticoid). 

3.4 Assessment of maternal inflammation 

Information from full blood counts taken during pregnancy was obtained from the 

medical records. Data was analysed from samples taken in early pregnancy (<20 weeks 

gestation) and late pregnancy (>30 weeks gestation). The number of circulating white 

blood cells, lymphocytes, neutrophils, eosinophils, monocytes and basophils was noted 

and the percentage of each was calculated. 

3.5 Assessment of fetal growth 

Fetal growth was assessed by ultrasound at approximately 18 and 30 weeks gestation by 

Prof Warwick Giles (Department of Obstetrics and Gynaecology, John Hunter Hospital, 

Newcastle). Measurements of femur length, abdominal circumference, head 

circumference and biparietal diameter (BPD = diameter of the head between the two 

parietal lobes) were obtained. The ratio of head circumference to abdominal 

circumference (HC:AC) was calculated as an indicator of proportionate growth (640). 

Umbilical artery flow velocity waveforms, expressed as the systolic to diastolic (SD) 
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ratio were also assessed by Prof Giles using Doppler ultrasound (Acuson XP4, Acuson 

Corporation, Mountain View, CA, USA). 

Details of weight, length and head circumference at birth were obtained from the 

medical records. Ponderal index was calculated as birth weight (g) / [birth length (cm)]3 

× 100. Birth weight, head circumference and length centiles were calculated using John 

Hunter Hospital intrauterine growth charts (641), based on gestational age determined 

by date of the last menstrual period and 18 week ultrasound (Appendix 7). These charts 

were derived from a study of all live births at the Royal Women’s Hospital in 

Melbourne in 1979, along with preterm births during 1977 and 1978 (641). Although 

this study reported that male infants were always slightly heavier than female infants, 

the authors compared the curves from 37 weeks, where the sample number was 

sufficient for comparison between males and females, and considered it to be 

impractical to present separate curves based on fetal sex (641). Consequently, the 

growth charts used by the John Hunter Hospital and in this study were composite 

male/female charts.  

3.6 Assessment of pregnancy outcomes 

Fetal and maternal parameters related to labour and delivery were collected from the 

medical records. The presence of fetal heart rate decelerations during delivery and 

neonatal Apgar scores at 1 minute and 5 minutes were noted. Apgar scores are used to 

evaluate the physical condition of the newborn immediately after delivery. They were 

first described by Dr Virginia Apgar in 1953 (642) and involve scoring for each of the 

following signs: heart rate, respiratory effort, muscle tone, reflex irritability (response to 

catheter in nostril) and colour (Table 3.2). Total Apgar scores of 0-3 signify a poor 

prognosis, while a total score of 10 indicates that the neonate is in the best possible 

condition (642) and the 5 minute Apgar score is considered useful for the prediction of 

neonatal mortality (643). 
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Table 3.2 Apgar scoring  

Signs Score = 0 Score = 1 Score = 2 
Heart Rate 

(beats per minute) Absent Below 100 Above 100 

Respiratory Effort Absent Slow, irregular Good, crying 

Muscle Tone Limp Some flexion of 
extremities Active motion 

Reflex irritability No response Grimace Cough, sneeze 

Colour Blue, pale Pink body, blue 
extremities Completely pink 

 

Information was collected about the type of labour (spontaneous, induced, augmented or 

no labour), the total duration of labour, the duration of ruptured membranes, blood loss 

during delivery, the presence of meconium staining and type of delivery of baby and 

placenta. Maternal complications such as pregnancy induced hypertension (PIH) and 

pre-eclampsia were noted. Calculations of group means for the total duration of labour 

or the duration of ruptured membranes and calculation of the percentage of subjects 

with a spontaneous or induced labour onset excluded women who had an elective 

caesarean section before labour onset. 

3.7 Placenta and cord blood collection 

The placenta was collected from the John Hunter Hospital Delivery Suite within 45 

minutes of delivery, from a subset of subjects. Samples were obtained at any time of the 

day or night. The whole placenta was weighed prior to the collection of samples. Cord 

blood was collected from the umbilical vein into heparinised tubes (Figure 3.1). Blood 

was centrifuged at 1000 g for 15 minutes (J-6B centrifuge, Beckman Coulter, Palo Alto, 

CA, USA) for the collection of plasma. Plasma was stored at –20°C until further use. 

Small pieces of placental tissue were collected, snap frozen in liquid nitrogen and stored 

at -80°C until required. 
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umbilical veinumbilical vein

 

Figure 3.1 Placenta from an asthmatic woman showing location of the umbilical 

vein 

Blood was collected from the umbilical vein, as close to the umbilical cord as possible.  

3.8 Measurement of placental 11β-HSD2 activity 

3.8.1 Principles of 11β-HSD2 activity assay 

Radiometric conversion assay 

Placental 11β-HSD2 activity was measured by radiometric conversion assay, using 
3H-cortsiol as a tracer, following its conversion by 11β-HSD2 into 3H-cortisone. The 

method was based on that described by Sun et al. (592), which was similar to methods 

previously used by other authors to measure 11β-HSD2 activity in human placental 

homogenates or cell lines (547, 553, 559, 560, 593, 644, 645). 

Radiometric enzyme assays have many advantages over non-radiometric methods, as 

they are more sensitive, specific, quantitative, rapid and can be performed on both crude 

and purified enzyme samples (646). Conversion of the radiolabelled substrate to 
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labelled product should occur during the initial linear rate of reaction, before the rate of 

product formation declines, due to substrate depletion or product inhibition (646, 647). 

Upon completion of the reaction, substrate and product are separated and their 

radioactivity measured. Quantification is possible by converting the disintegrations per 

minute (dpm) of product formed into a molar amount, using the known specific activity 

of the radiolabelled substrate (646). 

Thin layer chromatography (TLC) 

Various methods have previously been used to separate the cortisol and cortisone 

components when measuring 11β-HSD2 activity, including high performance liquid 

chromatography (HPLC) (513, 548), sephadex column chromatography (648) and TLC. 

In my study, TLC was used to separate the 3H-cortisol substrate and 3H-cortisone 

product. 

TLC is a planar chromatography method, involving the use of a stationary and mobile 

phase to separate compounds found in a single sample (649). Glass backed plates coated 

in an adherent layer of silica were used as the stationary phase. The mobile phase 

(chloroform:ethanol mixture) moves through the stationary phase by capillary action 

(649). The samples are spotted onto the TLC plate and one end (below the position of 

samples) is immersed in mobile phase inside a developing tank which is saturated with 

vapours (649). After the mobile phase has travelled up most of the plate, it is removed 

from the tank and allowed to dry. The position of the compounds can be visualised 

under short wave (254 nm) ultraviolet (UV) light, due to the presence of a fluorescent 

material in the stationary phase (649). This material causes the TLC plate to fluoresce, 

except where sample components are found, since they quench the fluorescence of the 

material and appear as dark spots (649). Due to their differing polarities, cortisol and 

cortisone run to different positions on the TLC plate. Cortisone runs higher than cortisol 

due to its greater affinity for the organic mobile phase. 

Scintillation Counting 

The amounts of 3H-cortisol substrate and 3H-cortisone product remaining in the 

placental 11β-HSD2 activity assay were quantified using liquid scintillation counting, as 

tritium is a beta emitter. In this method, the sample (silica scraping from the TLC plate) 

is dissolved in a scintillation cocktail, or solution containing fluors, which produce 



Chapter 3 - Methods 

88 

detectable flashes of light (scintillations) when they interact with the radiation (650, 

651). The scintillations are measured by photomultiplier tubes which convert them into 

electronic pulses which can be counted (651). 

3.8.2 Materials 

The following chemicals were obtained from Sigma (St Louis, MO, USA): acetic acid, 

cortisol (hydrocortisone), cortisone, carbenoxolone, β-nicotinamide adenine 

dinucleotide (NAD), β-nicotinamide adenine dinucleotide reduced form (NADH), 

β-nicotinamide adenine dinucleotide phosphate (NADP), β-nicotinamide adenine 

dinucleotide phosphate reduced form (NADPH), bovine serum albumin fraction V 

(BSA), pepstatin A, benzamidine (hydrochloride hydrate), bacitracin, ethylene-diamine-

tetra-acetic acid (EDTA), dithiothreitol (DTT) and sucrose. Complete protease inhibitor 

cocktail tablets were from Roche Diagnostics (Mannheim, Germany), trasylol was from 

Bayer Corp (Leverkusen, Germany) and Bio-Rad protein assay reagent (for Bradford 

assay) was from Bio-Rad Laboratories (Hercules, CA, USA). [1,2,6,7-3H]-cortisol (1 

mCi/ml) and biodegradable liquid scintillation cocktail were obtained from Amersham 

Pharmacia Biotech (Buckinghamshire, UK). Ethyl acetate, chloroform, ethanol and 

chromium trioxide were obtained from BDH Laboratory Supplies (Dorset, UK). Glass 

backed TLC plates (Adsorbosil Plus-IP containing 254 nm UV fluorescent indicator) 

and TLC tanks were from Alltech (Deerfield, IL, USA). 

3.8.3 Protein Extraction 

Approximately 1-2 g of snap frozen placenta was crushed with a mortar and pestle 

under liquid nitrogen. Crushed placental tissue was homogenised in 10 volumes of 

0.1 M sodium phosphate buffer (pH 7.4) containing 2 mM EDTA, protease inhibitor 

cocktail tablets (20/L), 50000 KIU/l trasylol, 100 µM dithiothreitol, 1 µM pepstatin A, 

1 mM benzamidine, 65000 U/L bacitracin and 0.25 M sucrose (Appendix 8), using a 

polytron homogeniser (Kinematica AG, Switzerland). The homogenate was centrifuged 

at 1000 g for 10 minutes (J-6B Centrifuge, Beckman Coulter, Palo Alto, CA, USA) to 

remove cellular debris. The supernatant was centrifuged at 105000 g for 1 hour (Optima 

XL-A Analytical Centrifuge, Beckman Coulter, Palo Alto, CA, USA) and the pellet 

which contained the microsomal fraction was re-homogenised in 1 ml of sodium 
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phosphate buffer containing protease inhibitors, but no sucrose. Protein was aliquoted 

into small volumes (100-500 µl) which were stored at –80°C until further use. 

The protein concentration was determined by Bradford Assay (652) against a standard 

curve of bovine serum albumin (BSA). A 1 mg/ml stock solution of BSA was prepared 

and 500 µl aliquots stored at –20°C until use. The standard curve was prepared in 

duplicate with the following volumes of 1 mg/ml stock solution, which were made up to 

50 µl with distilled water: 1, 2.5, 5, 7.5, 10, 15 and 20 µl. The placental homogenates 

were diluted 1:20 and 1:5 and assayed in duplicate using 10 µl and 30 µl volumes made 

up to 50 µl with distilled water. Bio-Rad protein assay reagent was diluted 1:5 with 

distilled water and 1 ml added to each sample. Optical density was measured in a 

spectrophotometer at 595 nm (Cary50 UV-Visible Spectrophotometer, Varian, Palo 

Alto, CA, USA). 

3.8.4 11β-HSD2 enzyme activity assay 

11β-HSD2 activity was determined using a radiometric conversion assay, adapted from 

the work of Sun et al. (592). The microsomal protein fraction was incubated in triplicate 

at three protein concentrations (usually 100 µg/ml, 150 µg/ml and 200 µg/ml) to ensure 

that the experiment was carried out in the linear range of enzyme activity. Incubated 

with the protein was a saturating concentration of cofactor (NAD+, 1 mM), a saturating 

concentration of cold substrate (cortisol, 5 µM) and approximately 200000 counts per 

minute (cpm) 3H-cortisol made up to 1 ml with sodium phosphate buffer containing 

protease inhibitors. The incubation was carried out at 37°C for 15 minutes in a shaking 

water bath. The reaction was stopped by removing the solution from the water bath into 

a tube containing 2 ml of ice-cold ethyl acetate. The solution was thoroughly mixed and 

the organic phase containing the steroids removed and dried overnight under high speed 

vacuum (Speedvac SC200, Savant Instruments, Holbrook, NY, USA). The dried 

steroids were reconstituted in 100 µl of ethyl acetate and 10 µl each of 10 mM cold 

cortisol and 10 mM cold cortisone were added as markers. This solution was spotted 

onto a glass-backed TLC plate and chromatographed with 95:5 chloroform:ethanol 

(100 ml total volume) as the mobile phase. The bands (cortisone upper band and cortisol 

lower band) were visualised under UV light (portable short wave 254 nm UV light, 

Alltech, Deerfield, IL, USA) and the silica bands scraped into a vial to which 10 ml of 

scintillation fluid was added. Steroids were quantified using a liquid scintillation 
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counter (1217 Rackbeta, LKB-WALLAC, Turku, Finland). Disintegrations per minute 

(dpm) were adjusted for experimental losses and enzyme activity was expressed as nmol 

cortisone formed per mg protein per hour (nmol/mg/h). Some data is also presented as 

the percentage (%) conversion from cortisol to cortisone. 

3.8.5 Optimisation of 11β-HSD2 enzyme activity assay 

Initial studies using the method outlined above were performed using at least two 

placental samples each in triplicate, to optimise the assay procedure. These included a 

time optimisation where the incubation was carried out for 2, 10, 15, 30, 60 and 120 

minutes. A zero time control in which the reaction components were added directly to 

ice-cold ethyl acetate was included. In this experiment, 100 nM cortisol was incubated 

with 1 mM NAD and 150 µg protein. As shown in Figure 3.2, the reaction was under 

conditions of initial velocity up to 15 minutes. Consequently, 15 minutes was chosen as 

the optimal incubation time for further experiments. 
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Figure 3.2 Optimisation of 11β-HSD2 activity over time 

This figure shows a representative time course experiment for two placental samples (tested in triplicate) 
measuring % conversion of 3H-cortisol to 3H-cortisone after 0, 2, 5, 15, 30, 60 and 120 minutes. 

The concentration of NAD cofactor used was optimised by incubating 100 nM cortisol 

and 50 µg protein for 15 minutes with 0, 1 µM, 10 µM, 100 µM, 1 mM or 10 mM 

NAD. The enzyme was considered saturated with cofactor at 1 mM (Figure 3.3). 
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Figure 3.3 Cofactor dependence of 11β-HSD2 activity 

This figure shows a representative plot of NAD concentration dependence of 11β-HSD2, for two 
placental samples (tested in triplicate). The % conversion of cortisol to cortisone is shown over 
increasing concentrations of NAD (0, 1, 10, 100 and 1000 µM shown). The concentration of cold cortisol 
used in this experiment was 100 nM. 

A cortisol saturation curve was obtained by incubating 150 µg protein with a range of 

concentrations of cortisol (10, 25, 50, 100, 250 and 500 nM, 1, 5 and 10 µM) and 1 mM 

NAD for 15 minutes. The cortisol saturation curve indicated that the enzyme was 

saturated at 5 µM (Figure 3.4). The data obtained was transformed into a Lineweaver-

Burk plot (Figure 3.5) to determine enzyme kinetics. The Michaelis constant (Km) or 

substrate concentration at which the enzyme reaction rate was half maximal was found 

to be 249 ± 57 nM (n=3), which is similar to that reported by other authors (542, 653-

655). 

A protein concentration dependence study indicated that the region where 11β-HSD2 

activity increases linearly with enzyme concentration was between 100 and 200 µg/ml 

protein (Figure 3.6). In further experiments, 100, 150 and 200 µg/ml protein was always 

used to verify that the reaction was occurring in the linear range. 
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Figure 3.4 Cortisol saturation curve for 11β-HSD2 

This figure shows a representative cortisol saturation curve for one placenta sample (tested in triplicate) 
measuring the amount of cortisone formed (nmol/mg) over increasing concentrations of cortisol (10, 25, 
50, 100, 500 nM, 1, 5 and 10 µM). 

y = 29.133x + 0.132
R2 = 0.9934

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 0.02 0.04 0.06 0.08 0.1 0.12

1/s
1/(nmol/l)

1/
v

1/
(n

m
ol

/m
g)

Placenta 46

 

Figure 3.5 Lineweaver-Burk plot used to determine enzyme kinetics of 11β-HSD2 

On this representative plot, the x-axis shows the reciprocal of substrate concentration (1/s = 1/[nmol/l]) 
used, and the y-axis shows the reciprocal of velocity (1/v = 1/[nmol cortisone per mg protein]). The Km 
was determined as the negative reciprocal of the intercept on the x-axis. Three separate experiments were 
performed to determine the average Km. 
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Figure 3.6 Protein concentration dependence of 11β-HSD2 

This figure shows a representative protein concentration curve for 11β-HSD2, for one placenta (tested in 
triplicate) measuring the amount of cortisone formed (pmol/h) over a range of protein concentrations (0, 
25, 50, 100, 150, 200 and 250 µg/ml). 

Preliminary experiments were carried out in the presence of the 11β-HSD inhibitor, 

carbenoxolone to confirm that conversion of cortisol to cortisone was specifically due to 

11β-HSD2 activity. In the presence of 100 nM cortisol, 1 mM NAD and 50 µg protein, 

there was 51% conversion of cortisol to cortisone over 15 minutes (average of three 

placentae tested in triplicate). However, at all concentrations of carbenoxolone tested 

(0.01, 0.1, 1 and 10 µM), conversion of cortisol to cortisone was reduced to <10%, 

indicating that the majority of the conversion was due to 11β-HSD2. 

An internal standard of three pooled placentae was included in each assay of the 

asthmatic samples to allow direct comparison of results. The intra-assay variation was 

19.4% and the inter-assay variation was 20.1%. 

Measurement of 11β-HSD1 reductase activity in the placental samples was carried out 

in a similar manner to 11β-HSD2 oxidase activity. Placental microsomes were 

incubated at 37°C for 15 minutes with 100 nM cortisone, 1 mM NADH or NADPH and 

approximately 100000 cpm 3H-cortisone. TLC separation and quantification occurred as 

for 11β-HSD2. 3H-cortisone was generated in the laboratory following the method of 

Shaw and Quincey (656). 3H-cortisol was oxidised with acetic acid/chromium trioxide 
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at room temperature for 20 minutes. Steroids were extracted with ethyl acetate, dried 

under high speed vacuum and re-constituted in 100 µl of ethyl acetate. Purification was 

by TLC as described previously. The cortisone band was scraped off the TLC plate and 

re-suspended in ethyl acetate. An aliquot was used to calculate yield which was found to 

be >90% and the remainder used in the conversion experiments. 11β-HSD1 reductase 

activity was very low in the placenta and was not easily measured above background.  

3.9 Measurement of placental 11β-HSD2 protein 
expression by Western blotting 

3.9.1 Principle of Western blotting 

Western blotting is a technique used to detect and characterise proteins (657). Proteins 

are separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE) and transferred to a solid support such as a nitrocellulose or polyvinylidene 

fluoride (PVDF) membrane (657). PVDF membranes are physically strong, chemically 

stable and have a high capacity for protein binding (657). Antibodies can subsequently 

be directed against proteins bound to the membrane and visualisation occurs via a 

secondary antibody linked to alkaline phosphatase, which produces an insoluble 

coloured product in the presence of a soluble substrate (657) such as nitro blue 

tetrazolium/5-bromo-4-chloro-3-indolyl phosphate (NBT/BCIP). This staining allows 

semi-quantitative results to be generated by densitometric analysis. 

3.9.2 Materials 

Pre-cast Tris-glycine gels were from Novex (San Diego, CA, USA). PVDF membrane 

was from DuPont NEN (Boston, MA, USA). 11β-HSD2 antibody (sheep anti-human) 

was from The Binding Site (Birmingham, UK). Anti-sheep IgG was from Sigma (St 

Louis, MO, USA). NBT/BCIP was from Nalgene (Boston, MA, USA). Prestained SDS-

PAGE standards (low range) were from Bio-Rad (Hercules, CA, USA). Buffer recipes 

are given in Appendix 8. Ethylene-glycol-bis(β-aminoethyl ether)-tetra-acetic acid 

(EGTA), glycerol, tween 20 and bromophenol blue were from Sigma (St Louis, MO, 

USA). Tris HCl, KCl, sodium dodecyl sulfate (SDS), sodium chloride (NaCl), sodium 

dihydrogen phosphate dihydrate (NaH2PO4.2H2O), disodium hydrogen phosphate 
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dodecahydrate (Na2HPO4.12H2O) and methanol were from BDH Laboratory Supplies 

(Dorset, UK). β-mercaptoethanol was from ICN Biomedicals (Irvine, CA, USA). 

3.9.3 Western blotting 

Placental samples were homogenised and protein extracted as described above (Section 

3.8.3). Placental samples (10 µg of protein) were suspended in reduced SDS sample 

buffer, heated for 3 minutes at 80°C and loaded in triplicate onto pre-cast 12% Tris-

glycine gels. SDS-PAGE low range standards were loaded at either end of each gel. 

Placental proteins were separated by electrophoresis (658) at 100 V for 2 hours, in a 

Bio-Rad protein II gel electrophoresis tank (Bio-Rad, Hercules, CA, USA) containing 

lower electrode buffer and upper electrode buffer in the two chambers.  

Proteins were transferred from the gel to a PVDF membrane using a transfer sandwich 

assembly, where the membrane is sandwiched between the gel, filter paper and support 

pads (657). PVDF membrane was briefly rinsed and activated with methanol and rinsed 

with distilled water. Gels, PVDF membrane and components of the transfer apparatus 

were pre-soaked in transfer buffer for 10-15 minutes prior to transfer. Air bubbles were 

removed by rolling with a 15 ml tube and the transfer sandwich was assembled with the 

membrane facing the anode. Proteins were transferred to the PVDF membrane, at 80 V 

for 2.5 hours at 4°C. The membrane was soaked in blocking buffer overnight at 4°C, to 

prevent non-specific binding prior to staining.  

After washing in phosphate buffered saline (PBS) three times for 15 minutes each, the 

blots were incubated with 11β-HSD2 antibody (1:5000 dilution with Tris buffered 

saline (TBS)/tween) at 4°C overnight, on a rocking platform. Blots were washed three 

times with PBS (15 minutes each) and alkaline phosphatase conjugated second antibody 

(anti-sheep IgG, 1:10000 with TBS/tween) was added and incubated for 4 hours at room 

temperature. Staining solution (NBT/BCIP) was added and the container covered with 

foil for approximately 30 minutes during the development of the stain. The reaction was 

stopped by removing the NBT/BCIP solution and washing with distilled water. 

Membranes were dried between two pieces of filter paper and scanned for analysis with 

the computer assisted densitometry program, Scion Image (Release Beta 4.0.2, National 

Institutes of Health, Bethesda, MD, USA). 



Chapter 3 - Methods 

96 

11β-HSD2 has a molecular weight of approximately 44 kDa (calculated from the amino 

acid sequence of accession number NP_00187, using the Expasy calculate pI/MW tool 

at www.us.expasy.org). The 11β-HSD2 band was close to the ovalbumin (49900 Da) 

standard (Figure 3.7). A band to which the second antibody bound in proportion to the 

total protein was used to adjust for loading. Preliminary studies demonstrated that the 

densitometry of this second band varied proportionally to the amount of total protein 

loaded. The identity of the band is unknown, but it corresponds to a molecular weight of 

approximately 29900 Da (soybean trypsin inhibitor on the prestained SDS-PAGE 

standards). This band is suitable for use as an internal control and as such is a more 

efficient assessment of loading than running two western blots, where there is the 

potential for larger inter-assay variation of loading. 

Phosphorylase B (112000 Da)
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Carbonic anhydrase (36200 Da)
Soybean trypsin inhibitor (29900 Da)

Lysozyme (21300 Da)
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11β-HSD2

Internal control band

 

Figure 3.7 Western blot 

This representative Western Blot shows the specific binding of 11β-HSD2, the internal control band used 
for loading adjustment and the molecular weight standards. 

3.10 Measurement of placental gene expression by 
quantitative real-time reverse transcriptase-
polymerase chain reaction (RT-PCR) 

3.10.1 Principles of PCR 

Polymerase chain reaction (PCR) is a technique used to amplify specific sequences of 

DNA in a gene (659). First, RNA extracted from tissue samples is converted by the 

enzyme reverse transcriptase into cDNA, which acts as a template for PCR. 

Amplification of the sequence of interest requires some knowledge of the surrounding 

sequence so that short oligonucleotide primers can be designed to hybridise specific 

sections of DNA. Following hybridisation, incubation with Taq polymerase, a heat 

stable DNA polymerase derived from thermophilic bacteria, results in extension of the 



Chapter 3 - Methods 

97 

DNA sequence. The process is repeated throughout several cycles, controlled by 

changing temperature. The newly synthesised DNA strands serve as templates in further 

cycles, resulting in an exponential accumulation of PCR product (659, 660). The 

amounts of DNA produced can be monitored with fluorescence dyes such as 

SybrGreen. The major steps of RT-PCR are shown schematically in Figure 3.8. 

Quantitative real-time RT-PCR is a relatively new technique which allows product 

amplification to be monitored in real-time, resulting in fast, accurate and sensitive 

assays (661, 662). The major advantage of the quantitative real-time PCR technology 

over previous PCR methods, is that gene expression is calculated in the early, linear 

phase of amplification, rather than at its maximum, when saturation and reaction 

plateaus are reached (663-665). Consequently, better comparisons between samples can 

be made and the measurement is faster and more accurate (666). Quantitative real-time 

RT-PCR has been verified against other methods including gene array (667), 

competitive RT-PCR (668), RNase protection assay (663) and nuclear run-on assay 

(669) and found to be much less variable than these conventional methods (670). The 

method is extremely sensitive, capable of detecting as few as 10 copies of target 

sequence in a sample (666), thus being able to identify low abundance mRNA and small 

changes in gene expression (671). 

Fluorescence monitoring of PCR amplification is a direct detection method which 

removes the need for post-PCR analysis and the associated time, potential 

contamination and errors involved (664-666). The system used in my study employed 

SybrGreen as a fluorescent dye which is detected by the PCR machine during each 

amplification cycle. SybrGreen binds to the minor groove of double stranded DNA and 

is therefore a non-specific method of detecting PCR products. Although less sensitive, it 

is cheaper and simpler than using specifically designed probes as it can be used with 

any set of primers (666). 
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Figure 3.8 Quantitative RT-PCR using SybrGreen 

This schematic diagram shows the major steps in the RT-PCR reaction. mRNA extracted from tissue is 
transformed into a DNA copy by reverse transcription. Any remaining RNA is removed from the mixture 
by the RNase H enzyme. The resulting first strand cDNA copy is converted to double stranded DNA by 
extension of the forward primer. Separation of the DNA strands by heating and subsequent hybridisation 
of forward and reverse primers coupled with extension by DNA polymerase leads to an accumulation of 
PCR product. The SybrGreen dye binds to the minor groove of DNA, emitting an increasing amount of 
fluorescence as the amount of PCR product increases. Diagram partially adapted from Alberts et al., 
1994 (659) and Stryer, 1995 (660). 
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The thermal cycler and fluorescence detection system continuously measures the 

fluorescence spectra of each sample during the PCR reaction, thus monitoring the real-

time accumulation of PCR product (665, 667). The DNA binding dye, SybrGreen has a 

low fluorescence when unbound, which increases dramatically when the dye binds to 

DNA (667, 670). The amount of fluorescence increases proportionally with the amount 

of DNA produced by the reaction (667, 672). The fluorescence of the SybrGreen dye 

(Rn+) is continually normalised to that of a passive reference dye (Rn-), giving 

calculated ΔRn values for each cycle, which increase exponentially above background 

once the detection threshold of the instrument is reached (673, 674). This method 

normalises each reaction for variability in the system’s optics (674). Quantification of 

the PCR reaction is based on the concept of threshold cycle (CT). At the threshold cycle, 

the fluorescence values (ΔRn) become significantly greater than background (661, 670). 

The CT always occurs during the exponential phase of the reaction and consequently, is 

unaffected by limiting reagents in the plateau phase (670). 

Performing a melting curve after PCR analysis allows an assessment of the specificity 

of the PCR reaction, since the melting temperature (Tm) of an amplicon depends on its 

sequence, size and nucleotide composition, particularly GC/AT ratio (667, 675). The 

fluorescence signal of the desired product can therefore be distinguished from undesired 

products, such as primer-dimer pairs, eliminating the need for gel electrophoresis (667, 

675). At the amplicon’s Tm, a characteristic peak will be observed, which is 

distinguishable from artefacts which melt at a lower temperature, in broader peaks 

(670). 

Relative quantitation of the PCR requires the use of an internal control gene, or 

housekeeping gene, which is assumed to have equal expression in all tissues. β-actin has 

been used for this purpose by several studies (664, 668) as it is a ubiquitous cytoskeletal 

protein (670). Use of a housekeeping gene compensates for variations in input RNA 

amounts or RNA integrity and the efficiency of cDNA synthesis (664, 665). Typically, 

results are expressed as a ratio of mRNA abundance of the test gene compared to the 

housekeeping gene (664, 665). 

With the use of SybrGreen, the specificity of the reaction is determined by primer 

design. Primers should be designed to cross intron-exon boundaries where possible, as 

this prevents false positive results from contaminating genomic DNA (670). When this 
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is not possible, the RNA can be treated with RNA-free DNase to remove any remaining 

DNA from the sample (670). Designing primers with less than three G or C nucleotides 

within the last five bases at the 3’ end reduces stability at the 3’ end, resulting in a lower 

likelihood of non-specific hybridisation and extension by DNA polymerase (670). 

Appropriate controls were added to the PCR experiments described below. These 

included a sample which had been through the reverse transcription process without the 

addition of the reverse transcriptase enzyme (no RT or –RT control). There should be 

no PCR product amplified from this sample, confirming that the primers did not amplify 

contaminating genomic DNA (666). In addition, no template controls (NTC) were 

included for each primer used in each experiment, where water was substituted for 

sample. 

3.10.2 Materials 

Trizol, agarose and all designed primers were obtained from Life Technologies 

(Frederick, MD, USA). Isopropanol, chloroform and ethanol were from BDH 

Laboratory Supplies (Dorset, UK). RNeasy mini kit columns and RNase-free DNase 

kits were obtained from Qiagen Australia (Clifton Hill, Victoria, Australia). The 

Taqman RT kit was from Perkin Elmer (Branchburg, NJ, USA). The SuperScript™ 

first-strand synthesis system kit was from Invitrogen (Carlsbad, CA, USA). Agarose 

and ethidium bromide were from Sigma (St Louis, MO, USA). SybrGreen and 

MicroAmp Optical 96 well plates were from Perkin Elmer Applied Biosystems (Foster 

City, CA, USA). All PCR experiments used distilled water (RNase-free) which was 

obtained from a Milli Q ultrapure water system (Milli Q Synthesis A-10, Millipore 

Corporation, Billerica, MA, USA). Buffer recipes can be found in Appendix 8. 

3.10.3 Primer design 

Information about the primers used in this study is given in Table 3.3. Primers were 

designed using Primer Express version 1.0b6 (Perkin Elmer Applied Biosystems, Foster 

City, CA, USA) and the published sequences for each gene found on the NCBI Entrez 

Nucleotide database (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide). 

Primer Express had several parameter preferences which were followed when designing 

primers. The melting temperature (Tm) of primers was set at 58-60°C (optimal Tm 
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59°C), the primer GC content was set at 20-80%, the primer length was between 9 and 

40 bases (optimal 20 bases) and the maximum GGG repeat was 3 residues. The 

amplicon requirements included a Tm between 0 and 85°C and a minimum length of 50 

bases. In addition to these, all primer options were checked to ensure there were no 

more than 3 G or C bases at the 3’ end of the sequence. Where possible, primers were 

designed to overlap exon regions of the gene, to prevent co-amplification of potential 

contaminating genomic DNA. In general, amplicon lengths were kept short as this 

increases the efficiency of amplification (664). 

All amplicon sequences were checked for specificity for the gene of interest by 

performing a BLAST search (http://www.ncbi.nlm.nih.gov/BLAST/). GR-α and GR-β 

primers were designed to amplify sequences within exon 9, which was the only region 

which differed between these two mRNAs. 

β-actin primers were kindly supplied by Dr Sam Mesiano and A/Prof Tamas Zakar 

(Mothers and Babies Research Centre, Newcastle). These amplify a sequence at open 

reading frame 878-1090 (676) and have been successfully used previously in our 

laboratory (669, 677). Primers for TNF-α, IL-1β, IL-6 and IL-8 were kindly supplied by 

Ms Annette Osei-Kumah (Mothers and Babies Research Centre, Newcastle). 
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Table 3.3 List of primers 

Gene Primer Amplicon 
Sequence 
Reference 

Primer 
Name 

Primer Sequence 
(5’-3’) 

Length 
(bases) 

Melting 
Temp 

U27317 11β HSD2 fwd TCAAGACAGAGTCAGTGAGAAACG 129 85.0°C 
 11β HSD2 rev GGAACTGCCCATGCAAGTG   

NM_005525 11β HSD1 fwd GAATTCAGACCAGAGATGCTCCA 51 76.8°C 
 11β HSD1 rev GGCCCCTGTGACAATCACTTT   

V00571 CRH fwd AGAAAGGCGGTCCGAGGA 67 81.9°C 
 CRH rev CAAGACTTCCCGGAGGAGGT   

X57025 IGF-I fwd TGCCCAGCGCCACAC 99 80.8°C 
 IGF-I rev TCCTACATCCTGTAGTTCTTGTTTCCT   

J03242 IGF-II fwd CCGTGCTTCCGGACAACTT 71 80.4°C 
 IGF-II rev GGACTGCTTCCAGGTGTCATATT   

M31145 IGFBP-1 fwd CACAGGAGACATCAGGAGAAGAAA 81 75.2°C 
 IGFBP-1 rev ACTGTCTGCTGTGATAAAATCCATTC   

M10901 GR-α fwd AGGTTGTGCAAATTAACAGTCCTAACT 90 79.0°C 
 GR-α rev TAGTCTTTTGCAACCATCATCCA   

XO3348 GR-β fwd GGATAATTAGCATGGGATGAGCTC 78 81.1°C 
 GR-β rev GCTCCCTGCCTCTGAATTCTG   

M16801 MR fwd CTCATGTCTAGGAGGAAATAGCAAAATA 90 74.0°C 
 MR rev CCTGAACATGAATGCTTGGTTG   

XM_034871 IL-4 fwd CACAGGCACAAGCAGCTGA 62 82.2°C 
 IL-4 rev GCCAGGCCCCAGAGGTT   

XM_003778 IL-5 fwd AGCTGCCTACGTGTATGCCA 68 79.3°C 
 IL-5 rev GTGCCAAGGTCTCTTTCACCA   

XM_001409 IL-10 fwd GGTGATGCCCCAAGCTGA 63 80.3°C 
 IL-10 rev TCCCCCAGGGAGTTCACA   

M10988 TNF-α fwd GGAGAAGGGTGACCGACTCA 69 82.0°C 
 TNF-α rev TGCCCAGACTCGGCAAAG   

XM_010760 IL-1β fwd CCTCTGGATGGCGGCA 62 81.4°C 
 IL-1β rev TGCCTGAAGCCCTTGCTG   

M54894 IL-6 fwd CCGCCCCACACAGACAG 70 79.3°C 
 IL-6 rev CCGTCGAGGATGTACCGAA   

XM_003501 IL-8 fwd CGTGGCTCTCTTGGCAGC 73 80.6°C 
 IL-8 rev TTAGCACTCCTTGGCAAAACTG   

X00351 β-actin fwd GGCCGCGGTGTACGCCAACACAGTGCTG 213 86.6°C 
 β-actin rev CCCGGGGCCGTCATACTCCTGCTTGCTG   

 

3.10.4 RNA extraction, purification and reverse transcription 

Total RNA was extracted from frozen placental samples using the trizol method. 

Briefly, 1 ml trizol per 0.1 g tissue was added to crushed placental samples before 

homogenising (Polytron homogeniser, Kinematica AG, Switzerland). The homogenate 

was centrifuged at 7800 g for 10 minutes (J2-21 Centrifuge, Beckman Coulter, Palo 

Alto, CA, USA) and to the supernatant 0.2 ml chloroform/ml trizol was added. The 

mixture was shaken vigorously by hand for 15 seconds before centrifuging at 7800 g for 
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15 minutes. The supernatant was removed and 0.5 ml isopropanol per ml trizol was 

added. After standing at room temperature for 10 minutes, the solution was centrifuged 

at 7800 g for 10 minutes, the supernatant removed and 1 ml 75% ethanol/ml trizol 

added. The optical density of RNA dissolved in RNase-free water (1:50-1:200 dilution) 

was used to determine RNA concentration (Cary50 UV-Visible Spectrophotometer, 

Varian, Palo Alto, CA, USA). An absorbance of 1 unit at 260 nm corresponds to 40 µg 

RNA/ml. Purity was evaluated using the ratio between absorbance values at 260 nm and 

280 nm which were ideally close to 1.8, but may range from 1.5-2.0 when dissolving in 

water (678). 

RNA (60 µg/100 µl) was loaded onto RNeasy mini kit columns for purification. Buffers 

were provided with the kit and purification was carried out according to the 

manufacturer’s instructions with few modifications. RNA was dissolved in 350 µl RLT 

buffer (denaturing lysis buffer with guanidine isothiocyanate) containing 

β-mercaptoethanol (10 µl/ml), and 250 µl ethanol and applied to the column which was 

centrifuged at 8000 g for 15 seconds (Biofuge pico microfuge, Heraeus, Hanau, 

Germany). The RNA bound to the membrane of the column, while contaminants were 

washed through. The sample was washed with 350 µl RW1 buffer (8000 g for 15 

seconds) and treated with DNase I (10 µl stock in 70 µl RDD buffer) for 15 minutes at 

room temperature. This step removed any contaminating DNA, which was especially 

important, as some primers could not be designed to cross intron/exon boundaries (664). 

The RW1 wash was repeated, and 500 µl of RPE buffer added and columns centrifuged 

at 8000 g for 15 seconds. Another 500 µl of RPE buffer was added and centrifuged for 2 

minutes at maximum speed (13000 rpm, Biofuge pico microfuge, Heraeus, Hanau, 

Germany) to dry the membrane. The RNA was eluted from the column with 60 µl of 

RNase-free water (30 µl added twice), with centrifugation at 8000 g for 1 minute after 

each addition. The RNA concentration and purity was again checked by measurement 

of optical density at 260 nm and 280 nm. 

RNA (1 µg) was run on a 1.5% agarose gel in TBE buffer containing 0.5 µg/ml 

ethidium bromide (60 V, 1 hour), with λHindIII markers (Life Technologies, Frederick, 

MD, USA). The presence of 18S and 28S rRNA bands was verified, indicating that the 

extracted RNA was intact (Figure 3.9). 
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Figure 3.9 Agarose gel electrophoresis of extracted placental RNA 

This representative gel shows column purified placental RNA which was run on a 1.5% agarose gel with 
λHindIII marker. The position of 28S and 18S rRNA bands is shown, verifying RNA integrity. 

RNA was reverse transcribed using the Taqman RT kit (Perkin Elmer Applied 

Biosystems, Foster City, CA, USA) or the SuperScript™ first-strand synthesis system 

kit (Invitrogen, Carlsbad, CA, USA). Briefly, using the SuperScript™ kit, 2 µg of RNA 

was diluted to 8 µl with RNase-free water. To each 8 µl sample, 1 µl of random 

hexamers (50 ng/µl) and 1 µl of dNTP mix (dATP, dCTP, dGTP, dTTP, 10 mM each) 

was added and incubated for 5 minutes at 65°C using a 9600 GeneAmp PCR machine 

(Perkin Elmer Applied Biosystems, Foster City, CA, USA), then placed on ice. A 

master mix consisting of 10× RT buffer (200 mM Tris HCl, pH 8.4, 500 mM KCl), 

25 mM MgCl2, 0.1 M DTT and RNaseOUT (40 units/µl of recombinant ribonuclease 

inhibitor) was made up. One half was used for +RT samples (to be reverse transcribed), 

while the other half was used for the negative control –RT samples (not to be reverse 

transcribed). The –RT master mix also had water added (1 µl per sample). The 

appropriate master mix was added to the samples (9 µl to +RT, 11 µl to –RT) and 

incubated for 2 minutes at 25°C. Reverse transcription was catalysed by SuperScript II 

RNase H- Reverse Transcriptase (50 units per sample). The cycles used for reverse 

transcription were: 10 minutes at 25°C, 50 minutes at 42°C, and 15 minutes at 70°C. 

Escherichia coli RNase H (2 units per sample) was added to +RT samples only. All 

samples were incubated at 37°C for 20 minutes and stored at –20°C until further use. 
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cDNA was adjusted to a final concentration of 40 ng/2 µl, which was used in all PCR 

reactions. 

3.10.5 Quantitative PCR 

Quantitative real-time RT-PCR was used to determine mRNA abundance of several 

genes in placental samples, which were compared to levels of the constitutively 

expressed gene, β-actin. Primers were made up to a concentration of 100 pmol/µl with 

RNase-free water. The PCR reaction contained 40 ng of reverse transcribed sample (in 

2 µl), 10 pmol of the appropriate primer mix and 12.5 µl of SybrGreen master mix made 

up to a total volume of 25 µl with RNase-free water in a MicroAmp Optical 96 well 

plate. The SybrGreen master mix contained all components necessary for the PCR 

reaction including optimised concentrations of MgCl2 and other buffers (proprietary 

components), AmpliTaq Gold® DNA polymerase (designed to minimise primer-dimer 

and non-specific product formation), dNTPs with dUTP, SybrGreen dye and Passive 

Reference I, which normalises non-PCR fluctuation in fluorescence signal, minimising 

well to well variation (Applied Biosystems product information). Prior to analysis, a 

background run was performed on the ABI Prism 7700 sequence detector (Perkin Elmer 

Applied Biosystems, Foster City, CA, USA) to ensure no contamination of the wells. 

Exposure time was set to 25 when using PCR plates covered with caps, or 10 when 

using PCR plates covered with film. PCR analysis was performed on duplicate or 

triplicate samples under the following reaction conditions: 2 minutes at 50°C, 10 

minutes at 95°C and 40 cycles of 15 seconds at 95°C and 1 minute at 60°C. A single or 

duplicate sample that had not been reverse transcribed was included as a control for 

each sample, along with single or duplicate no template controls (NTC) for each primer. 

At the end of the experiment, data was analysed using ABI Prism Sequence Detection 

Systems software version 1.9 (Applied Biosystems, Foster City, CA, USA). The 

baseline was set to 15 cycles (recommended), unless amplification began earlier, in 

which case the baseline was set at one or two cycles before amplification (Figure 3.10). 

The threshold line was adjusted to the early part of the exponential phase and CT values 

(where CT is the threshold cycle) for test gene and housekeeping gene exported. The 

comparative CT method was used to derive a relative quantitative measure of the test 

gene expression compared to β-actin expression, using the formula: relative mRNA 

abundance = 2– CTΔ , where ΔCT = CT (β-actin) – CT (test gene). 
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Figure 3.10 Amplification plots of the PCR reaction 

An amplification plot for GR-α and β-actin is shown in linear view (Panel A) and exponential view (Panel 
B). Duplicate samples were amplified along with a –RT control and no template control (NTC).  

Dissociation or melt curves were run subsequent to PCR on some samples to assess 

product purity. A product was considered pure if only one strong melting temperature 

was observed. Samples were melted at 95°C for 15 seconds, equilibrated at 60°C for 20 

seconds, and re-heated (dissociated) to 95°C over 20 minutes. Melting temperatures 

were determined using the Dissociation Curves Software version 1.0 (Applied 

Biosystems, Foster City, CA, USA) and are given in Table 3.3. An example of the 

dissociation curves for 11β-HSD2 and 11β-HSD1 PCR products are shown in Figure 

3.11. 
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Figure 3.11 Dissociation curves of the PCR products  

Dissociation or melt curves are shown for 11β-HSD2 PCR product (Panel A) and 11β-HSD1 PCR 
product (Panel B). 

The intra-assay variation in CT value was calculated from an initial experiment where 

six samples were tested in triplicate for three mRNAs (11β-HSD2, 11β-HSD1 and 

β-actin). The average intra-assay variation was found to be 1.5%. The inter-assay 

variation was calculated from preliminary experiments where the same sample was 

amplified with four sets of primers (IGF-I, IGF-II, IGFBP-1 and β-actin in duplicate) in 

three different assays. For this calculation, the threshold was set at a constant value for 

comparison. In all cases, the inter-assay variation was <2.2%, giving an average of 

1.3%. These values are close to those reported by Pfaffl of <3.9% inter-assay variation 

and <2.2% intra-assay variation (671). 

3.11 Cord blood hormone measurements 

3.11.1 Principles of radioimmunoassay 

Radioimmunoassay (RIA) is used to quantify concentrations of a substance in a sample 

by taking advantage of the specific interaction between antigens and antibodies. In an 

RIA, there is competition between a known amount of radioactively labelled antigen 
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and the unlabelled antigen (in the sample) for a fixed number of antibody binding sites 

(651). The distribution of the added antigen into bound and free forms depends upon the 

total concentration of antigen present in the sample, thereby allowing quantification of 

this total concentration (679). A standard curve is produced by adding increasing known 

amounts of unlabelled antigen in the presence of fixed concentrations of antibody and 

radiolabelled antigen (tracer). As the concentration of unlabelled antigen increases, the 

percentage of radiolabelled antigen which binds the antibody decreases (679). 

3.11.2 Cortisol radioimmunoassay 

Cortisol concentrations were measured directly in umbilical vein plasma collected from 

the placenta at delivery, using a commercial RIA kit (Orion Diagnostica, Espoo, 

Finland) following the manufacturer’s instructions. The sensitivity of the cortisol assay 

was 4.7 nmol/l and cross-reactivity of the cortisol antiserum with most other steroids 

was <0.1%. Steroids with a cross-reactivity greater than 2% were 5α-dihydrocortisol 

(84%), 21-desoxycortisol (79%), prednisolone (45%), 5β-dihydrocortisol (12%), 

6α-methylprednisolone (11%) and fludrocortisone (2.3%). 

Umbilical vein plasma was thawed on ice prior to centrifugation at 1000 g for 15 

minutes (J-6B centrifuge, Beckman Coulter, Palo Alto, CA, USA). Reagents were 

brought to room temperature. The RIA kit provided tubes coated with rabbit polyclonal 

cortisol antibody. Cortisol standards (0, 20, 50, 150, 500, 1000 and 2000 nmol/l) were 

reconstituted with 500 µl of distilled water. Standards and undiluted samples (20 µl) 

were added to the antibody-coated tubes. Cortisol tracer (500 µl of 125I-cortisol) was 

added to all coated tubes and to duplicate uncoated tubes, used to calculate total counts. 

All tubes were mixed briefly by vortexing, before incubating in a 37°C water bath for 2 

hours. The solutions were aspirated and washed with 1 ml of distilled water. The wash 

was aspirated and samples were counted in a gamma counter (Cobra II Auto-Gamma 

Counter, Packard Bioscience, Canberra, Australia) for 1 minute. The concentration of 

cortisol in each sample was calculated from the standard curve. 

3.11.3 Unconjugated estriol radioimmunoassay 

Estriol concentrations were measured directly in umbilical vein plasma collected from 

the placenta at delivery, using a commercial RIA kit for unconjugated estriol 
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(Diagnostic Systems Laboratories, Webster, TX, USA), following the manufacturer’s 

instructions. The sensitivity of the estriol assay was 0.03 ng/ml. Cross-reactivity of the 

estriol antibody was <1% for all similar compounds except 16-epiestriol (3.7%). 

Plasma was thawed on ice prior to centrifugation at 1000 g for 15 minutes (J-6B 

Centrifuge, Beckman Coulter, Palo Alto, CA, USA). Samples were diluted 1:10 and/or 

1:50 with PBS. Reagents were allowed to reach room temperature and were mixed prior 

to use. The standards were 0 ng/ml (for estimating non specific binding) and 0.1, 0.25, 

0.5, 1.0, 2.5, 5, 10 and 20 ng/ml estriol (for the standard curve). Standard or sample 

(50 µl) and estriol tracer (200 µl of 125I-estriol) was added to tubes, followed by 200 µl 

of estriol antiserum to all tubes, except those for estimating total counts and non-

specific binding. Tubes were vortexed and incubated in a 37°C water bath for 30 

minutes. Precipitating reagent was thoroughly mixed before use and 1 ml added to all 

tubes (except total counts), which were incubated at room temperature for 15 minutes. 

Samples were centrifuged at 1500 g for 30 minutes at 4°C. Liquid was aspirated from 

all tubes (except total counts) and counted in a gamma counter for 1 minute (Cobra II 

Auto-Gamma Counter, Packard Bioscience, Canberra, Australia). The concentration of 

estriol in each sample was calculated from the standard curve. 

3.11.4 Corticotropin Releasing Hormone (CRH) 
radioimmunoassay 

CRH concentrations were measured by RIA in umbilical vein plasma collected from the 

placenta at delivery. These assays were performed by Mrs Maria Bowman (Mothers and 

Babies Research Centre, Newcastle) and were based on previously published methods 

(680, 681). 

Propan-1-ol, acetonitrile, sodium azide and chloramine T were from BDH Laboratory 

Supplies (Dorset, UK). Trifluoroacetic acid (TFA) and sodium metabisulfite were from 

Ajax Chemicals (Sydney, Australia). BSA and polypep (low viscosity) was from Sigma 

(St Louis, MO, USA). β-mercaptoethanol was from ICN Biomedicals (Irvine, CA, 

USA). Na125I was from Australian Radioisotopes (Lucas Heights, Australia). Synthetic 

human CRH standard (Tyr-hCRH) was from Peninsula (Belmont, CA, USA). C-18 Sep-

pak columns were from Millipore Corporation (Billerica, MA, USA). 
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The tracer was chloramine-T labelled [125I]Tyr-hCRH, prepared by mixing 0.5 mCi 

Na125I and 10 µg chloramine-T with 2.5 µg Tyr-hCRH in phosphate buffer (pH 7.5) to a 

total volume of 30 µL. After 30 seconds, the reaction was stopped by the addition of 

sodium metabisulfite (10 µg/20 µl) and 500 µl 0.1% TFA/0.01% BSA/0.01% polypep. 

The sample was partially purified on a C-18 Sep-pak column and 5 ml fractions were 

eluted with 0, 5, 10, 15, 20-30, 40 and 80% propan-1-ol (containing 0.1% TFA). 

Fractions 40 and 45 (containing the highest radioactivity and binding) were dried, 

refrigerated and further purified by HPLC using a reverse phase column (C18, 300 mm 

× 3.9 mm) from Activon (Thornleigh, NSW, Australia). Fractions were eluted with a 0-

70% acetonitrile/0.1% TFA gradient and those with the highest radioactivity and 

binding were stored in an equal volume of assay buffer at 4°C. 

Extraction of umbilical vein plasma samples was performed using silica glass powder 

(Vycor, Corning, NY, USA). Samples were lyophilized and reconstituted in 500 µl RIA 

buffer, which contained 0.1 M sodium phosphate (pH 7.45), 0.25% (w/v) BSA, 0.1% 

(v/v) β-mercaptoethanol and 0.02% (w/v) sodium azide. 

Duplicate plasma samples (200 µl) were incubated with 50 µl CRH antiserum (Y2BB0, a 

gift from Prof PJ Lowry and Dr E Linton, University of Reading, United Kingdom) at 

4°C for 24 hours. Incubation with tracer (50 l of [ I ]Tyr-hCRH, 5000-10000 cpm) 

was for 72 hours. Donkey anti-rabbit antibody-coated cellulose suspension (Sac-cel, 

Immuno Diagnostics, Tyne and Wear, England) was added (50 l) to separate the 

antibody-bound tracer from unbound tracer. Samples were counted in a gamma counter 

(Cobra II Auto-Gamma Counter, Packard Bioscience, Canberra, Australia) and CRH 

concentrations determined from a standard curve. 

µ 125

µ

3.11.5 IGFBP radioimmunoassays 

IGFBP-1 and IGFBP-3 were measured in umbilical vein plasma collected from the 

placenta at delivery by Dr Robert Baxter (Kolling Medical Research Institute, Sydney, 

Australia). Cord blood IGFBP-1 was measured according to a previously published 

protocol (414). Briefly, samples were incubated in 0.5 ml assay buffer containing 

antiserum A2 (1:100000 final dilution) and binding protein tracer (10000 cpm, 90 pg) 

for 16-18 hours at 2°C. Bound radioactivity was precipitated using a secondary antibody 
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(414). Cord blood IGFBP-3 was also measured as previously described, using rabbit 

antiserum R-100 against human IGFBP-3 at a final dilution of 1:100000 (409). 

3.12 Statistical Analysis 

The majority of the results are presented as means ± standard error of the mean (SEM). 

Statistical analysis was performed using GraphPad Instat version 2.04a or 3.05 

(GraphPad Software Inc., San Diego, CA, USA). Analysis of variance (ANOVA) and 

the non-parametric equivalent (Kruskal-Wallis non-parametric ANOVA) were used for 

comparing three or more groups, along with the appropriate post-hoc test (Tukey-

Kramer multiple comparisons test for ANOVA or Dunn’s multiple comparisons test for 

Kruskal-Wallis ANOVA). Instat used Bartlett’s test to assess whether the standard 

deviations of the groups were equal and the method of Kolmogorov and Smirnov to test 

if the data were sampled from Gaussian (normal) distributions. ANOVA was used when 

both of these assumptions were met. If either the standard deviations of the groups were 

not equal or the data was not normally distributed, the Kruskal-Wallis non-parametric 

ANOVA was used. When comparing two groups with a normal distribution, the 

Student’s t-test (unpaired t-test) was used to compare means, unless the standard 

deviations were not equal, in which case the unpaired t-test with Welch correction was 

used. The Mann Whitney test was used to compare medians of two groups where data 

was not normally distributed. Fisher’s exact test was used to compare proportions, using 

a 2 × 2 contingency table. A P value of <0.05 was considered significant. 

When investigating the relationship between two sets of data, the Pearson linear 

correlation and Spearman rank (non-parametric) correlation were used. A runs test was 

performed to verify that the data was linear.  

For graphical purposes, normally distributed data (which may or may not have had 

equal variances) is presented as means ± SEM. Minitab statistical software release 12 

(Minitab Inc, State College, PA, USA) was used to draw boxplots of data that was not 

normally distributed and GraphPad Prism version 4.02 (GraphPad Software Inc., San 

Diego, CA, USA) was used to draw scatter plots. 

Multivariate analysis was performed on some data by Dr Andrew Bisits and Dr Vicki 

Clifton (Mothers and Babies Research Centre, Newcastle), using Stata version 7 (Stata 

Corporation, College Station, TX, USA). Generalised linear latent and mixed models 
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and generalised estimating equations were used (682, 683). Outcomes were adjusted for 

asthma severity, cumulative inhaled glucocorticoid intake, fetal sex and maternal 

smoking. 

Power and sample size calculations were performed using the PS power and sample size 

program, version 2.1.30 (684).  

Data in this thesis is used in multiple statistical comparisons between various sub-

groups. In most cases, ANOVA or the non-parametric equivalent are used to analyse the 

data using multiple comparisons post-hoc tests. However, the results, especially where 

the P value is between 0.01 and 0.05, should be interpreted with caution given the 

multiple use of the data. Some data which is separated into male and female fetus sub-

groups is underpowered to detect significant differences. Consequently, it would be 

appropriate to repeat some of the experiments described in this thesis, if a more 

thorough analysis of a particular aspect of this study is required.   

3.13 Proteomics using Surface Enhanced Laser 
Desorption/Ionisation-Time of Flight Mass 
Spectrometry (SELDI-TOF MS) 

Proteomics work was carried out as part of a collaboration between the Mothers and 

Babies Research Centre and Ferring Research Institute (FRI) in San Diego (CA, USA). 

Experiments were performed at FRI under the supervision of Dr Karen Akinsanya and 

Dr Yung-Chih Wang. Optimisation of the human plasma method was conducted with 

another PhD candidate, Ms Renee Johnson (Mothers and Babies Research Centre, 

Newcastle), as part of a separate commercially confidential project covered by a legal 

agreement between Ferring Research Institute Inc and The University of Newcastle 

Research Associates Limited. Details of these optimisations are not provided here, 

because they are not critical for understanding the final method chosen. 

3.13.1 Principles of SELDI-TOF MS 

Proteomics is a rapidly growing area for studying the protein products expressed by the 

genome of an organism, tissue or cell type (685-687). Unlike the genome, the proteome 

may change in response to developmental stage, environment or disease (685). 
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SELDI-TOF MS is a relatively new proteomic technique combining on-chip retentate 

chromatography with mass spectrometry (688). Proteins in crude biological samples 

such as serum, plasma, urine and other fluids, differentially bind to chip surfaces based 

upon their chemical and biochemical properties such as hydrophobicity or charge (689). 

The interaction between the protein and the chip surface is specific and based upon the 

amino acid sequence and structure of the protein and the detergent, salt concentration 

and pH of the binding buffer (690). The chip surfaces may interact with proteins in a 

general manner (reverse phase, cation exchange, anion exchange, normal phase), or they 

may be specifically designed for more complex interactions such as antibody/antigen, 

DNA/protein or receptor/ligand (688). The incubation times used in SELDI are fairly 

short which decreases low affinity binding and a series of wash steps removes any 

unbound material (690). Proteins which are retained are embedded in an energy 

absorbing molecule (EAM) or matrix (688). The EAM is ionised by a laser and the 

gaseous protein ions move through a vacuum towards a detector, with the time taken to 

reach the detector used to derive the mass to charge (m/z) ratio (688, 689). SELDI-TOF 

is particularly effective for detecting low mass proteins and peptides <20 kDa (689), but 

is also capable of detecting large proteins up to approximately 150 kDa. It is a more 

sensitive approach requiring less sample or sample preparation than two dimensional-

polyacrylamide gel electrophoresis (2D-PAGE) (689, 691) while also detecting low 

abundance proteins and low mass proteins (<5 kDa), which usually cannot be visualised 

by 2D-PAGE (690, 692). 

SELDI-TOF MS has many applications both in basic research and clinical proteomics. 

It is becoming widely used for biomarker discovery (688), particularly in the field of 

cancer research (690, 693, 694), where laser capture microdissection studies of diseased 

and healthy tissue (695) have been carried out along side studies of biological fluids 

such as serum (688). This technology can be used to identify diagnostic markers, 

monitor disease progression (695) and discover new therapeutic targets (693). The 

patterns of protein expression are of particular importance in diagnostic applications, 

since the actual identity of particular proteins is not essential and studying multiple 

proteins rather than individual proteins often allows better discrimination between 

patient groups (688, 696). 

Very little proteomics work has been published in the field of pregnancy or asthma. 

Recent reviews suggest that the completion of the human genome project will allow 
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unique opportunities to use both genomics and proteomics to further understand 

numerous aspects of reproductive medicine (686, 697-699). To date, proteomic 

techniques have been used to identify markers of premature rupture of fetal membranes 

(700) and to characterise placental protein profiles of normal and complete hydatidiform 

mole in placental samples collected by laser capture microdissection (701). The 

application of proteomics to asthma research has been limited to studies of connective 

tissue biology carried out with bronchial biopsies using 2D-PAGE and matrix assisted 

laser desorption/ionisation (MALDI)-TOF MS (702, 703). The use of SELDI-TOF MS 

in the field of asthma and pregnancy research has the potential to further our 

understanding of the interactions occurring between the mother, placenta and fetus and 

may help to identify protein changes associated with reduced fetal growth. 

3.13.2 Materials 

ProteinChip® arrays, energy absorbing molecules (EAM), all-in-1 peptide molecular 

weight standard and all-in-1 protein standard were obtained from Ciphergen (Freemont, 

CA, USA). Three ProteinChip® arrays were used: WCX2 (weak cation exchange), 

SAX2 (strong anion exchange) and IMAC3 (immobilised metal affinity capture). The 

EAM or matrix molecules used were sinapinic acid (3,5-dimethoxy-4-hydroxycinnamic 

acid, SPA) and α-cyano-4-hydroxycinnamic acid (CHCA).  

Urea and Ni-NTA agarose were from Invitrogen (Carlsbad, CA, USA). Ni-NTA agarose 

contained nickel-nitrilotriacetic acid and ethanol. Copper sulfate (CuSO4.5H2O), NaCl, 

glacial acetic acid, hydrochloric acid (HCl) and ammonium acetate were all obtained 

from Sigma (St Louis, MO, USA). 3-[(3-chloamidopropyl)-dimethylammonio]-1-

propanesulfonate (CHAPS), Triton X-100 (TX-100), Tris HCl and trifluoroacetic acid 

(TFA) were from Pierce (Rockford, IL, USA). Sodium acetate was from Fisher Biotech 

(Pittsburg, PA, USA), and acetonitrile (HPLC grade) was from Fisher Chemicals 

(Fairlawn, NJ, USA). 

Buffer recipes are given in Appendix 8. All buffers were syringe filtered (0.02 µm) 

before use. 
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3.13.3 Sample preparation 

Protein profiling was carried out on maternal plasma collected at approximately 18 and 

30 weeks gestation, umbilical vein plasma collected from the placenta following 

delivery and placental homogenates. Samples were collected from asthmatic and non-

asthmatic women. 

Crude placental homogenates were prepared by homogenising approximately 1.5-2 g of 

crushed placental tissue in 10 volumes of sodium phosphate buffer containing protease 

inhibitors (see section 3.8.3). Homogenates were centrifuged at 4°C at 1000 g for 10 

minutes (J-6B centrifuge, Beckman Coulter, Palo Alto, CA, USA), and the supernatant 

removed. Protein concentration was determined by Bradford assay (652) as described in 

Section 3.8.3. Aliquots were stored at –80°C prior to transportation on dry ice to FRI in 

San Diego, CA (World Courier, Sydney, Australia). 

Some samples were denatured prior to binding on the ProteinChip® arrays. This 

involved adding 80 µl of buffer (50 mM Tris pH 9 + 9 M urea + 2% CHAPS) for every 

20 µl plasma, vortexing at room temperature for 30 minutes and loading 10 µl onto the 

chips. 

SELDI-TOF analysis was conducted with the Ciphergen Protein Biology System IIc 

and Ciphergen ProteinChip® Software version 3.1.1, biomarker edition (Ciphergen, 

Freemont, CA, USA). There were eight spots per ProteinChip® array and a bioprocessor 

was used which allowed 12 arrays to be processed simultaneously (Figure 3.12). Each 

spot contained a single sample. Mass analysis was performed using TOF-MS in the 

Ciphergen Protein Biology System IIc (Figure 3.13) at laser intensities 195 and 220 (for 

low and high mass proteins respectively) using SPA and at laser intensity 170 for 

CHCA (low mass peptides only). For some optimisations, laser intensities of 230 for 

high mass (SPA), or 175 for low mass (CHCA) were used. The low and high mass spot 

protocols used are listed in Appendix 9. The method was found to be particularly useful 

for detecting low mass peptides from 1.5 to 20 kDa and was also able to detect proteins 

up to approximately 150 kDa (Figure 3.14). 
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Bioprocessor Set-up8 spot ProteinChip® array Bioprocessor Set-up8 spot ProteinChip® array  

Figure 3.12 Bioprocessor and eight spot ProteinChip® arrays 

Photograph of the bioprocessor set-up and eight spot ProteinChip® arrays used for proteomic analysis. 
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Figure 3.13 Ciphergen Protein Biology System IIc 

Photograph of the SELDI machine used for proteomic analysis. The diagram shows how the laser 
irradiates the sample, resulting in the liberation of gaseous ions from the array. The velocity of these ions 
through the vacuum to the detector is used to derive their mass to charge (m/z) ratio (diagram adapted 
from Issaq et al., 2002)(689). 
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Figure 3.14 Low and high mass spectra 

Panel A shows a representative low mass spectrum obtained using 30 week pregnant plasma on a SAX 
chip (pH 9) with SPA matrix. Panel B shows a representative high mass spectrum obtained using 30 week 
pregnant plasma on a SAX chip (pH 9) with SPA matrix. 

3.13.4 Calibration 

Low and high mass regions were calibrated daily using all-in-1 peptide molecular 

weight standards and all-in-1 protein standard respectively, which were made up 

according to the manufacturer’s instructions. Briefly, the lyophilised peptide standards 

were warmed to room temperature, and reconstituted in 25 µl of resuspension solution 

(containing 10 mM ammonium acetate, 25% acetonitrile and 1.25% TFA). This solution 

was mixed well and transferred to a microcentrifuge tube. A further 25 µl of 

resuspension solution was used to wash the original vial and this solution was left to 

stand at room temperature for 10 minutes before pooling with the first wash. The pooled 

standards were distributed into 10 µl aliquots which were stored at –80°C for later use. 

One aliquot was combined with 10 µl of a saturated solution of SPA (acetonitrile/1% 

TFA) and spotted onto each of the eight spots of a WCX chip, which had been pre-

wetted with water. The low mass peptide standard chip was read using the low mass 

calibration spot protocol (Appendix 9). To prepare the all-in-1 protein standard, a 5 µl 

aliquot was thawed on ice and diluted five-fold with a saturated solution of SPA. This 

solution was spotted onto each of the eight spots of a pre-wet IMAC chip and 

completely air dried before reading, using the high mass spot protocol (Appendix 9). 
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The peptide standard consisted of Arg-vasopressin (1084.2 Da), somatostatin 

(1637.9 Da), bovine insulin β-chain (3495.9 Da), human insulin (5807.7 Da) and 

hirudin (7033.6 Da). The protein standard consisted of equine cytochrome C 

(12360.2 Da), equine cardiac myoglobin (16951.5 Da), rabbit glyceraldehyde-3-

phosphate dehydrogenase (GAPDH, 35688.0 Da), bovine serum albumin (66433 Da) 

and E. coli β-galactosidase (116351 Da). Calibration was carried out using at least four 

of the five standards in each case. Examples of these calibrations are shown in Figure 

3.15. 
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Figure 3.15 Low and high mass calibration spectra 

These representative calibration spectra were obtained using the low mass calibration spot protocol 
(Panel A) and the high mass spot protocol (Panel B).  
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3.13.5 Plasma protein profiling method 

Maternal and cord blood (umbilical vein) plasma samples were thawed once on ice, 

centrifuged and aliquoted into 100 µl portions which were stored at –80°C for later use 

in SELDI experiments. On the day of the experiment, aliquots were thawed on ice and 

centrifuged at 8000 g at 4°C for 10 minutes in a table-top centrifuge (Microfuge R, 

Beckman Coulter, Palo Alto, CA, USA). ProteinChip® arrays were activated, 

neutralised and equilibrated before the addition of sample. Each day, only one chip type 

was used and experiments for each individual chip surface were completed in a single 

run. 

IMAC chips were pre-activated with 50 µl of CuSO4 per spot. WCX chips were 

activated by adding 100 µl of 10 mM HCl per spot. SAX chips were not activated. 

Following 15 minutes on a shaker, wells of the bioprocessor were rinsed with distilled 

water. IMAC chips were neutralised with 100 µl of 50 mM sodium acetate (pH 4). 

WCX chips were neutralised with 100 µl of 100 mM ammonium acetate (pH 6). 100 µl 

of 50 mM Tris (pH 9) was added to SAX chips at this stage. The bioprocessor was 

shaken for 5 minutes. Wells were rinsed with distilled water. Spots were equilibrated by 

shaking twice with 150 µl of low stringency binding buffer (pH 4 for WCX, pH 7 for 

IMAC and pH 9 for SAX, Appendix 8) for 5 minutes. Following the second binding 

buffer wash, 100 µl of fresh binding buffer was added to each spot. Plasma sample 

(2.5 µl neat, native protein) was added to the binding buffer on each spot of the 

ProteinChip® array. The bioprocessor was covered with parafilm and incubated at room 

temperature for 30 minutes on a shaking platform. 

The sample was removed from the bioprocessor wells, and the wells were washed three 

times with appropriate binding buffer (200 µl per well, shaken for 5 minutes each 

wash). After two further washes with distilled water (200 µl per well, shaken for 5 

minutes each wash), individual chips were removed from the bioprocessor and air-dried. 

Fresh saturated SPA and CHCA solutions were made up daily as required. To one tube 

of SPA or CHCA (approximately 5 mg per tube), 100 µl of acetonitrile and 100 µl of 

1% TFA was added. Solutions were vortexed for 3 minutes and centrifuged at 8000 g 

for 3 minutes at room temperature (Microfuge R, Beckman Coulter, Palo Alto, CA, 

USA). Matrix (0.5 µl) was added twice to each spot and allowed to fully air-dry 

between applications (Figure 3.12). 



Chapter 3 - Methods 

120 

Initial condition optimisations were performed using non-pregnant and pregnant 

plasma. The suitability of the method for use with pregnant plasma was validated by the 

tentative identification of CRH in pregnant, but not in non-pregnant plasma. The CRH 

peptide has a molecular weight of 4758.5 (based on amino acids 154-194 of accession 

number A30327) and a theoretical isoelectric point (pI) of 5.09 (calculated on 

us.expasy.org). Based on this information, CRH would be expected to bind to a strong 

anion exchange surface at pH 9, since this pH is greater than the pI of the peptide, 

resulting in a negative charge under these conditions. A peak at m/z 4758 was observed 

using a SAX chip at pH 9, particularly in denatured pregnant plasma, but not in neat or 

denatured non-pregnant plasma (Figure 3.16). This is consistent with previous studies 

using HPLC or RIA methods where CRH could not be detected in non-pregnant or first 

trimester pregnant plasma (704, 705) and confirmed that the SELDI method could be 

used to identify a known peptide in pregnant plasma. 
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Figure 3.16 Detection of CRH in pregnant plasma 

Samples of neat pregnant and non-pregnant plasma (5 µl) were compared. Plasma was denatured and 
compared between pregnant and non-pregnant individuals. A peak which potentially represents CRH 
with a m/z of 4758, was observed on SAX at pH 9 (SPA matrix) in neat and denatured pregnant plasma 
samples, but was not observed in non-pregnant plasma. 
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3.13.6 Placental tissue protein profiling 

Placental homogenates were thawed on ice and centrifuged at 8000 g at 4°C for 10 

minutes prior to use (Microfuge R, Beckman Coulter, Palo Alto, CA, USA). Placental 

samples (10 µg equivalents) were incubated on IMAC, WCX and SAX chips under low 

and high stringency conditions (Appendix 8), according to the standard protocol used 

for plasma samples. 

Removal of hemoglobin with Ni-NTA Agarose 

Placental samples contained hemoglobin, as evidenced by peaks at 7.5 and 15 kDa 

(Figure 3.17). Consequently, IMAC chips were not suitable for use as hemoglobin 

occupied most of the binding sites due to its metal affinity. An attempt to remove 

hemoglobin from the samples was made using nickel beads. The Ni-NTA agarose 

suspension (50% suspension in 30% ethanol) was vortexed and 20 µl was added to a 

200 µg equivalent of placental homogenate. Samples were vortexed for 2 hours at 4°C. 

After 2 hours, the Ni beads had turned red (previously blue), indicating that some 

hemoglobin had been removed. The slurry was centrifuged at 700 g for 2 minutes 

(Microfuge R, Beckman Coulter, Palo Alto, CA, USA) and the supernatant removed. A 

10 µg equivalent was added to the chips and incubated for 30 minutes at room 

temperature on a rocking platform, under high and low stringency binding conditions. It 

was noted that under low stringency conditions (WCX pH 6), hemoglobin still 

dominated the spectrum, even after Ni-purification (Figure 3.17). However, under high 

stringency conditions (pH 9), in both neat placental homogenate (10 µg) and Ni-purified 

placental homogenate (10 µg equivalent) samples, the major peaks from hemoglobin 

were no longer evident (Figure 3.17). The spectra were slightly different between neat 

and Ni-purified placenta. However, no added advantage was evident with 

Ni-purification and due to the extra time required, this method was not continued. 

However, the high stringency conditions were implemented for use with the placental 

samples since they were suitable for minimising spectral interference from hemoglobin. 

Final placenta profiling conditions 

The final placenta profiling optimisation experiment compared neat placental 

homogenates (10 µg), denatured placental homogenate (80 µg diluted to 40 µl total 

volume with 50 mM Tris pH 9 and incubated for 30 minutes at room temperature with 
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an equal volume of urea buffer, 10 µl added to chips), Ni-NTA purified placental 

homogenate (neat, 10 µg equivalent added to chips) and Ni-NTA purified placental 

homogenate (denatured, 10 µg equivalent added to chips). The following conditions 

were tested: SAX pH 9 (low stringency) and pH 4 (high stringency) and WCX pH 4 

(low stringency) and pH 9 (high stringency), each using SPA and CHCA matrix. 
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Figure 3.17 WCX pH 6 and pH 9 spectra for placental homogenates  

Placental homogenates were incubated neat (10 µg) or following partial removal of hemoglobin with 
Ni-NTA agarose (10 µg equivalents) on WCX chips under low (pH 6) and high (pH 9) stringency binding 
conditions. The peak intensity of the hemoglobin peaks was greatly reduced under high stringency 
conditions (pH 9). 

Various regions of each spectra were examined to decide the final conditions to be used. 

For WCX chips, there was a noticeable improvement in the detection of peaks on the 

spectra when pH 9 binding buffer was used, compared to pH 4, due to the fact that 

hemoglobin did not bind under these conditions. Neat placental homogenates were 

found to give the best overall result, especially in the high mass region. SPA was found 

to be the most suitable matrix. The final WCX conditions used for the placenta were 

therefore neat homogenates (10 µg), with pH 9 buffer and SPA matrix.  
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For SAX chips, there was a large amount of noise on the spectra when the high 

stringency buffer (pH 4) was used. On the pH 9 spectra, neat and Ni-NTA neat were 

considered the best conditions; however, some peaks were not visible when Ni-NTA 

samples were used. The use of CHCA matrix was found to result in peaks which were 

not present on the SPA spectra. This was considered a better choice, despite the 

sacrifice of the high mass region when using this matrix, since the high mass region was 

dominated by high abundance proteins such as hemoglobin, albumin and transferrin (Dr 

James LeBlanc, Ciphergen Field Scientist, personal communication). The final SAX 

conditions used for the placenta were therefore neat homogenates (10 µg), with pH 9 

buffer and CHCA matrix. 

3.13.7 Data Analysis 

All protein profiles (spectra) to be compared were placed into a new experiment using 

the Ciphergen ProteinChip® Software and normalised for total ion current before 

proceeding. For low mass spectra, normalisation began at 1500 Da, while for high mass 

spectra, normalisation began at 10000 Da, as the regions prior to these were considered 

noise. The Biomarker Wizard was used to find new clusters of peaks. On the first pass, 

peaks with a signal/noise ratio >5 were selected and on the second pass peaks with a 

signal/noise ratio >2 were selected. The minimum peak threshold was set at 20%, 

signifying that 20% of all spectra must contain that peak in order for it to be considered 

a valid cluster. The cluster mass window was set at 0.3% of mass, signifying that all 

peaks considered to be from the same cluster must be within 0.3% of each other’s mass. 

Statistical differences in protein peaks between groups were determined using the 

Biomarker Wizard Software, with P<0.05 considered significant. The software used one 

of the following statistical tests as appropriate: the parametric two tailed t-test, the non-

parametric Mann Whitney U test (for comparing two groups), the parametric single 

factor/one way ANOVA, or the non-parametric Kruskal-Wallis H test (for comparing 

more than two groups). 

All peaks were visually checked for outliers, possible chemical modifications, 

consistency between individuals (the same area of the spectrum labelled in each case), 

and for their relationship to other peaks, using the reference lines. For example, where 

possible, the reference lines were used as a guide to indicate the presence of a doubly or 

triply charged version of another peak. A category (A, B or C) was assigned to each 



Chapter 3 - Methods 

124 

peak and was based generally on the visual checks and indicated the quality of each 

result. A category A peak was considered the best for follow-up. A category B peak was 

considered good for follow-up, but may have been related to, or a modification of 

another peak on the spectrum. A category C peak was felt to be of less quality, either 

due to being particularly flat or broad, or close to the noise region. Peaks that were 

significantly different between groups according to the Biomarker Wizard program, but 

did not pass the visual check were excluded. 

The possible identity of peaks of interest was investigated by searching the Swiss-Prot 

protein database (http://us.expasy.org/tools/tagident.html). The molecular weight (MW) 

was estimated to be the m/z with 0.5% error. An estimate of the pI of the protein was 

made, based upon its binding to the chip surfaces. If the peak was found on a WCX chip 

at pH 4, the pI was assumed to be approximately ≥ 4. If the peak was found on a SAX 

chip at pH 9, the pI was assumed to be approximately ≤ 9. Peaks which bound to IMAC 

at pH 7 were assumed to have any possible pI. The search was narrowed to include 

proteins from homo sapiens only. The known functions of the matching proteins were 

examined using the NiceProt View (http://us.expasy.org/cgi-bin/niceprot). 
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l Growth in Asthmatic Pregnancies 

4.1 Maternal characteristics 

Pregnant women with asthma (n=138) and pregnant women without asthma (control, 

n=44) were recruited for the study. Asthmatic women were classified according to 

asthma severity, as mild (n=62), moderate (n=28) or severe (n=48). Groups were further 

divided based upon fetal sex. Clinical characteristics of these groups are shown in Table 

4.1 for women pregnant with a female fetus and Table 4.2 for women pregnant with a 

male fetus. ANOVA was used to compare the maternal characteristics of age, height, 

early pregnancy weight, early pregnancy BMI and weight gain during pregnancy. No 

significant differences were found (P>0.05). The Kruskal-Wallis non-parametric 

ANOVA was used to compare the gravidity and parity of the groups and no significant 

differences were found (P>0.05). Early pregnancy blood pressure was measured at the 

first antenatal visit at approximately 8-15 weeks. There were no significant differences 

in systolic or diastolic blood pressure in early pregnancy between any groups (Kruskal-

Wallis ANOVA, P>0.05). 

Asthmatic women were also classified according to their inhaled glucocorticoid intake 

during pregnancy as no glucocorticoid (n=46) or glucocorticoid (n=92). Groups were 

further divided based upon fetal sex and the glucocorticoid group was also divided 

according to dose of inhaled glucocorticoid used (low n=22, moderate n=43 or high 

n=27). The low dose glucocorticoid group was a mixed group. Only seven of the 22 

subjects used inhaled glucocorticoids throughout pregnancy. Two subjects commenced 

glucocorticoid therapy in the second trimester and continued use to the end of the 

pregnancy. Two subjects used inhaled glucocorticoids in the second trimester only, and 

11 subjects used inhaled glucocorticoids in the third trimester only. For much of the 

data analysis the low, moderate and high groups were combined into one group 

(glucocorticoid) and in the tables, data for all four groups (low, moderate, high and 

glucocorticoid combined) is shown. 



 

Table 4.1 Clinical characteristics of women pregnant with a female fetus and classified by asthma severity 

Female Fetus Classification of Asthma Severity During Pregnancy 
  Control Mild Moderate Severe 

Total Number of Subjects 21 32 10 27 
          

Glucocorticoid Intake   18 No Glucocorticoid 0 No Glucocorticoid 4 No Glucocorticoid 
          
    3 Low Dose 1 Low Dose 2 Low Dose 
          
    7 Moderate Dose 4 Moderate Dose 10 Moderate Dose 
          
    4 High Dose 5 High Dose 11 High Dose 
          

Maternal Age (years) 28 ± 1 (n=21)  25 ± 1 (n=32)  26 ± 2 (n=10)  27 ± 1 (n=27)  
  (22 – 37)  (16 – 36)  (19 – 35)  (17 – 39)  

Maternal Height (cm) 164.7 ± 1.3 (n=15)  165.2 ± 1.1 (n=30)  164.6 ± 1.3 (n=10)  165.9 ± 1.4 (n=23)  
  (156 – 173)   (152 – 177)  (157 – 171) (153.5 – 180)  

Maternal Early Pregnancy Weight (kg) 66.4 ± 4.0 (n=16)  72.0 ± 2.9 (n=31)  74.5 ± 6.8 (n=10)  71.7 ± 3.8 (n=23)  
  (47.3 – 97.5)   (44.4 – 110.7)  (49 – 117)  (51 – 125) 

Maternal Pregnancy Weight Gain (kg) 12.3 ± 2.2 (n=10)  12.6 ± 1.1 (n=24)  8.7 ± 1.4 (n=9)  11.1 ± 0.8 (n=22)  
  (0.6 – 26.6)   (1.5 – 24.6)  (2.4 – 15.7)  (1 – 15.1) 

Maternal Early Pregnancy BMI 24.5 ± 1.5 (n=15)  26.4 ± 1.0 (n=30)  27.3 ± 2.2 (n=10)  26.4 ± 1.4 (n=21)  
  (19.4 – 35.4)   (19.2 – 41.7) (19.9 – 41.2)   (19.9 – 44.3) 

Maternal Early Pregnancy  Systolic Blood Pressure (mm Hg) 111 ± 3 (n=15) 115 ± 2 (n=32) 114 ± 5 (n=10) 110 ± 2 (n=27) 
  (100 – 130)   (95 – 140) (90 – 135)   (90 – 140) 

Maternal Early Pregnancy Diastolic Blood Pressure (mm Hg) 65 ± 2 (n=15) 67 ± 2 (n=32) 70 ± 2 (n=10) 63 ± 2 (n=27) 
  (50 – 80)   (20 – 90)  (60 – 80)  (20 – 80) 

Gravidity 2.9 ± 0.6 (n=21)  2.1 ± 0.2 (n=32)  2.7 ± 0.3 (n=10)  2.8 ± 0.3 (n=27)  
   (1 – 10)  (1 – 5)  (1 – 4)  (1 – 8) 

Parity 1.3 ± 0.3 (n=21) 0.6 ± 0.1 (n=32) 0.9 ± 0.3 (n=10) 1.1 ± 0.3 (n=27) 
 (0 – 6) (0 – 3) (0 – 3) (0 – 5) 
  Values given are Mean ± Standard Error of the Mean 

(Range) 
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Table 4.2 Clinical characteristics of women pregnant with a male fetus and classified by asthma severity 

Male Fetus Classification of Asthma Severity During Pregnancy 
  Control Mild Moderate Severe 

Total Number of Subjects 23 30 18 21 
          

Glucocorticoid Intake   16 No Glucocorticoid 5 No Glucocorticoid 3 No Glucocorticoid 
          
    7 Low Dose 3 Low Dose 6 Low Dose 
          
    7 Moderate Dose 9 Moderate Dose 6 Moderate Dose 
          
    0 High Dose 1 High Dose 6 High Dose 
          

Maternal Age (years) 30 ± 1 (n=23)  26 ± 1 (n=30)  27 ± 2 (n=18)  27 ± 1 (n=21)  
   (19 – 42) (18 – 36)  (18 – 40)  (18 – 39)  

Maternal Height (cm) 164.9 ± 2.3 (n=17)  163.7 ± 1.3 (n=27)  162.7 ± 1.6 (n=18)  162.9 ± 1.4 (n=20)  
   (131 – 174)  (150.5 – 180) (146 – 173)   (154 – 176) 

Maternal Early Pregnancy Weight (kg) 76.2 ± 4.6 (n=17)  74.4 ± 4.1 (n=28)  70.2 ± 4.5 (n=17)  81.8 ± 5.5 (n=21)  
   (55.8 – 117.5)  (52.5 – 134)  (46.8 – 112.5)  (52 – 131.6) 

Maternal Pregnancy Weight Gain (kg) 10.0 ± 1.5 (n=12)  12.9 ± 1.3 (n=22)  10.7 ± 1.1 (n=16)  9.2 ± 1.8 (n=16)  
   (1.6 – 17.2)  (1.1 – 29.7)  (3.9 – 16.5)  (-3.2 – 21.9) 

Maternal Early Pregnancy BMI 28.1 ± 1.7 (n=17)  27.1 ± 1.3 (n=25)  26.5 ± 1.6 (n=17)  31.1 ± 2.2 (n=20)  
   (19.5 – 42.8)  (19.8 – 43.7)  (17.3 – 40.3)  (16.9 – 51.4) 

Maternal Early Pregnancy Systolic Blood Pressure (mm Hg) 119 ± 3 (n=17) 111 ± 2 (n=28) 112 ± 5 (n=16) 115 ± 3 (n=19) 
   (91 – 150)  (90 – 125)  (90 – 150)  (90 – 160) 

Maternal Early Pregnancy Diastolic Blood Pressure (mm Hg) 69 ± 2 (n=17) 63 ± 2 (n=28) 69 ± 3 (n=16) 68 ± 3 (n=19) 
   (60 – 85)  (50 – 78)  (55 – 90)  (60 – 110) 

Gravidity 2.9 ± 0.4 (n=23)  2.3 ± 0.3 (n=30)  1.9 ± 0.3 (n=18)  2.9 ± 0.4 (n=21)  
   (1 – 8)  (1 – 9)  (1 – 5)  (1 – 9) 

Parity 1.5 ± 0.3 (n=23) 0.8 ± 0.2 (n=30) 0.6 ± 0.2 (n=18) 1.1 ± 0.2 (n=21) 
 (0 – 6) (0 – 4) (0 – 3) (0 – 3) 
  Values given are Mean ± Standard Error of the Mean 

(Range) 
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l Growth in Asthmatic Pregnancies 

Clinical characteristics of the groups classified by glucocorticoid intake are shown in 

Table 4.3 for women pregnant with a female fetus and Table 4.4 for women pregnant 

with a male fetus. Clinical characteristics unrelated to asthma were not significantly 

different between the control, no glucocorticoid and glucocorticoid groups (ANOVA or 

Kruskal-Wallis ANOVA, P>0.05). Maternal weight gain was significantly different 

between women pregnant with a female fetus in the low, moderate and high dose 

glucocorticoid groups (ANOVA, P=0.034), with women in the low dose group gaining 

more weight during pregnancy than those in the moderate and high dose groups (Tukey-

Kramer multiple comparisons post-test, P<0.05). 

The no glucocorticoid and glucocorticoid groups contained different proportions of 

mild, moderate and severe asthmatics (Table 4.3, Table 4.4 and Figure 4.1). In the no 

glucocorticoid group, 82% of women pregnant with a female fetus were mild 

asthmatics, while 67% of those pregnant with a male fetus were mild asthmatics. In the 

glucocorticoid group, 49% of women pregnant with a female fetus were severe 

asthmatics while 40% of women pregnant with a male fetus were severe asthmatics. 

Information about maternal asthma including FEV1 and FVC (at the first visit to the 

AMS), the number of subjects who required periodic oral steroids during pregnancy and 

the inhaled glucocorticoid drug used by the subjects was collected. Results for the 

groups classified by asthma severity are shown in Table 4.5. Some non-asthmatic 

women did not attend the AMS or donated their placenta only and consequently, data on 

FEV1 and FVC was not available for the entire group. Results for the groups classified 

by glucocorticoid intake are shown in Table 4.6. In these tables, data from women 

pregnant with male and female fetuses has been combined. 



 

Table 4.3 Clinical characteristics of women pregnant with a female fetus and classified by glucocorticoid intake 

Female Fetus Classification of Glucocorticoid Intake During Pregnancy 
  Control No Glucocorticoid Low Moderate High Glucocorticoid 

Total Number of Subjects 21 22 6 21 20 47 
              

Asthma Severity   18 Mild 3 Mild 7 Mild 4 Mild 14 Mild 
              
    0 Moderate 1 Moderate 4 Moderate 5 Moderate 10 Moderate 
              
    4 Severe 2 Severe 10 Severe 11 Severe 23 Severe 
              

Maternal Age (years) 28 ± 1 (n=21)  26 ± 1 (n=22)  24 ± 3 (n=6)  27 ± 1 (n=21)  26 ± 1 (n=20)  26 ± 1 (n=47)  
  (22 – 37)   (18 – 36) (16 – 32)   (17 – 36) (17 – 39)   (16 – 39) 

Maternal Height (cm) 164.7 ± 1.3 (n=15)  166.5 ± 1.1 (n=21)  167.2 ± 3.4 (n=6)  164.2 ± 1.3 (n=19)  164.7 ± 1.7 (n=17)  164.8 ± 1.0 (n=42)  
   (156 – 173)  (152 – 173)  (160 – 180)  (155 – 177)  (153.5 – 177)  (153.5 – 180) 

Maternal Early Pregnancy Weight (kg) 66.4 ± 4.0 (n=16)  69.7 ± 3.0 (n=22)  63.9 ± 4.3 (n=5)  71.5 ± 4.5 (n=19)  78.6 ± 4.9 (n=18)  73.6 ± 3.0 (n=42)  
   (47.3 – 97.5)  (44.4 – 108.4)  (52.4 – 78.6)  (47 – 110.7)  (54.4 – 125)  (47 – 125) 

Maternal Pregnancy Weight Gain (kg) 12.3 ± 2.2 (n=10)  12.8 ± 1.1 (n=17)  15.6 ± 2.0 (n=5)*  10.1 ± 1.0 (n=17)  9.9 ± 1.1 (n=16)  10.7 ± 0.7 (n=38)  
   (0.6 – 26.6)  (6.3 – 24.6)  (11 – 22.7)  (1.5 – 15.7)  (1 – 20.9)  (1 – 22.7) 

Maternal Early Pregnancy BMI 24.5 ± 1.5 (n=15)  25.2 ± 1.0 (n=21)  23.6 ± 1.5 (n=5)  26.4 ± 1.5 (n=18)  29.3 ± 1.7 (n=17)  27.3 ± 1.0 (n=41)  
   (19.4 – 35.4)  (19.2 – 36.9)  (20.4 – 29.2)  (19.6 – 41.7)  (20.5 – 44.3)  (19.6 – 44.3) 

Maternal Early Pregnancy Systolic Blood Pressure (mm Hg) 111 ± 3 (n=15) 115 ± 3 (n=22) 106 ± 6 (n=6) 111 ± 3 (n=21) 115 ± 3 (n=20) 112 ± 2 (n=47) 
   (100 - 130)  (90 – 140)  (90 – 130)  (95 – 135)  (90 – 140)  (90 – 140) 

Maternal Early Pregnancy Diastolic Blood Pressure (mm Hg) 65 ± 2 (n=15) 66 ± 3 (n=22) 63 ± 2 (n=6) 64 ± 2 (n=21) 68 ± 3 (n=20) 66 ± 2 (n=47) 
  (50 – 80)   (20 – 82)  (60 – 70)  (50 – 85)  (20 – 90)  (20 – 90) 

Gravidity 2.9 ± 0.6 (n=21)  2.1 ± 0.2 (n=22)  2.2 ± 0.5 (n=6)  2.4 ± 0.2 (n=21)  3.0 ± 0.4 (n=20)  2.6 ± 0.2 (n=47)  
   (1 – 10)  (1 – 5)  (1 – 4)  (1 – 4)  (1 – 8)  (1 – 8) 

Parity 1.3 ± 0.3 (n=21) 0.6 ± 0.2 (n=22) 0.7 ± 0.5 (n=6) 0.9 ± 0.2 (n=21) 1.2 ± 0.3 (n=20) 1.0 ± 0.2 (n=47) 
 (0 – 6) (0 – 3) (0 – 3) (0 – 3) (0 – 5) (0 – 5) 
  Values given are Mean ± Standard Error of the Mean 

(Range) 
* Compared to moderate and high (ANOVA, P<0.05) 
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Table 4.4 Clinical characteristics of women pregnant with a male fetus and classified by glucocorticoid intake 

Male Fetus Classification of Glucocorticoid Intake During Pregnancy 
  Control No Glucocorticoid Low Moderate High Glucocorticoid 

Total Number of Subjects 23 24 16 22 7 45 
              

Asthma Severity   16 Mild 7 Mild 7 Mild 0 Mild 14 Mild 
              
    5 Moderate 3 Moderate 9 Moderate 1 Moderate 13 Moderate 
              
    3 Severe 6 Severe 6 Severe 6 Severe 18 Severe 
              

Maternal Age (years) 30 ± 1 (n=23)  25 ± 1 (n=24)  27 ± 2 (n=16)  28 ± 1 (n=22)  26 ± 2 (n=7)  28 ± 1 (n=45)  
  (19 – 42)  (18 – 33)  (18 – 39)   (19 – 40) (19 – 32)   (18 – 40) 

Maternal Height (cm) 164.9 ± 2.3 (n=17)  163.9 ± 1.3 (n=24)  164.4 ± 1.6 (n=15)  161.2 ± 1.7 (n=19)  163.4 ± 1.7 (n=7)  162.8 ± 1.0 (n=41)  
   (131 – 174)  (154 – 180)  (156.5 – 176)  (146 – 173)  (157 – 168)  (146 – 176) 

Maternal Early Pregnancy Weight (kg) 76.2 ± 4.6 (n=17)  77.1 ± 5.6 (n=22)  70.7 ± 4.6 (n=16)  75.4 ± 4.9 (n=21)  83.5 ± 6.6 (n=7)  75.0 ± 3.2 (n=44)  
   (55.8 – 117.5)  (46.8 – 134)  (52 – 120.5)  (52.1 – 130)  (66.1 – 112.5)  (52 – 130) 

Maternal Pregnancy Weight Gain (kg) 10.0 ± 1.5 (n=12)  13.3 ± 1.1 (n=17)  12.7 ± 2.0 (n=12)  10.1 ± 1.2 (n=18)  6.1 ± 2.9 (n=7)  10.2 ± 1.1 (n=37)  
   (1.6 – 17.2)  (5.5 – 21.8)  (4.6 – 29.7)  (1.1 – 17.6)  (-3.2 – 21.5)  (-3.2 – 29.7) 

Maternal Early Pregnancy BMI 28.1 ± 1.7 (n=17)  28.5 ± 2.0 (n=22)  26.1 ± 1.8 (n=15)  28.6 ± 1.7 (n=18)  31.1 ± 2.2 (n=7)  28.1 ± 1.1 (n=40)  
   (19.5 – 42.8)  (17.3 – 51.4)  (16.9 – 43.7)  (18.7 – 43.7)  (23.4 – 40.3)  (16.9 – 43.7) 

Maternal Early Pregnancy Systolic Blood Pressure (mm Hg) 119 ± 3 (n=17) 110 ± 3 (n=22) 115 ± 3 (n=15) 111 ± 4 (n=19) 120 ± 4 (n=7) 114 ± 2 (n=41) 
   (91 – 150)  (90 – 150)  (100 – 150)  (90 – 160)  (110 – 130)  (90 – 160) 

Maternal Early Pregnancy Diastolic Blood Pressure (mm Hg) 69 ± 2 (n=17) 64 ± 2 (n=22) 65 ± 2 (n=15) 68 ± 3 (n=19) 73 ± 3 (n=7) 68 ± 2 (n=41) 
   (60 – 85)  (50 – 80)  (50 – 80)  (50 – 110)  (60 – 85)  (50 – 110) 

Gravidity 2.9 ± 0.4 (n=23)  2.8 ± 0.4 (n=24)  2.3 ± 0.5 (n=16)  1.9 ± 0.2 (n=22)  2.7 ± 0.4 (n=7)  2.1 ± 0.2 (n=45)  
   (1 – 8)  (1 – 9)  (1 – 9)  (1 – 5)  (1 – 4)  (1 – 9) 

Parity 1.5 ± 0.3 (n=23) 1.0 ± 0.2 (n=24) 0.7 ± 0.3 (n=16) 0.6 ± 0.2 (n=22) 1.6 ± 0.3 (n=7) 0.8 ± 0.1 (n=45) 
 (0 – 6) (0 – 4) (0 – 3) (0 – 2) (0 – 2) (0 – 3) 
  Values given are Mean ± Standard Error of the Mean  

(Range) 
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These pie charts show the proportion of women with mild, moderate and severe asthma in the no 
glucocorticoid and glucocorticoid groups (women pregnant with male and female fetuses combined). 
Most women in the combined no glucocorticoid group had mild asthma, while most women in the 
combined glucocorticoid group had moderate or severe asthma. 

Figure 4.1 Distribution of mild, moderate and severe asthmatics within the no 

glucocorticoid and glucocorticoid groups 

l Growth in Asthmatic Pregnancies 
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Table 4.5 Maternal asthma characteristics for women classified by asthma severity 

  Classification of Asthma Severity During Pregnancy 
  Control Mild Moderate Severe 

Maternal FEV1 (l) 3.25 ± 0.10 (n=24)  3.19 ± 0.07 (n=55)  3.01 ± 0.07 (n=28) 2.98 ± 0.08 (n=47) 
          

Maternal FVC (l) 3.82 ± 0.09 (n=24)  3.85 ± 0.07 (n=55)  3.82 ± 0.07 (n=28)  3.75 ± 0.08 (n=43)  
          

Maternal FEV1:FVC Ratio 0.85 ± 0.02 (n=24)  0.83 ± 0.01 (n=55)  0.79 ± 0.02 (n=28)* 0.80 ± 0.01 (n=43)  
          

Periodic Oral Steroid Use  0% 0% 12% 29% 
(% of subjects)         

          
Inhaled Glucocorticoid Drug Used         

Beclomethasone   19.7% 32.1% 22.2% 
          

Budesonide   13.1% 21.4% 26.7% 
          

Fluticasone   11.5% 28.6% 35.6% 
  Values given are Mean ± Standard Error of the Mean 

* Compared to control (ANOVA, P<0.05) 
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Table 4.6 Maternal asthma characteristics for women classified by glucocorticoid intake 

  Classification of Glucocorticoid Intake During Pregnancy 
  Control No Glucocorticoid Low Moderate High Glucocorticoid 

Maternal FEV1 (l) 3.25 ± 0.10 (n=24)  3.18 ± 0.07 (n=42)  3.06 ± 0.10 (n=21)  3.05 ± 0.08 (n=41)  2.94 ± 0.11 (n=26) 3.02 ± 0.05 (n=88)  
            

Maternal FVC (l) 3.82 ± 0.09 (n=24)  3.81 ± 0.07 (n=41)  3.80 ± 0.11 (n=20)  3.81 ± 0.09 (n=38)  3.80 ± 0.14 (n=22) 3.81 ± 0.06 (n=80)  
            

Maternal FEV1:FVC Ratio 0.85 ± 0.02 (n=24)  0.84 ± 0.01 (n=41)  0.81 ± 0.02 (n=20)  0.79 ± 0.10 (n=38) * 0.80 ± 0.02 (n=22) 0.80 ± 0.01 (n=80) 
            

Periodic Oral Steroid Use  0% 0% 5% 9% 38% 16% 
(% of subjects)           

            
Inhaled Glucocorticoid Drug Used           

Beclomethasone    80.0% 33.3% 3.9% 35.2% 
            

Budesonide    20.0% 26.2% 42.3% 29.6% 
            

Fluticasone    0.0% 40.5% 53.8% 35.2% 
  Values given are Mean ± Standard Error of the Mean 

* Compared to control (ANOVA, P<0.05) 
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Maternal FEV1 was not significantly different between the control, mild, moderate or 

severe asthma groups (Table 4.5, Kruskal-Wallis ANOVA, P=0.254) or the control, no 

glucocorticoid and glucocorticoid groups (Table 4.6, ANOVA, P=0.070). There were 

no significant differences in FVC between any groups (ANOVA, P>0.05). 

The maternal FEV1:FVC ratio was also used as an assessment of lung function. 

Maternal FEV1:FVC was significantly different between the control group and the 

groups classified according to asthma severity (ANOVA, P=0.021, Tukey-Kramer 

multiple comparisons post-test P<0.05, control vs moderate asthma). The FEV1:FVC 

ratio was significantly different between the control group and the groups classified 

according to inhaled glucocorticoid intake (ANOVA, P=0.018, Tukey-Kramer multiple 

comparisons post-test, P<0.05 control vs moderate dose glucocorticoid).  

Of the women with mild asthma, 56% did not use any inhaled glucocorticoids for 

treatment, while 18% of women with moderate asthma did not use glucocorticoids 

(Table 4.5). 16% of women with severe asthma did not use inhaled glucocorticoids for 

treatment, contrary to medical advice (Sr Philippa Talbot, Research Nurse, Mothers and 

Babies Research Centre, Newcastle, personal communication). 

Of the asthmatic women who used a low dose of inhaled glucocorticoid during 

pregnancy, 80% used beclomethasone dipropionate for treatment and 5% were 

prescribed periodic oral steroids at some time during pregnancy (Table 4.6). No women 

on a low dose of inhaled glucocorticoids used fluticasone propionate. Of the asthmatic 

women who used a moderate dose of inhaled glucocorticoids, 9% required oral steroids 

at some time during their pregnancy, while 38% of asthmatic women who used a high 

dose of inhaled glucocorticoids during pregnancy required oral steroids during 

pregnancy. Less than 4% of these women used beclomethasone dipropionate, while 

54% used fluticasone propionate. Overall, 16% of asthmatic women in the 

glucocorticoid group required oral steroids during pregnancy and there was 

approximately an even distribution of women using each of the three inhaled 

glucocorticoid medications (Table 4.6). 
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4.2 Fetal growth during gestation 

Fetal growth was examined by ultrasound at approximately 18 and 30 weeks gestation 

by Prof Warwick Giles. Measurements were made of head circumference, biparietal 

dimeter, femur length and abdominal circumference. The head circumference to 

abdominal circumference ratio (HC:AC) was also calculated, as an increase in HC:AC 

may give an indication of asymmetric growth restriction (640, 706, 707). A summary of 

the results for groups classified according to asthma severity is given in Table 4.7 and 

Table 4.8 and for groups classified according to glucocorticoid intake in Table 4.9 and 

Table 4.10. 

Fetal growth in the asthmatic groups (mild, moderate and severe) was compared to 

growth in the control group, with male and female fetal growth analysed separately. 

From 18 to 30 weeks, the mean HC:AC ratio decreased in all groups, as found 

previously (706). There were no significant differences in the HC:AC ratio between the 

asthma groups and the control group (Kruskal-Wallis ANOVA, P>0.05) or in any other 

growth parameters at 18 or 30 weeks (ANOVA or Kruskal-Wallis ANOVA, P>0.05).  

When data was analysed based upon inhaled glucocorticoid intake, no significant 

differences were found in any fetal growth parameters measured at 18 and 30 weeks 

gestation (ANOVA or Kruskal-Wallis ANOVA, P>0.05). There were no significant 

differences in the HC:AC ratio between any groups at 18 weeks (Kruskal-Wallis 

ANOVA, P>0.05). However, at 30 weeks, there was a significant reduction in HC:AC 

in the glucocorticoid female group compared to the control female group (Kruskal-

Wallis ANOVA, P=0.039, Dunn’s multiple comparisons test, P<0.05). 



 

Table 4.7 Fetal growth measurements at 18 and 30 weeks gestation for women pregnant with a female fetus and classified by asthma 

severity 

Female Fetus Classification of Asthma Severity During Pregnancy 
  Control Mild Moderate Severe 

Gestational Age at 18 Week Ultrasound (weeks) 18.7 ± 0.3 (n=16)  18.9 ± 0.2 (n=25)  18.6 ± 0.5 (n=10)  18.9 ± 0.4 (n=17)  
         

18 Week Biparietal Diameter (mm) 43.6 ± 1.2 (n=13)  43.9 ± 0.8 (n=23)  43.8 ± 1.3 (n=10)  45.6 ± 1.5 (n=16)  
         

18 Week Femur Length (mm) 28.8 ± 1.0 (n=13)  29.4 ± 0.8 (n=23)  29.9 ± 1.2 (n=10)  30.4 ± 1.3 (n=16)  
         

18 Week Head Circumference (mm) 155.9 ± 4.3 (n=13)  158.7 ± 2.8 (n=23)  158.8 ± 5.1 (n=10)  162.8 ± 5.1 (n=16)  
         

18 Week Abdominal Circumference (mm) 135.1 ± 3.9 (n=16)  140.2 ± 3.0 (n=25)  136.5 ± 5.7 (n=10)  141.5 ± 4.6 (n=17)  
         

18 Week HC:AC Ratio 1.16 ± 0.02 (n=13) 1.14 ± 0.01 (n=23) 1.17 ± 0.01 (n=10) 1.15 ± 0.01 (n=16) 
         

Gestational Age at 30 Week Ultrasound (weeks) 29.9 ± 0.3 (n=14)  30.0 ± 0.3 (n=24)  30.4 ± 0.5 (n=10)  30.1 ± 0.2 (n=21)  
         

30 Week Biparietal Diameter (mm) 78.4 ± 0.7 (n=12)  77.6 ± 0.9 (n=21)  79.4 ± 0.9 (n=10)  76.6 ± 0.8 (n=17)  
         

30 Week Femur Length (mm) 58.9 ± 0.6 (n=12)  58.0 ± 0.9 (n=21)  58.5 ± 1.1 (n=10)  57.2 ± 0.6 (n=17)  
         

30 Week Head Circumference (mm) 279.5 ± 3.8 (n=12)  278.9 ± 3.0 (n=21)  278.4 ± 3.6 (n=10)  272.9 ± 2.5 (n=17)  
         

30 Week Abdominal Circumference (mm) 253.6 ± 4.6 (n=14)  262.6 ± 3.7 (n=24)  259.9 ± 4.3 (n=10)  260.0 ± 3.6 (n=21)  
         

30 Week HC:AC Ratio 1.09 ± 0.01 (n=12) 1.07 ± 0.01 (n=21) 1.07 ± 0.01 (n=10) 1.06 ± 0.01 (n=17) 
  Values given are Mean ± Standard Error of the Mean 
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Table 4.8 Fetal growth measurements at 18 and 30 weeks gestation for women pregnant with a male fetus and classified by asthma severity 

Male Fetus Classification of Asthma Severity During Pregnancy 
  Control Mild Moderate Severe 

Gestational Age at 18 Week Ultrasound (weeks) 18.9 ± 0.3 (n=15)  19.1 ± 0.3 (n=19)  18.4 ± 0.3 (n=14)  19.4 ± 0.3 (n=14)  
         

18 Week Biparietal Diameter (mm) 44.2 ± 0.9 (n=12)  46.0 ± 1.0 (n=18)  43.4 ± 1.2 (n=13)  46.4 ± 1.1 (n=14)  
         

18 Week Femur Length (mm) 29.3 ± 0.8 (n=12)  30.7 ± 1.0 (n=18)  28.5 ± 0.8 (n=13)  31.2 ± 1.0 (n=14)  
         

18 Week Head Circumference (mm) 154.8 ± 2.2 (n=12)  162.3 ± 3.4 (n=18)  161.5 ± 4.9 (n=13)  166.9 ± 4.2 (n=14)  
         

18 Week Abdominal Circumference (mm) 140.7 ± 4.1 (n=15)  143.6 ± 3.7 (n=19)  129.7 ± 3.8 (n=14)* 148.8 ± 3.5 (n=14)  
         

18 Week HC:AC Ratio 1.13 ± 0.01 (n=12) 1.14 ± 0.01 (n=18) 1.25 ± 0.05 (n=13)** 1.12 ± 0.01 (n=14) 
         

Gestational Age at 30 Week Ultrasound (weeks) 30.0 ± 0.3 (n=13)  30.4 ± 0.2 (n=21)  30.4 ± 0.2 (n=16)  30.1 ± 0.3 (n=19)  
         

30 Week Biparietal Diameter (mm) 79.2 ± 0.8 (n=12)  78.7 ± 0.8 (n=18)  81.2 ± 1.1 (n=13)  77.6 ± 1.2 (n=15)  
         

30 Week Femur Length (mm) 60.1 ± 1.9 (n=12)  58.1 ± 0.7 (n=18)  57.2 ± 2.4 (n=13)  56.2 ± 1.0 (n=15)  
         

30 Week Head Circumference (mm) 280.8 ± 2.3 (n=12)  281.8 ± 3.1 (n=18)  289.3 ± 3.4 (n=13)  273.5 ± 3.2 (n=15)  
         

30 Week Abdominal Circumference (mm) 261.7 ± 2.8 (n=13)  260.6 ± 3.5 (n=21)  267.4 ± 4.1 (n=16)  266.2 ± 5.2 (n=19)  
         

30 Week HC:AC Ratio 1.07 ± 0.01 (n=12) 1.08 ± 0.01 (n=18) 1.08 ± 0.01 (n=13) 1.05 ± 0.02 (n=15) 
  Values given are Mean ± Standard Error of the Mean 

* Compared to severe (ANOVA, P<0.05), ** Compared to severe (Kruskal-Wallis ANOVA, P<0.05) 
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Table 4.9 Fetal growth measurements at 18 and 30 weeks gestation for women pregnant with a female fetus and classified by glucocorticoid 

intake 

Female Fetus Classification of Glucocorticoid Intake During Pregnancy 
  Control No Glucocorticoid Low Moderate High Glucocorticoid 

Gestational Age at 18 Week Ultrasound (weeks) 18.7 ± 0.3 (n=16)  18.7 ± 0.3 (n=20)  18.8 ± 0.5 (n=4)  19.0 ± 0.4 (n=14)  19.0 ± 0.4 (n=14)  19.0 ± 0.2 (n=32)  
            

18 Week Biparietal Diameter (mm) 43.6 ± 1.2 (n=13)  43.6 ± 1.1 (n=18)  42.3 ± 1.9 (n=4)  45.3 ± 1.2 (n=14)  45.4 ± 1.4 (n=13)  44.9 ± 0.8 (n=31)  
            

18 Week Femur Length (mm) 28.8 ± 1.0 (n=13)  28.9 ± 1.1 (n=18)  28.0 ± 0.9 (n=4)  30.6 ± 1.0 (n=14)  30.7 ± 1.2 (n=13)  30.3 ± 0.7 (n=31)  
            

18 Week Head Circumference (mm) 155.9 ± 4.3 (n=13)  156.2 ± 3.7 (n=18)  160.8 ± 7.2 (n=4)  163.6 ± 4.9 (n=14)  161.4 ± 4.5 (n=13)  162.3 ± 3.0 (n=31)  
            

18 Week Abdominal Circumference (mm) 135.1 ± 3.9 (n=16)  138.2 ± 3.8 (n=20)  133.8 ± 7.9 (n=4)  144.0 ± 5.0 (n=14)  140.1 ± 3.9 (n=14)  141.0 ± 2.9 (n=32)  
            

18 Week HC:AC Ratio 1.16 ± 0.02 (n=13) 1.14 ± 0.01 (n=18) 1.20 ± 0.02 (n=4) 1.14 ± 0.01 (n=14) 1.16 ± 0.01 (n=13) 1.15 ± 0.01 (n=31) 
            

Gestational Age at 30 Week Ultrasound (weeks) 29.9 ± 0.3 (n=14)  29.9 ± 0.3 (n=17)  31.0 ± 1.0 (n=4)  30.3 ± 0.2 (n=16)  30.1 ± 0.3 (n=18)  30.2 ± 0.2 (n=38)  
            

30 Week Biparietal Diameter (mm) 78.4 ± 0.7 (n=12)  76.8 ± 1.1 (n=17)  80.5 ± 2.8 (n=4)  78.2 ± 0.6 (n=13)  77.2 ± 0.9 (n=14)  78.0 ± 0.6 (n=31)  
            

30 Week Femur Length (mm) 58.9 ± 0.6 (n=12)  57.9 ± 0.9 (n=17)  59.8 ± 1.6 (n=4)  58.5 ± 0.9 (n=13)  56.5 ± 0.9 (n=14)  57.8 ± 0.6 (n=31)  
            

30 Week Head Circumference (mm) 279.5 ± 3.8 (n=12)  274.6 ± 3.3 (n=17)  287.5 ± 6.7 (n=4)  277.4 ± 2.9 (n=13)  275.4 ± 3.0 (n=14)  277.8 ± 2.1 (n=31)  
            

30 Week Abdominal Circumference (mm) 253.6 ± 4.6 (n=14)  256.9 ± 3.6 (n=17)  262.8 ± 6.9 (n=4)  265.6 ± 4.0 (n=16)  260.7 ± 4.5 (n=18)  263.0 ± 2.8 (n=38)  
            

30 Week HC:AC Ratio 1.09 ± 0.01 (n=12) 1.07 ± 0.01 (n=17) 1.10 ± 0.03 (n=4) 1.06 ± 0.03 (n=13) 1.06 ± 0.01 (n=14) 1.06 ± 0.01 (n=31)* 
  Values given are Mean ± Standard Error of the Mean 

*Compared to control (Kruskal-Wallis ANOVA, P<0.05) 
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Table 4.10 Fetal growth measurements at 18 and 30 weeks gestation for women pregnant with a male fetus and classified by glucocorticoid 

intake 

Male Fetus Classification of Glucocorticoid Intake During Pregnancy 
  Control No Glucocorticoid Low Moderate High Glucocorticoid 

Gestational Age at 18 Week Ultrasound (weeks) 18.9 ± 0.3 (n=15)  18.9 ± 0.3 (n=16)  18.9 ± 0.3 (n=12)  18.9 ± 0.3 (n=15)  19.3 ± 0.6 (n=4)  18.9 ± 0.2 (n=31)  
              

18 Week Biparietal Diameter (mm) 44.2 ± 0.9 (n=12)  44.7 ± 1.3 (n=15)  46.4 ± 1.1 (n=12)  45.0 ± 1.2 (n=14)  46.0 ± 1.7 (n=4)  45.7 ± 0.7 (n=30)  
              

18 Week Femur Length (mm) 29.3 ± 0.8 (n=12)  30.4 ± 1.1 (n=15)  30.8 ± 1.2 (n=12)  29.4 ± 0.9 (n=14)  30.8 ± 2.1 (n=4)  30.1 ± 0.7 (n=30)  
              

18 Week Head Circumference (mm) 154.8 ± 2.2 (n=12)  166.1 ± 5.2 (n=15)  163.2 ± 3.6 (n=12)  161.0 ± 3.8 (n=14)  163.5 ± 6.4 (n=4)  162.2 ± 2.4 (n=30)  
              

18 Week Abdominal Circumference (mm) 140.7 ± 4.1 (n=15)  141.6 ± 4.5 (n=16)  141.5 ± 4.5 (n=12)  138.5 ± 4.4 (n=15)  146.3 ± 5.3 (n=4)  140.7 ± 2.8 (n=31)  
              

18 Week HC:AC Ratio 1.13 ± 0.01 (n=12) 1.20 ± 0.04 (n=15) 1.16 ± 0.04 (n=12) 1.15 ± 0.02 (n=14) 1.12 ± 0.01 (n=4) 1.15 ± 0.01 (n=30) 
              

Gestational Age at 30 Week Ultrasound (weeks) 30.0 ± 0.3 (n=13)  30.2 ± 0.2 (n=18)  30.9 ± 0.3 (n=15)  30.2 ± 0.2 (n=18) 29.8 ± 0.5 (n=5) 30.4 ± 0.2 (n=38) 
              

30 Week Biparietal Diameter (mm) 79.2 ± 0.8 (n=12)  77.8 ± 1.1 (n=15)  79.8 ± 1.1 (n=13)  79.3 ± 1.1 (n=14)  80.3 ± 2.1 (n=4)  79.6 ± 0.7 (n=31)  
              

30 Week Femur Length (mm) 60.1 ± 1.9 (n=12)  55.2 ± 2.0 (n=15)  59.3 ± 0.9 (n=13)  57.5 ± 0.9 (n=14)  57.0 ± 1.5 (n=4)  58.2 ± 0.6 (n=31)  
              

30 Week Head Circumference (mm) 280.8 ± 2.3 (n=12)  279.6 ± 3.8 (n=15)  281.9 ± 2.6 (n=13)  282.5 ± 4.7 (n=14)  280.8 ± 6.2 (n=4)  282.0 ± 2.4 (n=31)  
              

30 Week Abdominal Circumference (mm) 261.7 ± 2.8 (n=13)  261.7 ± 3.9 (n=18)  268.4 ± 5.1 (n=15)  261.2 ± 4.5 (n=18)  274.2 ± 7.7 (n=5)  265.8 ± 3.1 (n=38)  
              

30 Week HC:AC Ratio 1.07 ± 0.01 (n=12) 1.08 ± 0.01 (n=15) 1.05 ± 0.02 (n=13) 1.09 ± 0.02 (n=14) 1.06 ± 0.01 (n=4) 1.07 ± 0.01 (n=31) 
  Values given are Mean ± Standard Error of the Mean 
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4.3 Neonatal size at birth  

At birth, data on head circumference, length and weight were collected. Four subjects 

were excluded from this analysis. One asthmatic woman (severe asthma, moderate 

glucocorticoid use) was pregnant with twins and data on fetal and neonatal growth was 

omitted. One woman in the control group was induced due to a fetal abnormality at 20 

weeks, one asthmatic woman (moderate asthma, moderate glucocorticoid use) had a 

still-birth at 40 weeks and one asthmatic woman (severe asthma, low glucocorticoid 

use) had a still-birth at 35 weeks. These pregnancies that resulted in a fetal death were 

not included in the analysis of neonatal size at birth. 

A summary of neonatal growth parameters and centiles is given in Table 4.11 and Table 

4.12 for groups classified according to asthma severity and in Table 4.13 and Table 4.14 

for groups classified according to glucocorticoid intake. 

There were no significant differences in gestational age at birth between any groups 

(Kruskal-Wallis ANOVA, P>0.05). However, in order to correct for this potential 

confounder, centiles for birth weight, head circumference and length were determined 

based on gestational age at delivery using the John Hunter Hospital intrauterine growth 

charts (Appendix 7). Overall, there were six preterm deliveries (<37 completed weeks 

gestation) among the 181 singleton pregnancies. Preterm neonates included one male 

neonate from the control group (33 weeks), one female neonate from the mild asthma 

group (28 weeks), one female neonate from the moderate asthma group (32 weeks) and 

three male neonates from the severe asthma group (delivered at 33, 34 and 36 weeks). 

Of these three male neonates, one asthmatic mother did not used inhaled glucocorticoids 

for treatment (36 week delivery), while one used a moderate dose of inhaled 

glucocorticoids (33 week delivery) and one used a high dose of inhaled glucocorticoids 

(34 week delivery). Post-term deliveries were defined as those at 41.5 weeks gestation 

or greater (708). More male neonates were born post-term (six in total) than female 

neonates (two in total). The sample numbers were not sufficient for statistical analysis 

of differences in preterm or post-term deliveries between asthmatic and non-asthmatic 

pregnancies. 

There were no significant differences in weight, length, head circumference or ponderal 

index at birth between male or female fetuses from the control group and any of the 
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groups classified by asthma severity (ANOVA or Kruskal-Wallis ANOVA, P>0.05). 

There were no significant differences in weight, length, head circumference or ponderal 

index at birth between male or female fetuses from the control group and any of the 

groups classified by asthma severity (ANOVA or Kruskal-Wallis ANOVA, P>0.05). 

However, when groups were classified based upon glucocorticoid intake, significant 

differences in neonatal size were found. Statistical differences between the control, no 

glucocorticoid and glucocorticoid groups are discussed. 

The birth weight of female neonates in the no glucocorticoid group was significantly 

reduced compared to females in the control group (Table 4.13 and Figure 4.2, ANOVA, 

P=0.019, Tukey-Kramer multiple comparisons test, P<0.05, control vs no 

glucocorticoid), while the birth weight of female neonates of the glucocorticoid group 

was similar to that of control female neonates (Figure 4.2). No differences in birth 

weight of male neonates was found between the groups (Table 4.14, ANOVA, P>0.05). 

The birth weight centile (BWC) of female neonates was significantly reduced in the no 

glucocorticoid group compared to females in the control group (ANOVA, P=0.022, 

Tukey-Kramer multiple comparisons test, P<0.05, control vs no glucocorticoid). Within 

the no glucocorticoid group there was a high proportion of small for gestational age 

(<10th centile) female neonates (18.2%) compared to the control group (0%) and the 

glucocorticoid group (10.6%, Fisher’s exact test, P>0.05). 

Most women in the no glucocorticoid group who had a female fetus were mild 

asthmatics (82%). Mild asthmatics who did not use inhaled glucocorticoids had 

significantly smaller female neonates compared to mild asthmatics who did use inhaled 

glucocorticoids and control subjects, while mild asthmatics who did use inhaled 

glucocorticoids had similar sized female neonates to the control group (Figure 4.3, 

ANOVA, P=0.004, Tukey Kramer multiple comparisons test, control vs mild no 

glucocorticoid P<0.01, control vs mild glucocorticoid P>0.05, mild no glucocorticoid 

vs mild glucocorticoid P<0.05). 

 



 

Table 4.11 Neonatal growth parameters for women pregnant with a female fetus and classified by asthma severity 

Female Fetus Classification of Asthma Severity During Pregnancy 
  Control Mild Moderate Severe 

Gestational Age at Birth (weeks) 39.9 ± 0.2 (n=20)  38.8 ± 0.4 (n=32)  38.9 ± 0.9 (n=10)  39.6 ± 0.2 (n=27)  
  (38 – 41)  (28 – 41)   (28 – 38.4)  (38 – 41.7) 

Birth Weight (g) 3600.3 ± 101.2 (n=20)  3244.7 ± 96.3 (n=32)  3121.0 ± 269.5 (n=10)  3395.9 ± 112.7 (n=27)  
   (2890 – 4700)  (1040 – 4300)  (1900 – 4780)  (2170 – 5160) 

Birth Weight Centile 57 ± 6 (n=20)  45 ± 4 (n=32)  39 ± 11 (n=10)  46 ± 5 (n=27)  
   (10 – 99)  (4 – 99)  (3 – 99)  (3 – 99) 

Birth Length (cm) 51.9 ± 0.4 (n=18)  50.3 ± 0.4 (n=31)  50.6 ± 1.5 (n=10)  50.8 ± 0.5 (n=24)  
   (49 – 55.5)  (47 – 55)  (42 – 59)  (47 – 56) 

Length Centile 78 ± 3 (n=18)  61 ± 5 (n=31)  61 ± 12 (n=10)  66 ± 5 (n=24)  
   (55 – 99)  (10 – 99)  (1 – 99)  (30 – 99) 

Head Circumference at Birth (cm) 34.6 ± 0.3 (n=20)  34.1 ± 0.3 (n=31)  33.4 ± 0.5 (n=10)  34.4 ± 0.3 (n=26)  
   (33 – 37)  (31 – 37)  (31 – 37)  (32 – 37) 

Head Circumference Centile 46 ± 6 (n=20)  41 ± 5 (n=31)  35 ± 10 (n=10)  44 ± 5 (n=26)  
   (10 – 98)  (1 – 97)  (3 – 90)  (3 – 92) 

Ponderal Index 2.56 ± 0.06 (n=18) 2.62 ± 0.05 (n=31) 2.60 ± 0.13 (n=10) 2.59 ± 0.06 (n=24) 
   (2.06 – 3.06)  (2.03 – 3.24)  (2.30 – 3.32)  (1.90 – 3.08) 

Ponderal Index <2.2 (No. of subjects) 2 2 0 3 
          

Delivery <37 weeks (No. of subjects) 0 1 1 0 
          

Delivery ≥ 41.5 weeks (No. of subjects) 0 0 1 1 
  Values given are Mean ± Standard Error of the Mean 

(Range) 
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Table 4.12 Neonatal growth parameters for women pregnant with a male fetus and classified by asthma severity 

Male Fetus Classification of Asthma Severity During Pregnancy 
  Control Mild Moderate Severe 

Gestational Age at Birth (weeks) 39.6 ± 0.4 (n=22)  39.9 ± 0.2 (n=30)  39.5 ± 0.3 (n=17)  38.8 ± 0.5 (n=19)  
  (33 – 42)  (37 – 42.3)  (28 – 39)  (33 – 42.4)  

Birth Weight (g) 3643.6 ± 136.0 (n=22)  3707.5 ± 87.5 (n=30)  3406.5 ± 122.4 (n=17)  3473.3 ± 125.6 (n=18)  
   (2000 – 4900)  (2840 – 4980)  (2700 – 4500)  (2160 – 4120) 

Birth Weight Centile 62 ± 6 (n=22)  66 ± 4 (n=30)  50 ± 7 (n=17)  59 ± 6 (n=18)  
   (15 – 99)  (15 – 99)  (5 – 97)  (2 – 92) 

Birth Length (cm) 52.3 ± 0.6 (n=21)  52.5 ± 0.4 (n=29)  51.4 ± 0.8 (n=15)  51.6 ± 0.6 (n=17)  
  (48 – 58)  (47 – 56)  (46 – 56)  (48 – 55) 

Length Centile 79 ± 4 (n=21)  82 ± 4 (n=29)  72 ± 7 (n=15)  79 ± 6 (n=17)  
   (45 – 99)  (40 – 99)  (15 – 99)  (25 – 99) 

Head Circumference at Birth (cm) 34.8 ± 0.3 (n=22)  35.0 ± 0.3 (n=29)  34.7 ± 0.3 (n=17)  34.8 ± 0.4 (n=18)  
   (32 – 37)  (32 – 38)  (33 – 37)  (31 – 37) 

Head Circumference Centile 55 ± 6 (n=22)  57 ± 5 (n=29)  53 ± 6 (n=17)  59 ± 7 (n=18)  
   (10 – 90)  (2 – 97)  (30 – 90)  (2 – 97) 

Ponderal Index 2.60 ± 0.05 (n=21)  2.53 ± 0.04 (n=29)  2.47 ± 0.06 (n=15)  2.58 ± 0.07 (n=17)  
   (2.33 – 2.97)  (2.09 – 2.94)  (2.09 – 2.96)  (2.12 – 3.21) 

Ponderal Index <2.2 (No. of subjects) 0 3 3 2 
          

Delivery <37 weeks (No. of subjects) 1 0 0 3 
          

Delivery ≥ 41.5 weeks (No. of subjects) 2 3 0 1 
  Values given are Mean ± Standard Error of the Mean 

(Range) 
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Table 4.13 Neonatal growth parameters for women pregnant with a female fetus and classified by glucocorticoid intake 

Female Fetus Classification of Glucocorticoid Intake During Pregnancy 
  Control No Glucocorticoid Low Moderate High Glucocorticoid 

Gestational Age at Birth (weeks) 39.9 ± 0.2 (n=20)  39.0 ± 0.6 (n=22)  39.4 ± 0.4 (n=6)  39.2 ± 0.3 (n=21)  39.1 ± 0.5 (n=20)  39.2 ± 0.2 (n=47)  
  (38 – 41)  (28 – 41.7)  (32 – 39)  (37 – 42)  (32 – 41.4)  (32 – 42)  

Birth Weight (g) 3600.3 ± 101.2 (n=20)  3094.5 ± 120.0 (n=22)* 3653.3 ± 339.2 (n=6)  3384.3 ± 121.7 (n=21)  3283.0 ± 137.1 (n=20)  3375.5 ± 89.9 (n=47)  
   (2890 – 4700)  (1040 – 3750)  (2360 – 5160)  (2170 – 4380)  (1900 – 4780)  (1900 – 5160) 

Birth Weight Centile 57 ± 6 (n=20)  35 ± 5 (n=22)* 55 ± 12 (n=6)  51 ± 6 (n=21)  45 ± 6 (n=20)  49 ± 4 (n=47)  
   (10 – 99)  (4 – 80)  (9 – 99)  (3 – 99)  (3 – 99)  (3 – 99) 

Birth Length (cm) 51.9 ± 0.4 (n=18)  50.4 ± 0.6 (n=21)  49.3 ± 0.5 (n=5)  51.3 ± 0.5 (n=19)  50.0 ± 0.8 (n=18)  50.5 ± 0.4 (n=42)  
   (49 – 55.5)  (47 – 56)  (48 – 51)  (48 – 56)  (42 – 59)  (42 – 59) 

Length Centile 78 ± 3 (n=18)  61 ± 6 (n=21)  51 ± 7 (n=5)  72 ± 6 (n=19) 59 ± 6 (n=18) 64 ± 4 (n=42) 
   (55 – 99)  (10 – 99)  (35 – 70)  (15 – 99)  (1 – 99)  (1 – 99) 

Head Circumference at Birth (cm) 34.6 ± 0.3 (n=20)  33.9 ± 0.3 (n=21)  35.0 ± 0.4 (n=5)  34.3 ± 0.3 (n=21)  34.1 ± 0.3 (n=20)  34.3 ± 0.2 (n=46)  
   (33 – 37)  (31 – 36)  (34 – 36)  (31.5 – 37)  (31 – 37)  (31 – 37) 

Head Circumference Centile 46 ± 6 (n=20)  34 ± 5 (n=21) 59 ± 10 (n=5) 43 ± 7 (n=21) 43 ± 7 (n=20) 45 ± 4 (n=46) 
   (10 – 98)  (1 – 85)  (35 – 90)  (3 – 97)  (3 – 92)  (3 – 97) 

Ponderal Index 2.56 ± 0.06 (n=18) 2.51 ± 0.08 (n=21) 2.79 ± 0.10 (n=5) 2.59 ± 0.06 (n=19) 2.68 ± 0.06 (n=18) 2.65 ± 0.04 (n=42) 
   (2.06 – 3.06)  (1.90 – 3.16)  (2.31 – 3.08)  (2.22 – 3.24)  (2.30 – 3.32)  (2.22 – 3.32) 

Delivery <37 weeks (No. of subjects) 0 1 0 0 1 1 
              

 Delivery ≥ 41.5 weeks (No. of subjects) 0 1 0 1 0 1 
  Values given are Mean ± Standard Error of the Mean 

(Range) 
* Compared to control (ANOVA, P<0.05) 
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Table 4.14 Neonatal growth parameters for women pregnant with a male fetus and classified by glucocorticoid intake 

Male Fetus Classification of Glucocorticoid Intake During Pregnancy 
  Control No Glucocorticoid Low Moderate High Glucocorticoid 

Gestational Age at Birth (weeks) 39.6 ± 0.4 (n=22)  39.8 ± 0.3 (n=24)  39.6 ± 0.3 (n=15)  39.3 ± 0.5 (n=20)  38.8 ± 0.9 (n=7)  39.3 ± 0.3 (n=42)  
  (33 – 42)  (36 – 42.3)  (37 – 41.4)  (33 – 42.4)  (32 – 39)   (32 – 42.4) 

Birth Weight (g) 3643.6 ± 136.0 (n=22)  3701.5 ± 88.9 (n=24)  3544.0 ± 135.7 (n=15)  3474.7 ± 123.4 (n=19)  3377.1 ± 242.1 (n=7)  3483.4 ± 84.4 (n=41)  
   (2000 – 4900)  (3140 – 4980)  (2500 – 4500)  (2700 – 4540)  (2160 – 3960)  (2160 – 4540) 

Birth Weight Centile 62 ± 6 (n=22)  63 ± 5 (n=24)  64 ± 7 (n=15)  52 ± 7 (n=19)  61 ± 8 (n=7)  58 ± 4 (n=41)  
   (15 – 99)  (18 – 99)  (2 – 97)  (5 – 99)  (31 – 85)  (2 – 99) 

Birth Length (cm) 52.3 ± 0.6 (n=21)  52.6 ± 0.5 (n=22)  52.1 ± 0.6 (n=15)  51.4 ± 0.7 (n=19)  51.3 ± 0.9 (n=5)  51.6 ± 0.4 (n=39)  
   (48 – 58)  (49 – 56)  (48.5 – 56)  (46 – 56)  (48 – 53)  (46 – 56) 

Length Centile 79 ± 4 (n=21)  84 ± 4 (n=22)  81 ± 5 (n=15) 71 ± 7 (n=19) 79 ± 9 (n=5) 76 ± 4 (n=39) 
   (45 – 99)  (40 – 99)  (48 – 99)  (15 – 99)  (45 – 92)  (15 – 99) 

Head Circumference at Birth (cm) 34.8 ± 0.3 (n=22)  34.9 ± 0.3 (n=23)  34.7 ± 0.4 (n=15)  34.9 ± 0.4 (n=19)  35.1 ± 0.7 (n=7)  34.9 ± 0.2 (n=41)  
   (32 – 37)  (32 – 37)  (31 – 37)  (33 – 38)  (32 – 37)  (31 – 38) 

Head Circumference Centile 55 ± 6 (n=22)  57 ± 6 (n=23)  54 ± 7 (n=15)  54 ± 7 (n=19)  66 ± 9 (n=7)  56 ± 4 (n=41)  
   (10 – 90)  (2 – 94)  (2 – 90)  (10 – 97)  (30 – 97)  (2 – 97) 

Ponderal Index 2.60 ± 0.05 (n=21)  2.49 ± 0.05 (n=22)  2.50 ± 0.06 (n=15)  2.57 ± 0.07 (n=19)  2.67 ± 0.05 (n=5)  2.55 ± 0.04 (n=39)  
   (2.33 – 2.97)  (2.12 – 2.86)  (2.12 – 2.81)  (2.09 – 2.50)  (2.53 – 2.82)  (2.09 – 2.82) 

Ponderal Index <2.2 (No. of subjects) 0 1 2 4 0 6 
              

Delivery <37 weeks (No. of subjects) 1 1 0 1 1 2 
              

Delivery ≥ 41.5 weeks (No. of subjects) 2 2 0 2 0 2 
  Values given are Mean ± Standard Error of the Mean 

(Range) 
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Figure 4.2 Birth weight of male and female neonates in asthmatic and non-asthmatic 

pregnancies 

The mean birth weight (g) ± SEM for male and female neonates is shown for women classified by inhaled 
glucocorticoid intake (control non-asthmatic, no glucocorticoid, glucocorticoid). * indicates P<0.02 
(ANOVA, control female vs no glucocorticoid female). 
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Figure 4.3 Birth weight of male and female neonates of women with mild asthma 

according to glucocorticoid use 

The mean birth weight (g) ± SEM for male and female neonates is shown for non-asthmatic women 
(control) and women with mild asthma who did not use inhaled glucocorticoids and women with mild 
asthma who did use inhaled glucocorticoids. * indicates P=0.004 (ANOVA, control female vs mild 
asthma no glucocorticoid female vs mild asthma glucocorticoid female). 
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Female neonates in the no glucocorticoid group had a head circumference centile 

(33.9 ± 0.3, n=21), which was similar to their BWC (34.0 ± 5.4, n=21), but this was not 

significantly different from the head circumference centile of females in the control 

group or the glucocorticoid group (ANOVA, P=0.278). 

Ponderal index gives an indication of appropriate growth, with a value <2.2 suggestive 

of IUGR (84), particularly asymmetric growth restriction (85). Ponderal index and 

length were not significantly different between groups (ANOVA, females: P=0.147 and 

males: P=0.132) and ponderal index was on average >2.2 in all groups. The proportion 

of subjects with a ponderal index <2.2 was not different between groups (Fisher’s exact 

test, P>0.05). Length centiles tended to be higher than birth weight or head 

circumference centiles, possibly due to inaccuracy in measuring length in newborn 

infants. This may have altered the accuracy of the ponderal index, which was calculated 

from birth weight and length. Schatz et al. previously reported a significantly greater 

incidence of low ponderal index (<2.2) in asthmatic women whose FEV1 was in the 

lowest quartile (83). I analysed my data in a similar manner and found that when 

divided into quartiles, those with lung function in the lowest quartile also had the lowest 

incidence of ponderal index <2.2 (6.5%) compared to those women with lung function 

in the second, third or fourth quartiles, where the incidence of ponderal index <2.2 was 

12.5%, 14.8% and 11.1% respectively. 

In summary, there was a 40% reduction in birth weight centile, a 27% reduction in head 

circumference centile and a 22% reduction in length centile in female neonates from the 

no glucocorticoid group compared to female neonates of the control non-asthmatic 

group.  

A number of asthmatic women in the glucocorticoid group commenced therapy either in 

the second or third trimester of pregnancy, meaning that they used no glucocorticoids in 

the first trimester or in the first and second trimester. The effect of timing of 

commencement of inhaled glucocorticoid therapy on female birth weight was assessed. 

Asthmatic women who commenced treatment in the second trimester had a similar 

mean birth weight (3502.9 ± 277.4 g, n=7) to asthmatic women who used inhaled 

glucocorticoids throughout pregnancy (3380.6 ± 99.7 g, n=35, unpaired t-test, P=0.633). 

Although numbers were small and variation large, there was a trend for women who 

commenced glucocorticoid therapy in the third trimester to have smaller babies 
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(3162.0 ± 320.1 g, n=5) than women who used glucocorticoid therapy throughout 

pregnancy (3380.6 ± 99.7 g, n=35), which were of similar size to the no glucocorticoid 

group (3094.5 ± 120.0 g, n=22). 

There was no effect of maternal asthma or its treatment on male fetal growth. Male birth 

weight, length, head circumference and ponderal index were not significantly different 

between the control group, the no glucocorticoid group or the glucocorticoid group 

(Figure 4.2, ANOVA, P>0.05). Male neonates from mild asthmatics were of similar 

size regardless of glucocorticoid use (ANOVA, P=0.635, Figure 4.3). 

The inhaled steroid drug used (budesonide, beclomethasone or fluticasone) did not have 

any significant impact on birth weight or birth weight centile of male or female neonates 

in the glucocorticoid group with neonates of all glucocorticoid users being of similar 

size to the control group (Table 4.15, ANOVA, P>0.05). Similarly, the periodic use of 

oral steroids by asthmatic mothers in the glucocorticoid group did not affect male or 

female birth weight (Table 4.16, ANOVA, P=0.639) or BWC (ANOVA, P=0.216). 

There was no relationship between average glucocorticoid dose during pregnancy, or 

third trimester glucocorticoid dose and birth weight of female or male neonates from the 

glucocorticoid group (data not shown).  

Some women in the study were smokers (approximately 28% of asthmatics), and 

smoking has been reported to contribute to low birth weight (300). However, there were 

no significant differences in birth weight between smokers and non-smokers within any 

groups. When examining female neonates of smoking mothers, those from the no 

glucocorticoid group had a birth weight of 3033.3 ± 118.6 g (n=6), while female 

neonates of smoking mothers from the glucocorticoid group had a birth weight of 

3240.0 ± 184.8 g (n=14). This difference was not significant (Mann Whitney test, 

P=0.444). Female neonates from non-smoking mothers had a birth weight of 3117.5 ± 

160.7 g (n=16) in the no glucocorticoid group and a birth weight of 3433.0 ± 101.5 g 

(n=33) in the glucocorticoid group, indicating that the absence of glucocorticoid use in 

asthmatics was associated with reduced female birth weight regardless of maternal 

smoking. Using multivariate analysis, there was a significant reduction in female fetal 

growth in women using no glucocorticoid (P=0.037) and mild asthmatics (P=0.020). 

There was no significant effect of smoking or asthma severity on birth weight and fetal 

sex still remained the determining factor. 
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Table 4.15 Neonatal birth weight according to inhaled glucocorticoid drug used by asthmatic mothers 

Female Fetus Inhaled Glucocorticoid Drug Used During Pregnancy 
  Budesonide Beclomethasone Fluticasone 

Birth Weight (g) 3394.0 ± 147.3 (n=15) 3479.0 ± 227.5 (n=10) 3330.5 ± 150.7 (n=19) 
       

Birth Weight Centile 52.7 ± 6.7 (n=15) 50.5 ± 9.1 (n=10) 46.6 ± 7.3 (n=19) 
Male Fetus Budesonide Beclomethasone Fluticasone 

Birth Weight (g) 3333.3 ± 189.4 (n=9) 3531.5 ± 106.5 (n=20) 3495.5 ± 201.5 (n=11) 
       

Birth Weight Centile 50.7 ± 9.9 (n=9) 57.2 ± 6.7 (n=20) 65.3 ± 6.4 (n=11) 
  Values given are Mean ± Standard Error of the Mean 

 

Table 4.16 Neonatal birth weight according to the use of oral steroids by asthmatic mothers 

Female Fetus  Oral Steroid Use During Pregnancy  
  No Oral Steroids Periodic Oral Steroids 

Birth Weight (g) 3343.6 ± 100.0 (n=39) 3536.3 ± 206.3 (n=8) 
      

Birth Weight Centile 46.6 ± 4.4 (n=39) 60.8 ± 10.2 (n=8) 
Male Fetus No Oral Steroids Periodic Oral Steroids 

Birth Weight (g) 3501.6 ± 90.4 (n=37) 3420.0 ± 209.6 (n=5) 
      

Birth Weight Centile 59.3 ± 4.4 (n=37) 55.4 ± 16.5 (n=5) 
  Values given are Mean ± Standard Error of the Mean 
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4.4 Fetal Growth - Discussion 

In pregnant women with asthma there was reduced female fetal growth when no inhaled 

glucocorticoids were used for treatment. This occurred regardless of asthma severity or 

maternal smoking and was not due to differences in maternal height, BMI or gestational 

weight gain, nor due to a significantly shortened gestational length. However, there 

were no significant differences in growth of female fetuses of the no glucocorticoid 

group observed by ultrasound at 18 and 30 weeks, suggesting a late gestation alteration 

in fetal growth. In addition, there was no evidence of asymmetric growth restriction in 

utero as demonstrated by normal ultrasound HC:AC ratios in this group. Female birth 

weight and head circumference were both reduced to approximately the 35th percentile, 

and ponderal index was normal, suggesting symmetrical growth restriction. There was a 

14% reduction in female birth weight, which equated to an approximately 500 g mean 

difference in size compared to female neonates from non-asthmatic mothers. This is far 

greater than fetal growth reductions previously reported for smoking mothers, which 

average 150-200 g (297, 300, 308-310, 313). 

Schatz et al. have previously demonstrated that poor maternal lung function in 

asthmatics, indicated by lower maternal FEV1 was associated with a greater incidence 

of birth weights in the lower quartile and asymmetric growth restriction (83). No 

association between low birth weight or low ponderal index and steroid use was found 

(83). In this study, 12.5% of mothers with an FEV1 in the lowest quartile (<83% 

predicted) had infants with a ponderal index <2.2, while those with an FEV1 in the 

highest quartile (>99% predicted) had a low incidence (4.4%) of infants with a ponderal 

index <2.2 (83). In my study there were no significant differences in the incidence of a 

low ponderal index within any group, no correlations between neonatal ponderal index 

and maternal FEV1 and no relationship between low maternal FEV1 and low ponderal 

index. In fact, women with a low FEV1, had the lowest incidence of neonates with 

ponderal index <2.2 compared to women with better lung function. In the study from 

Schatz et al. there were 370 subjects examined and 56% of these used no medication or 

intermittent bronchodilators (83). In my study, lung function and ponderal index were 

examined in 117 subjects and only 33% would be similarly classified as users of 

intermittent bronchodilators only. This difference in patient severity distribution may 

have contributed to the different results with regard to asymmetric growth restriction. In 
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addition, Schatz et al. did not divide their subjects based upon fetal sex and this also 

may have affected the results (83) and contributed to the differences between studies. 

Many asthmatic women avoid the use of medication due to concern about harming their 

unborn fetus. This has been documented in an analysis of women’s perceptions of their 

asthma during pregnancy which indicated that 44% were worried about the effects of 

asthma attacks and asthma treatment on the baby (208). In this study, 43% of 

responders said they would take medication as a strategy to control asthma during 

pregnancy, and yet despite the fact that 41% had worsening asthma, only 17% actually 

used preventative asthma medication while pregnant (208). A recent study of 501 

asthmatic women of child-bearing age found that 82% of women who currently used 

inhaled glucocorticoids were concerned about continuing to use them while pregnant 

(211). In women who had previously been pregnant, 39% revealed that they had 

discontinued or reduced their medication while pregnant, and one third of these had 

done so without consulting their doctor (211). Clearly, the results of my study show that 

the use of inhaled glucocorticoid medication when appropriate is beneficial for fetal 

growth, particularly that of the female fetus. Other studies would support this claim, 

although the majority have focussed on women with severe asthma (59, 171, 172).  

Oral steroid use has been shown to reduce birth weight; however, in one study, the 

women used steroids throughout pregnancy (192). In my study, 16% of asthmatic 

women who used inhaled glucocorticoids also required periodic oral steroids during 

pregnancy, but this was not found to contribute to any changes in male or female birth 

weight. Similarly, the use of beclomethasone, budesonide or fluticasone inhalers for 

asthma treatment during pregnancy did not result in reduced fetal growth. Others have 

also demonstrated that there is no effect of inhaled glucocorticoid use for asthma 

treatment on birth weight (178, 202) and although inhaled fluticasone use in pregnant 

women with asthma has not previously been examined, a study in women with rhinitis 

showed no adverse effect of the fluticasone nasal spray on fetal growth (205).  

Stenius-Aarniala et al. found that inhaled steroid use reduced the incidence of asthma 

exacerbations during pregnancy (147). Greenberger et al. demonstrated that in women 

with severe asthma requiring emergency therapy in hospital, mean birth weight was 

reduced by approximately 300 g compared to women with severe asthma who did not 

have exacerbations requiring hospitalisation, indicating that severe uncontrolled asthma 
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may contribute to reduced fetal growth (172). Mabie et al. and Jana et al. also found an 

association between moderate or severe asthma requiring hospitalisation during 

pregnancy and reduced fetal growth (57, 59).  

The results of my study show that severe asthma does not contribute to reduced birth 

weight of either male or female neonates of asthmatic mothers. In my study, all 

asthmatic women were actively managed during pregnancy and most women with 

severe asthma used inhaled and sometimes oral glucocorticoids. The study design 

incorporated education, better patient self-management and close follow up by the 

respiratory specialist when required and this may have prevented acute asthma attacks 

in most women. During the study there was one patient who was admitted to hospital 

with severe asthma at approximately 30 weeks gestation. Her female baby was born at 

39 weeks gestation and was 2170 g, with a birth weight centile of <5, possibly due to 

the severe asthma attacks. It is likely that in most cases, the careful monitoring of 

women with severe asthma and avoidance of uncontrolled asthma attacks in this study 

led to no observed effect of severe asthma on mean birth weight. Although severe 

asthmatics were encouraged to use inhaled glucocorticoids, several subjects did not, 

possibly due to concerns for their baby. However, exclusion of these severe asthmatics 

who did not use inhaled glucocorticoids from the analysis still demonstrated a 

significant effect of no glucocorticoid use on female birth weight in mild asthmatics 

alone (Figure 4.3). 

It was surprising that reduced birth weight was observed in asthmatic women with mild 

asthma. These patients were considered so mild that they did not require inhaled 

glucocorticoids for effective asthma control. In my study, 56% of women with mild 

asthma did not use inhaled glucocorticoids and their lung function (FEV1 or FEV1:FVC) 

was not significantly different from the control group. Despite this, women with mild 

asthma who did not use inhaled glucocorticoids had significantly smaller female 

neonates than women with mild asthma who did use inhaled glucocorticoids. Previous 

studies have reported an effect of reducing asthma medication use during pregnancy on 

birth weight (201). In this study by Olesen et al., asthmatic women who changed their 

medication use from inhaled steroids before pregnancy to inhaled β2-agonists during 

pregnancy had babies with lower weights (mean difference 219 g) and shorter lengths 

than women who remained on inhaled steroids during pregnancy (201). The severity of 

the asthmatic women in this study was not known (201). Lao and Huengsburg found an 
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increased rate of low birth weight among asthmatic mothers who did not use treatment 

for asthma (56). No other studies have demonstrated changes in birth weight in relation 

to mild asthma. In fact, many studies have not included mild asthmatics in their 

analyses (49). One recent study demonstrated that women who had not been diagnosed 

as asthmatic by a physician but were experiencing asthma symptoms, were at increased 

risk of IUGR (64). This supports the possibility raised from my work, that a low grade 

inflammatory disease, either undiagnosed, or not appearing to warrant inhaled 

glucocorticoid therapy, may contribute to alterations in fetal growth. 

Other inflammatory diseases have previously been shown to be associated with low 

birth weight. These include rheumatoid arthritis (94-96), inflammatory bowel disease 

(101-103) and systemic lupus erythematosus (100). The association between active 

inflammation and low birth weight suggests a role for inflammatory pathways in the 

mechanism of reduced fetal growth. Asthma-associated inflammation will be examined 

in Chapter 5.  

A novel finding of this study was that only the birth weight of the female fetus was 

affected by maternal asthma. This finding has not previously been reported. One study 

found that maternal asthma and male fetal sex were associated with low birth weight; 

however, in this study, maternal smoking and living in an industrialised town were also 

found to be confounders (66). However, there have been reports of an increased 

incidence of preterm delivery and pre-eclampsia in asthmatic women pregnant with a 

female fetus (49). The mechanisms contributing to this particular susceptibility of the 

female fetus for these problems during asthmatic pregnancies are unknown. 

Nine out of 20 studies reviewed in Chapter 1 (Table 1.1) found asthmatic women to be 

at increased risk of low birth weight. Jana et al. found that low birth weight occurred in 

asthmatics requiring hospitalisation for severe asthma only (59), while Perlow et al. 

found that low birth weight was associated with asthmatics who used steroids (41). 

However, some of the discrepancies between studies were due to the fact that asthmatic 

women were not characterised based upon disease severity, treatment or fetal sex. My 

study followed standard asthma management guidelines to clinical manage and classify 

pregnant women with asthma based on both severity and treatment. Therefore, this 

work represents the most comprehensive analysis to find reduced fetal growth in 

asthmatic women, specifically identifying female neonates to be at risk when their 
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asthmatic mother does not use inhaled glucocorticoid medication. It must be noted, 

however, that the mean birth weight of these female neonates was 3095 g which in 

itself, does not constitute “low birth weight” or IUGR. Despite this, previous studies 

have demonstrated that only a 100 g mean difference in birth weight between two 

groups is associated with a clinically relevant improvement in neonatal morbidity and 

mortality (227, 228). I found that there was a strong trend towards an increase in the 

prevalence of female SGA infants among the no glucocorticoid group, and with 

increased study numbers this may become significant. However, the finding of reduced 

birth weight in a sub-group of female neonates of asthmatic mothers does allow further 

investigation into the maternal and placental mechanisms which control fetal growth in 

asthmatic pregnancies, which has not been carried out in other studies.  
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4.5 Fetal Growth - Summary 4.5 Fetal Growth - Summary 

In summary, maternal asthma that is not treated with inhaled glucocorticoids is 

associated with reduced growth of the female fetus (Figure 4.4). The possible 

mechanisms contributing to low birth weight in female neonates of asthmatic mothers 

will be examined in the following chapters. 

In summary, maternal asthma that is not treated with inhaled glucocorticoids is 

associated with reduced growth of the female fetus (Figure 4.4). The possible 

mechanisms contributing to low birth weight in female neonates of asthmatic mothers 

will be examined in the following chapters. 
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Figure 4.4 Alterations in fetal growth in asthmatic pregnanciesFigure 4.4 Alterations in fetal growth in asthmatic pregnancies 

In the presence of maternal asthma which is not treated with inhaled glucocorticoids, female birth weight 
is significantly reduced. 
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Chapter 5 The Mother
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The Mother 

The mother has an important role to play in the regulation of fetal growth. In asthmatic 

women, the progression of the asthmatic disease during pregnancy may affect fetal 

growth, through alterations in inflammatory pathways associated with asthma or 

through changes in lung function.  

5.1 Maternal asthma during pregnancy 

Asthmatic women were assessed several times throughout pregnancy in the Asthma 

Management Service (AMS), to ensure that they received adequate asthma education 

and to adjust their inhaled glucocorticoid requirements if necessary. The AMS 

education program has previously been demonstrated to improve asthma control and 

management skills in our non-pregnant population and to reduce re-admission rate in 

adults with acute severe asthma (635). Since the number of visits to the AMS by each 

woman varied, data was only analysed for the first and last visit to the AMS made by 

each individual. The first visit occurred at an average of 23.0 ± 0.6 weeks gestation 

(n=153) and the last visit at 32.2 ± 0.4 weeks gestation (n=111), while 42 asthmatic 

women only visited the AMS once during pregnancy. Data on asthma symptoms, skills 

and management collected during the first and last AMS visits are shown in Table 5.1 

and Table 5.2 respectively. 

In general, there was an improvement in asthmatic women’s skills in using their 

inhalers, their knowledge of medications and an increase in the number of women with 

an asthma action plan as pregnancy progressed. The trend was for women to report 

fewer symptoms, and to be taking less reliever medication at their last visit. This is 

likely to have been a direct result of the asthma education they received which resulted 

in improved inhaler technique and increased knowledge about what their medications 

were used for and when to take them.  

In most groups >85% of women had optimal or adequate inhaler technique at the first 

visit. However, in the no glucocorticoid (male fetus) group, 31% of women had 

inadequate inhaler technique at the first visit. This was significantly improved by the 

last AMS visit, when 100% of women in this group had optimal or adequate inhaler 

technique (Fisher’s exact test, P=0.016).  

 



 

Table 5.1 Maternal asthma assessment at the first AMS visit 

First AMS Visit No Glucocorticoid Glucocorticoid 
 Female Fetus Male Fetus Female Fetus Male Fetus 

Gestational Age (weeks) 21.7 ± 1.1 (n=29) 23.3 ± 1.4 (n=29) 23.5 ± 1.1 (n=50) 23.0 ± 0.9 (n=45) 
        

Night Symptoms (days/week) 1.0 ± 0.4 (n=29) 1.1 ± 0.4 (n=29) 2.3 ± 0.4 (n=50) 2.1 ± 0.4 (n=45) 
        

Morning Symptoms (days/week) 0.5 ± 0.2 (n=29) 1.5 ± 0.5 (n=29) 2.6 ± 0.4 (n=50) 2.3 ± 0.4 (n=45) 
        

Activity Limitation (days/week) 0.3 ± 0.3 (n=29) 0.8 ± 0.4 (n=29) 1.6 ± 0.4 (n=50) 1.5 ± 0.4 (n=45) 
        

Symptom Free (% of subjects) 66% 48% 28% 29% 
        

Reliever Medication Use (times/week) 4.6 ± 2.5 (n=29) 6.0 ± 2.0 (n=28) 19.8 ± 4.0 (n=50)* 13.4 ± 2.3 (n=45)* 
        

Optimal Inhaler Technique (% of subjects) 42% 38% 68% 42% 
        

Adequate Inhaler Technique (% of subjects) 46% 31% 24% 44% 
        

Inadequate Inhaler Technique (% of subjects) 12% 31% 8% 14% 
        

Medications Knowledge (% of subjects) 36% 50% 72% 42% 
        

Action Plan Received (% of subjects) 14% 17% 25% 19% 
  Values given are Mean ± Standard Error of the Mean 

* Compared to the no glucocorticoid group (Mann Whitney test, P<0.05) 
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Table 5.2 Maternal asthma assessment at the last AMS visit 

Last AMS Visit No Glucocorticoid Glucocorticoid 
 Female Fetus Male Fetus Female Fetus Male Fetus 

Gestational Age (weeks) 32.9 ± 0.8 (n=18) 30.5 ± 1.0 (n=21) 32.4 ± 0.6 (n=40) 32.6 ± 0.6 (n=32) 
        

Night Symptoms (days/week) 0.3 ± 0.2 (n=18) 0.8 ± 0.4 (n=20) 1.4 ± 0.3 (n=40) 0.8 ± 0.3 (n=32)** 
        

Morning Symptoms (days/week) 1.0 ± 0.5 (n=18) 1.0 ± 0.5 (n=20) 2.0 ± 0.4 (n=40) 1.6 ± 0.5 (n=32) 
        

Activity Limitation (days/week) 0.2 ± 0.2 (n=18) 0.5 ± 0.4 (n=20) 2.2 ± 0.5 (n=40) 0.8 ± 0.4 (n=31) 
        

Symptom Free (% of subjects) 61% 60% 28% 59%* 
        

Reliever Medication Use (times/week) 1.9 ± 0.6 (n=18) 2.5 ± 1.2 (n=20) 11.9 ± 2.2 (n=40)*** 8.3 ± 1.4 (n=32)*** 
        

Optimal Inhaler Technique (% of subjects) 42% 31% 74% 57% 
        

Adequate Inhaler Technique (% of subjects) 58% 69% 26% 29% 
         

Inadequate Inhaler Technique (% of subjects) 0% 0%* 0% 14% 
        

Medications Knowledge (% of subjects) 90%* 88%* 100%* 95%* 
        

Action Plan Received (% of subjects) 80%* 57%* 80%* 61%* 
  Values given are Mean ± Standard Error of the Mean 

*Compared to first AMS Visit (Fisher’s exact test, P<0.05), **Compared to first AMS visit (Mann Whitney test, P<0.05), ***Compared to no glucocorticoid group (Mann Whitney test, P<0.05) 
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The proportion of asthmatic women with medication knowledge and an action plan 

significantly increased from first to last AMS visit in all four groups (Fisher’s exact test, 

P<0.021). 

The number of days per week that asthmatic women were affected by night-time 

symptoms did not change significantly from first to last visit in the no glucocorticoid 

groups, or the glucocorticoid female group (Mann Whitney test, P>0.05). However, in 

the glucocorticoid group, women pregnant with a male fetus had a significant decrease 

in the number of days per week that they were affected by night-time asthma symptoms 

(Mann Whitney test, P=0.035). There were no significant differences in morning 

symptoms and activity limitation from first to last visit in any group (Mann Whitney 

test, P>0.05).  

The percentage (%) of subjects who were symptom free at each visit was examined, as 

an indicator of asthma control. Subjects were considered symptom free if they reported 

no night-time or morning symptoms and no activity limitation as a result of asthma. 

There was a rise in the % of subjects who were symptom free from first to last visit only 

in asthmatic women who were pregnant with a male fetus. In the no glucocorticoid 

group, this was not significant (48% at first visit to 60% at last visit, Fisher’s exact test, 

P=0.562) and in the glucocorticoid group, this increase was significant (29% at first 

visit to 59% at last visit, Fisher’s exact test, P=0.010, Table 5.1 and Table 5.2). These 

data suggest that the presence of a male fetus is associated with an improvement in 

asthma symptoms throughout pregnancy. In asthmatic women pregnant with a female 

fetus, there was either no change in the symptom free rate (glucocorticoid group, 28% 

symptom free at first and last AMS visit), or a decrease in the proportion of subjects 

who were symptom free (no glucocorticoid group, 66% to 61% from first to last AMS 

visit, Fisher’s exact test, P=0.766). These data suggest no improvement in asthma 

symptoms in women pregnant with a female fetus, despite their improved knowledge 

and inhaler technique. 

Asthmatic women in the glucocorticoid group used significantly more β2-agonist 

(reliever) medication than women in the no glucocorticoid group, as expected from the 

greater proportion of severe asthmatics within this group (Table 5.1 and Table 5.2, 

Mann Whitney test, P<0.05). There was no difference in β2-agonist use between women 

pregnant with a male or female fetus in either the no glucocorticoid or glucocorticoid 
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groups (Mann Whitney test, P>0.05) and no significant alteration in absolute level of 

β2-agonist use (number of puffs per week) as pregnancy progressed in any group (Mann 

Whitney test, P>0.05). 

The use of β2-agonists at any time by women who did not use inhaled glucocorticoids 

was associated with significantly lower female birth weights than those who never 

reported using β2-agonists (Figure 5.1, unpaired t-test, P=0.049). Male birth weight was 

not affected by β2-agonist use (Figure 5.1, unpaired t-test, P=0.513). The asthmatic 

women who did not use inhaled glucocorticoids or report any β2-agonist use during 

pregnancy had female babies of similar size (3507.5 ± 165.8 g, n=8) to the control non-

asthmatic group (3600.3 ± 101.2 g, n=20, unpaired t-test, P=0.632). This data suggests 

the possibility that within the no glucocorticoid group, there was a sub-group of women 

whose asthma may have been in remission, such that it did not require any medications 

and although asthma had been previously diagnosed in these women, this did not affect 

female birth weight. The other sub-group who did use β2-agonists may have had slightly 

worse asthma, which was not severe enough to warrant the prescription of inhaled 

glucocorticoids, but did have an effect on female birth weight, despite the use of β2-

agonists for symptom control. However, caution should be used in interpreting these 

results due to the small number of subjects within each group. The power to detect a 

400 g difference in the birth weight of male neonates of mothers using β2-agonists 

compared to mothers not using β2-agonists, with these study numbers is 0.6. 
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Figure 5.1 Birth weight in the no glucocorticoid group according to maternal use of 

β2-agonists during pregnancy 

Mean birth weight (g) ± SEM is shown for male and female neonates of the no glucocorticoid group, 
according to maternal reported use of β2-agonists during pregnancy. * indicates P<0.05 (unpaired t-
test). 

Asthma remission occurs most often in childhood or during puberty (709) and may also 

be observed in adult asthmatics (710, 711). Remission, defined as no medication use or 

exacerbations within the previous 2 years, was found to occur in 46% of previously 

diagnosed asthmatics in a large Italian study (712). A follow up study of asthmatics 

diagnosed 25 years earlier found that 11% of subjects were no longer considered 

asthmatic as they had no evidence of bronchial hyperresponsiveness, an FEV1 >90% 

predicted and no reported pulmonary symptoms (710). 

In order to investigate the possibility of remission further, symptom reporting and lung 

function testing was examined in women pregnant with a female fetus who did not use 

inhaled glucocorticoids. There was no significant difference in lung function in women 

who may have been in remission (FEV1:FVC = 0.873 ± 0.017, n=8) compared to 

women considered not in remission (FEV1:FVC = 0.838 ± 0.028, n=9, unpaired t-test, 

P=0.306), although the trend was for better lung function in women thought to be in 

remission. However, lung functions in both these asthmatic groups were also not 

significantly different from the control (female) group (FEV1:FVC = 0.878 ± 0.034, 

n=11, ANOVA, P=0.574). The reporting of symptoms by asthmatic women of the no 
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glucocorticoid group who did or did not report β2-agonist use and were pregnant with a 

female fetus was examined. Women considered in remission (n=8) reported no night-

time or morning symptoms due to asthma during pregnancy. Only one woman in this 

group reported activity limitation (1 day per week) at the first AMS visit. In addition, 

the asthma history in this group confirmed remission in one woman who had no 

problems with asthma in the previous 10 years. However, in the group considered not in 

remission (n=10), four women reported night symptoms during pregnancy (7 times per 

week in three women), seven women reported morning symptoms and one woman 

reported activity limitation at both the first (2 days per week) and last (4 days per week) 

AMS visit. These data suggest that asthma remission may be a real phenomenon in 

some women with mild asthma and that asthma remission is not associated with adverse 

effects on female birth weight. This suggests that women who experience mild asthma 

symptoms during pregnancy, may benefit from low dose inhaled glucocorticoid therapy 

during pregnancy, which by controlling symptoms and systemic inflammation may 

contribute to improved female fetal growth. However, the numbers here are small and 

larger groups will be required to investigate this further. 

Male and female birth weight was also assessed in the no glucocorticoid group in 

relation to whether the asthmatic mother had received an asthma action plan at any of 

the AMS visits. Female birth weight was significantly lower than male birth weight 

regardless of whether the mother had received an action plan (unpaired t-test, P<0.05). 

Male birth weight was normal even when the mothers had not received an asthma action 

plan, supporting the concept that the male fetus is less affected by maternal asthma. 

Mean female birth weight was higher in mothers who received an action plan compared 

to mothers who did not receive an action plan, but this difference was not statistically 

significant (Figure 5.2, unpaired t-test, P=0.274). Greater study numbers are required to 

assess this more thoroughly. However, this preliminary evidence suggests that asthma 

education and a knowledge of how to alter medication use for proper asthma control in 

the event of an exacerbation are useful skills that could improve female fetal growth in 

asthmatic pregnancies. 
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Figure 5.2 Birth weight in the no glucocorticoid group according to the provision of 

asthma action plans 

Mean birth weight (g) ± SEM is shown for male and female neonates of the no glucocorticoid group, 
according to whether the mother received an asthma action plan during pregnancy. 

Overall, these data demonstrate that education is an important part of monitoring asthma 

in pregnant women as it leads to a reduction in symptoms and improved inhaler 

technique and medication knowledge. Studies of asthmatic women of child-bearing age 

show that many women have concerns about the effect their asthma may have on the 

fetus and many would like more medical care, support and education (208, 211). 

However, in one study, only 19% of women made decisions about the management of 

their asthma while pregnant by consultation with a physician (211). In non-pregnant 

adults, randomised trials have demonstrated the effectiveness of asthma education in 

reducing re-admission rates and emergency room visits, reducing oral corticosteroid use 

and improving knowledge and self-management (713-716). The asthma management 

technique employed in this study has previously been demonstrated to be effective in 

reducing re-admission rates in non-pregnant adults who had recent severe asthma 

exacerbations (635). Similar education programs in pregnant asthmatic women have the 

potential to greatly improve the outcome for both mother and baby. Despite the 

education provided in our study, there was reduced fetal growth in mild asthmatic 

women pregnant with a female fetus, who did not use glucocorticoids during pregnancy 

and were not in remission. The following sections will outline changes in maternal 
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asthma which occur in the presence of a female fetus, which may contribute to reduced 

fetal growth. 

5.2 Maternal lung function during pregnancy 

Maternal lung function was assessed by spirometry during the AMS visits. Maternal 

lung function data collected in early pregnancy (average 23 weeks gestation) was 

compared to lung function data collected in late pregnancy (average 32 weeks 

gestation). While 73% of asthmatic women attended the AMS twice, only a small 

number had their lung function assessed on both occasions. The FEV1:FVC ratio was 

used as an indicator of lung function, since previous studies have shown that this relates 

to the degree of bronchospasm (115). 

There was a significant decrease in FEV1:FVC as pregnancy progressed in asthmatic 

women pregnant with a female fetus, in both the no glucocorticoid group (Figure 5.3A, 

unpaired t-test with Welch correction, P=0.015) and the glucocorticoid group (Figure 

5.3B, unpaired t-test, P=0.018). There was no change in maternal lung function during 

pregnancy when the woman was pregnant with a male fetus (Figure 5.3, no 

glucocorticoid, unpaired t-test, P=0.936, glucocorticoid, unpaired t-test, P=0.364). 

Results were similar when only the smaller number of subjects who had two 

assessments were included (data not shown). Women in the glucocorticoid group had 

significantly worse lung function compared to women in the no glucocorticoid group, 

when pregnant with a female fetus, both at the first AMS visit (unpaired t-test, P=0.018) 

and last AMS visit (unpaired t-test with Welch correction, P=0.024), as expected from 

the greater proportion of women with severe asthma in the glucocorticoid group. These 

data indicate that fetal sex has an effect on maternal lung function regardless of 

glucocorticoid therapy, with decreased lung function during pregnancy observed in the 

presence of a female fetus. 

The relationship between lung function (first AMS visit) and female birth weight was 

examined. There was a significant positive correlation between maternal lung function, 

expressed as the FEV1:FVC ratio and neonatal birth weight for females in the no 

glucocorticoid group only (Figure 5.4A, Pearson linear correlation, r = 0.458, n=26, 

P=0.019, excluding one pre-term delivery). This relationship was not observed for 
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females in the glucocorticoid group (Figure 5.4B, Pearson linear correlation, r = 0.033, 

n=36, P=0.848), or for male neonates (P>0.05, data not shown). 
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Figure 5.3 Maternal lung function during pregnancy in asthmatic women 

Maternal lung function is represented by the FEV1:FVC ratio and is shown for women pregnant with a 
male and female fetus, from the no glucocorticoid group (Panel A) and the glucocorticoid group (Panel 
B). * indicates P<0.05 (unpaired t-test, first AMS visit vs last AMS visit in women pregnant with a female 
fetus). 
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Figure 5.4 Relationship between maternal lung function and female birth weight 

The relationship between maternal FEV1:FVC and female birth weight is shown for women in the no 
glucocorticoid group (Panel A) and the glucocorticoid group (Panel B). The correlation was significant 
in the no glucocorticoid group (Pearson linear correlation, r = 0.458, n=26, P=0.019). 
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5.3 Maternal glucocorticoid use during pregnancy 

The alterations in female fetal growth may be due to maternal inflammatory pathways 

associated with asthma, since asthmatic women who used anti-inflammatory 

glucocorticoid medication had female neonates of similar size to the non-asthmatic 

control group. To investigate changes in inflammation in asthmatic women, two 

methods were employed. In the glucocorticoid group, inhaled glucocorticoid use during 

each trimester of pregnancy was examined. In both the no glucocorticoid and 

glucocorticoid groups, maternal circulating white blood cells were examined (Section 

5.4). 

In asthmatic women treated with moderate or high doses of inhaled glucocorticoids who 

were pregnant with a female fetus (n=41), there was a significant increase in the inhaled 

glucocorticoid requirement during pregnancy, which increased from 917 ± 99 μg/day in 

the first trimester to 1350 ± 111 μg/day in the third trimester (Figure 5.5, non-

parametric repeated measures ANOVA, P=0.0002, Dunn’s multiple comparisons test, 

P<0.05, first trimester vs third trimester). In asthmatics using moderate or high doses of 

inhaled glucocorticoids who were pregnant with a male fetus (n=29) the mean inhaled 

glucocorticoid requirement was 945 ± 108 μg/day in the first trimester and 1100 ± 

105 μg/day in the third trimester (Figure 5.5, non-parametric repeated measures 

ANOVA, P=0.039, Dunn’s multiple comparisons test, P>0.05). Although the mean 

inhaled glucocorticoid dose also increased in women pregnant with a male fetus, this 

was not statistically or clinically significant, and the power to detect a 400 μg/day 

increase, such as that observed in women pregnant with a female fetus was 0.97.  

These data suggest that in the presence of a female fetus, there is a rise in inflammatory 

pathways, which leads to a greater requirement for inhaled glucocorticoids in these 

women. In asthmatic women who do not use inhaled glucocorticoid medication, this 

alteration in inflammation would not be prevented and may contribute to alterations in 

placental function and fetal growth. 
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Figure 5.5 Inhaled glucocorticoid intake during pregnancy in asthmatic women  

The inhaled glucocorticoid dose (μg/day) in the first and third trimester is shown for asthmatic women 
using moderate and high doses of inhaled glucocorticoids who were pregnant with male or female 
fetuses. * indicates P<0.0002 (non-parametric repeated measures ANOVA, first trimester to third 
trimester change in women pregnant with a female fetus). 

5.4 Maternal inflammation during pregnancy 

To further investigate inflammatory pathways, maternal white blood cell counts were 

examined in early pregnancy (<20 weeks, average 11.4 ± 0.3 weeks, n=119) and late 

pregnancy (>30 weeks, average 36.1 ± 0.4 weeks, n=52).  

The maternal monocyte count significantly increased from early to late gestation in 

asthmatic women in the no glucocorticoid group who were pregnant with a female fetus 

(Figure 5.6, unpaired t-test, P=0.020). In addition, the percentage of white blood cells 

which were monocytes significantly increased from early to late pregnancy (6.2 ± 0.4%, 

n=22 to 7.6 ± 0.4%, n=7) in the no glucocorticoid group in women pregnant with a 

female fetus (Mann Whitney test, P=0.020). There was no significant change from early 

to late pregnancy in maternal monocyte count in any other group including the 

asthmatic women who did not use glucocorticoids and were pregnant with a male fetus 

(unpaired t-test, P=0.370).  
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Figure 5.6 Circulating monocytes in asthmatic women during pregnancy 

Circulating monocyte levels (109/l) in early pregnancy (<20 weeks gestation) and late pregnancy (>30 
weeks gestation) are shown for women pregnant with a male and female fetus in the no glucocorticoid 
group. * indicates P=0.02 (unpaired t-test). 

The total white blood cell count and lymphocyte, neutrophil, eosinophil and basophil 

counts were also examined (Table 5.3 and Table 5.4). There were no significant 

differences in total white blood cells, neutrophils or basophils between women pregnant 

with males or females of any group, and no significant alterations from early to late 

pregnancy (Kruskal-Wallis ANOVA, P>0.05).  

Eosinophil counts in early pregnancy were significantly higher in the asthmatic groups 

(no glucocorticoid and glucocorticoid) compared to the control group and in the 

glucocorticoid group compared to the no glucocorticoid group (Figure 5.7, Kruskal-

Wallis ANOVA, P<0.0001, Dunn’s multiple comparisons test, control vs no 

glucocorticoid, P<0.01, control vs glucocorticoid P<0.001, no glucocorticoid vs 

glucocorticoid, P<0.05). However, there was no significant difference in eosinophil 

counts between the groups in late pregnancy (Kruskal-Wallis ANOVA, P=0.117). There 

was a trend towards a decrease in eosinophil counts in the no glucocorticoid group from 

early pregnancy (0.23 ± 0.03 109/l, n=35) to late pregnancy (0.13 ± 0.03 109/l, n=15, 

Mann Whitney test, P=0.057). In the glucocorticoid group, eosinophil counts 

significantly decreased from early (0.34 ± 0.03 109/l, n=54) to late pregnancy (0.16 ± 

0.02 109/l, n=30, Mann Whitney test, P<0.0001). This significant decrease in 
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Circulating eosinophil levels (109/l) are shown for women in the control, no glucocorticoid and 
glucocorticoid groups in early pregnancy (<20 weeks gestation). * indicates P<0.01 (Kruskal-Wallis 
ANOVA, control vs no glucocorticoid). ** indicates P<0.05 (Kruskal-Wallis ANOVA, glucocorticoid vs 
no glucocorticoid and control). On this scatter plot, individual points are shown and the group median is 
given by the horizontal bar. 

Figure 5.7 Circulating eosinophils in asthmatic women during pregnancy  

eosinophils during pregnancy occurred both in women pregnant with a male fetus 

(Mann Whitney test, P=0.007) and women pregnant with a female fetus (Mann Whitney 

test, P=0.001). 
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Table 5.3 Circulating white blood cells in non-asthmatic and asthmatic women pregnant with a female fetus 

Female Fetus Circulating blood count (109/l) Classification of Glucocorticoid Intake During Pregnancy 
    Control No Glucocorticoid Glucocorticoid 

Early Pregnancy White Blood Cell count 9.6 ± 0.3 (n=18) 9.5 ± 0.4 (n=22) 10.1 ± 0.5 (n=28) 
         
  Neutrophil count 7.04 ± 0.24 (n=18) 6.50 ± 0.32 (n=22) 6.95 ± 0.43 (n=28) 
         
  Lymphocyte count 1.86 ± 0.12 (n=18) 2.10 ± 0.13 (n=22) 2.15 ± 0.12 (n=28) 
         
  Monocyte count 0.53 ± 0.04 (n=18) 0.58 ± 0.04 (n=22) 0.61 ± 0.03 (n=28) 
         
  Eosinophil count 0.11 ± 0.02 (n=18) 0.25 ± 0.03 (n=22) 0.38 ± 0.04 (n=28) 
         
  Basophil count 0.011 ± 0.008 (n=18) 0.016 ± 0.009 (n=19) 0.020 ± 0.010 (n=24) 
         

Late Pregnancy White Blood Cell count 11.4 ± 1.3 (n=3) 10.6 ± 1.0 (n=7) 11.3 ± 0.5 (n=15) 
         
  Neutrophil count 8.96 ± 0.95 (n=3) 7.98 ± 0.81 (n=7) 8.42 ± 0.38 (n=15) 
         
  Lymphocyte count 1.87 ± 0.35 (n=3) 1.61 ± 0.17 (n=7) 1.91 ± 0.13 (n=15) 
         
  Monocyte count 0.53 ± 0.09 (n=3) 0.80 ± 0.08 (n=7)* 0.70 ± 0.05 (n=15) 
         
  Eosinophil count 0 ± 0 (n=3) 0.17 ± 0.05 (n=7) 0.16 ± 0.03 (n=15)** 
         
  Basophil count 0 ± 0 (n=3) 0.014 ± 0.014 (n=7) 0.036 ± 0.013 (n=14) 
   Values given are Mean ± Standard Error of the Mean 

*Compared to early pregnancy (unpaired t-test, P=0.02), **Compared to early pregnancy (Mann Whitney test, P=0.001) 
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Table 5.4 Circulating white blood cells in non-asthmatic and asthmatic women pregnant with a male fetus 

Male Fetus Circulating blood count (109/l) Classification of Glucocorticoid Intake During Pregnancy 
    Control No Glucocorticoid Glucocorticoid 

Early Pregnancy White Blood Cell count 9.0 ± 0.4 (n=11) 9.9 ± 0.4 (n=14) 9.6 ± 0.4 (n=26) 
         
  Neutrophil count 6.05 ± 0.25 (n=11) 7.61 ± 0.78 (n=14) 6.58 ± 0.32 (n=26) 
         
  Lymphocyte count 2.23 ± 0.22 (n=11) 1.54 ± 0.16 (n=14)* 2.13 ± 0.10 (n=26) 
         
  Monocyte count 0.57 ± 0.04 (n=11) 0.56 ± 0.05 (n=14) 0.58 ± 0.04 (n=26) 
         
  Eosinophil count 0.11 ± 0.03 (n=11) 0.21 ± 0.07 (n=13) 0.29 ± 0.03 (n=26) 
         
  Basophil count 0.027 ± 0.014 (n=11) 0.008 ± 0.008 (n=12) 0.031 ± 0.009 (n=26) 
         

Late Pregnancy White Blood Cell count 9.0 ± 1.7 (n=3) 9.2 ± 0.6 (n=8) 11.1 ± 0.8 (n=16) 
         
  Neutrophil count 6.30 ± 1.55 (n=3) 6.90 ± 0.53 (n=8) 8.63 ± 0.76 (n=16) 
         
  Lymphocyte count 1.93 ± 0.17 (n=3) 1.69 ± 0.14 (n=8) 1.69 ± 0.15 (n=16) 
         
  Monocyte count 0.57 ± 0.07 (n=3) 0.50 ± 0.05 (n=8) 0.63 ± 0.07 (n=16) 
         
  Eosinophil count 0.17 ± 0.03 (n=3) 0.10 ± 0.02 (n=8) 0.16 ± 0.03 (n=16)** 
         
  Basophil count 0.067 ± 0.033 (n=3) 0 ± 0 (n=8) 0.006 ± 0.006 (n=3) 
   Values given are Mean ± Standard Error of the Mean 

*Compared to glucocorticoid group (ANOVA, P<0.05), **Compared to early pregnancy (Mann Whitney test, P<0.01) 
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5.5 Maternal plasma proteins during pregnancy 

Maternal plasma proteins were profiled at 18 and 30 weeks gestation using 

SELDI-TOF MS. Comparisons were made between asthmatics and non-asthmatics, and 

between women pregnant with a female fetus and women pregnant with a male fetus. 

Changes in plasma proteins from 18 to 30 weeks gestation were examined specifically 

in asthmatic women pregnant with a female fetus from the no glucocorticoid group. The 

aim was to find proteins which may be involved in the mechanism of reduced female 

fetal growth, or may be altered as a consequence of changes in maternal asthma. 

5.5.1 The effect of asthma on maternal plasma proteins 
during pregnancy 

At 18 weeks gestation, there were 91 peaks which were significantly different (P<0.05) 

between plasma of asthmatic (n=20) and non-asthmatic women (n=13). Only 12 of 

these were identified on chips using CHCA as a matrix. The remainder were identified 

on chips using SPA as a matrix and represented 32% of the total number of protein 

clusters identified on these chips. Of the 91 significant differences between asthmatics 

and controls at 18 weeks gestation, 28 peaks were considered highly suitable for follow-

up (classified as category A peaks). 

At 30 weeks gestation, there were 51 peaks which were significantly different (P<0.05) 

between plasma of asthmatic (n=19) and non-asthmatic (n=10) women. Using CHCA 

matrix, 19 peak differences were identified, while using SPA matrix identified 32 peak 

differences. Where SPA matrix was used, 12% of the total number of protein clusters 

identified were significantly different between the two groups. Thus, the number of 

plasma protein differences between asthmatic and non-asthmatic women was high but 

decreased from early to late pregnancy. 

One peak was identified on the SAX chip at pH 9, using SPA matrix, which was 1.6 

times higher in asthmatics compared to controls at both 18 and 30 weeks (t-test, 

P=0.005 at 18 weeks and P=0.009 at 30 weeks). The relative peak intensities were 

similar at both time points, indicating that this is an asthma-associated peptide, the 

levels of which do not change with pregnancy (Figure 5.8). This peak had a m/z of 6444 

and was category A. Searching the Swiss-Prot database (MW 6444 Da ± 0.5%, pI 5 ± 5) 
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revealed a total of three possible matches. They were pre-T/NK cell associated protein 

(accession number Q13412), glycophorin E precursor (P15421) and metallothionein-IV 

(P47944). T cells and natural killer (NK) cells are involved in inflammatory processes, 

while glycophorin has not previously been associated with asthma. Metallothionein is 

an intracellular storage molecule for Zn and Cu ions (717). Nitrogen monoxide is 

thought to liberate Zn from metallothionein, which may protect against asthma by 

preventing a Th2 cytokine shift (717). Further characterisation is required to confirm 

that this is not a novel protein. 

One peak was identified on the IMAC chip at pH 7 using CHCA matrix which was 

approximately four to five-fold lower in asthmatics compared to controls at both 18 and 

30 weeks gestation (t-test, P=0.010 at 18 weeks, P=0.008 at 30 weeks, category B). At 

30 weeks gestation, the peak appeared to be absent in all but one asthmatic subject. This 

peak had a m/z of 1846. A search of the Swiss-Prot database (MW 1846 Da ± 0.5%, pI 

7 ± 10) revealed one possible match (protachykinin 1 precursor, P20366). Members of 

the tachykinin family have various roles as neurotransmitters, vasoactive peptides (698) 

and contractors of smooth muscle and may play an important role in uterine contraction 

during pregnancy (718, 719). The significance of their absence in pregnant asthmatic 

plasma is unclear. 
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Figure 5.8 Asthma associated peptide in maternal plasma 

Panel A shows the mean peak intensity ± SEM of a maternal plasma peak with m/z 6444 identified using a 
SAX chip, pH 9 with SPA matrix. * indicates P<0.05 (t-test). Panel B shows a representative spectrum 
from a control and an asthmatic woman around the region 5-9 kDa. 

5.5.2 The effect of fetal sex on maternal plasma proteins 
during pregnancy 

At 18 weeks gestation, there were 29 peaks which were significantly different between 

the plasma of women pregnant with a male fetus (n=17) and women pregnant with a 

female fetus (n=16). Of these, 11 were considered category A peaks. 

At 30 weeks gestation, there were 46 significant differences between the plasma of 

women pregnant with a male fetus (n=15) and women pregnant with a female fetus 
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(n=14). Of these, 13 were considered category A peaks. None of the same protein peaks 

found to be significantly related to fetal sex during pregnancy were identified at both 18 

and 30 weeks gestation. 

Figure 5.9 shows a protein peak which was significantly increased in maternal plasma 

from women pregnant with a female fetus compared to maternal plasma from women 

pregnant with a male fetus at 18 weeks gestation (IMAC, pH 7, SPA matrix). However, 

at 30 weeks there was no significant difference in the intensity of this peak between 

women pregnant with male or female fetuses. 
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Figure 5.9 Female fetus associated protein in maternal plasma 

Panel A shows the mean peak intensity ± SEM of a maternal plasma peak with m/z 28118 identified using 
an IMAC chip, pH 7 with SPA matrix. * indicates P<0.05 (t-test). Panel B shows representative spectra 
from a woman pregnant with a female fetus and a woman pregnant with a male fetus, in the high mass 
region 20-40 kDa. 
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5.5.3 The effect of asthma and fetal sex on maternal plasma 
proteins during pregnancy 

The progression of asthma during pregnancy is unpredictable, although in general one 

third of asthmatic women have an improvement, one third have a worsening and one 

third remain unchanged (134). The data presented in this chapter indicate that female 

fetal sex results in worsening asthma, regardless of treatment with inhaled 

glucocorticoids. In the presence of a male fetus, the data presented in this chapter 

suggests that there is no change or an improvement in maternal asthma. In light of this 

information, maternal plasma proteins were analysed in the following way. The control 

group was compared to asthmatic women pregnant with a male fetus (asthma male) and 

asthmatic women pregnant with a female fetus (asthma female), with the glucocorticoid 

and no glucocorticoid groups combined. In addition, the asthma male and asthma 

female groups were compared with each other. Peaks which were significantly and 

uniquely different for either the asthma male group or the asthma female group were 

selected. It was hypothesised that there may be more differences in the plasma protein 

profile of asthmatic women pregnant with a female fetus than asthmatic women 

pregnant with a male fetus when compared to the control group, reflecting more asthma 

associated changes in plasma proteins. 

At 18 weeks gestation, nine peaks were specifically increased in asthmatic women 

pregnant with a female fetus, while four peaks were specifically increased in asthmatic 

women pregnant with a male fetus. At 30 weeks gestation, this number increased to 15 

peaks which were specifically increased in asthmatic women pregnant with a female 

fetus and eight peaks which were specifically increased in asthmatic women pregnant 

with a male fetus. All the peaks represented different proteins. This pattern indicates 

that as pregnancy progresses, the plasma protein profile of asthmatic women becomes 

less like that of the non-asthmatic control group, particularly when pregnant with a 

female fetus (Figure 5.10). Further identification of these peaks, especially those which 

differed at 30 weeks gestation, may improve our understanding of the changes in 

maternal asthma which occur during pregnancy, and specifically those changes which 

are influenced by fetal sex. Although the identity of these peaks is unknown, it is 

speculated that the peaks which are associated with being asthmatic and pregnant with a 

female fetus may be pro-inflammatory, thus promoting a worsening of asthma, while 
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those associated with being asthmatic and pregnant with a male fetus may be anti-

inflammatory, thus contributing to a possible improvement in asthma during pregnancy. 
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Figure 5.10 Changes in maternal plasma protein profiles in the presence of asthma 

according to fetal sex 

This graph shows that the number of peaks at 18 and 30 weeks gestation which were uniquely different in 
asthmatics pregnant with a female fetus increased from nine to 15 through pregnancy, while the number 
of peaks which were uniquely different in asthmatics pregnant with a male fetus increased from four to 
eight from 18 to 30 weeks gestation. 

To examine possible mechanisms associated with reduced female fetal growth in the no 

glucocorticoid group, protein peaks which were significantly increased or decreased in 

this group were examined. The aim was to gain further insight into the mechanisms 

involved in fetal growth restriction in asthmatic pregnancies. There were three peaks 

which were more highly expressed in the no glucocorticoid female group, and four 

peaks which were less highly expressed in the no glucocorticoid female group compared 

to the other groups. For example, one 18 week peak identified on the SAX chip at pH 9 

with CHCA matrix was significantly lower in the no glucocorticoid female group 

compared to the other groups (ANOVA, P=0.022, category B). The m/z of this peak 

was 22205. A peak with a similar m/z (22231) and a similar pattern of expression at 18 

weeks was also identified using the SAX chip at pH 9, with SPA as a matrix (ANOVA, 

P=0.0005, category B). The mean peak intensities of these two peaks in all groups are 

shown in Figure 5.11. Searching the Swiss-Prot database for a MW 22231 ± 0.5% or 

22205 ± 0.5%, with pI 5 ± 5 revealed 29 common matches. One of these matches was 

superoxide dismutase (SOD), an enzyme which protects against superoxide induced 

damage. There is much interest in the role of oxidative stress in asthma (720-722) and 
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further investigation into the role of SOD in pregnant women with asthma could be of 

interest. It is also possible that these two peaks do not represent the same protein, but 

have different identities. 
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Figure 5.11 Maternal plasma peak 22205 and 22231 

There was a significant decrease in 18 week maternal plasma mean peak intensities of peak 22205 (Panel 
A, SAX, pH 9, CHCA matrix) and peak 22231 (Panel B, SAX, pH 9, SPA matrix) in women pregnant with 
a female fetus from the no glucocorticoid group. * indicates P<0.05 (ANOVA).  

In addition, maternal plasma proteins which increased from 18 to 30 weeks gestation in 

the no glucocorticoid female group were examined. One peak, with m/z 6556, identified 

using WCX pH 4, was found to significantly increase from 18 to 30 weeks gestation 
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only in the no glucocorticoid group, when women were pregnant with a female fetus 

(Figure 5.12A, ANOVA, P=0.016). This peak may be a chemical alteration, possibly an 

oxidised derivative of another peak on the spectrum with a m/z of 6640 Da (Figure 

5.12B). Further identification of these peaks and characterisation of their function is 

required to fully understand their role in asthma during pregnancy. However, this 

peptide may be involved in the worsening of maternal asthma observed in the no 

glucocorticoid group as gestation progresses or it may contribute to alterations in 

placental function. 
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Figure 5.12 Maternal plasma peak 6556 at 18 and 30 weeks gestation 

Panel A shows the mean peak intensity ± SEM of a peak with m/z 6556 identified using a WCX chip, pH 4 
with SPA matrix. * indicates P<0.05 (ANOVA). Panel B shows matched 18 and 30 week spectra from an 
asthmatic woman (no glucocorticoid) pregnant with a female fetus in the region 6500-6900 Da. 
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5.6 Pregnancy outcomes for women with asthma 

Previous epidemiological evidence suggests that asthmatic women are more at risk of 

poor pregnancy outcomes including preterm labour or delivery, pre-eclampsia, PIH, 

caesarean section and neonatal complications. Data was extracted from the medical 

records on maternal blood pressure in late pregnancy, the type of labour (spontaneous, 

induced, augmented or no labour), the total duration of labour, the duration of ruptured 

membranes, blood loss during delivery, the presence of meconium staining and the type 

of delivery (vaginal or C section delivery). The frequency of PIH or pre-eclampsia 

(combined) in each group was determined. Results are presented in Table 5.5 for groups 

classified according to asthma severity and in Table 5.6 for groups classified according 

to glucocorticoid intake. Data was also analysed separately for women pregnant with 

male and female fetuses (data not shown), but due to the small numbers, statistical 

analysis was performed on the combined male/female groups only. 

Women with mild and severe asthma were found to have significantly higher systolic 

blood pressure in late gestation compared to non-asthmatic women (Kruskal-Wallis 

ANOVA, P=0.007, Dunn’s multiple comparisons test, P<0.05). In the control group, 

7% of women had PIH or pre-eclampsia diagnosed during pregnancy. However in the 

asthmatic groups, the frequency was higher, with 16% of women with mild asthma, 

11% of women with moderate asthma and 13% of women with severe asthma having 

PIH or pre-eclampsia. However, these rates were not significantly different from the 

control group (Fisher’s exact test, P>0.05).  

The rates of augmented labour, vaginal delivery, emergency caesarean section and 

meconium staining did not differ significantly between the groups (Fisher’s exact test, 

P>0.05). However, the rate of spontaneous labour onset was found to be significantly 

lower in the moderate asthma group (57%) compared to the control group (83%, 

Fisher’s exact test, P=0.037). A recent multi-centre prospective study found an 

increased rate of caesarean delivery in women with moderate and severe asthma (65).  



 

Table 5.5 Pregnancy outcomes for combined groups classified by asthma severity 

  Classification of Asthma Severity During Pregnancy 
  Control Mild Moderate Severe 

Number of Subjects 43 62 27 46 
         

Maternal Systolic Blood Pressure (mm Hg) 115 ± 2 (n=32)  123 ± 2 (n=61)* 117 ± 2 (n=27)  124 ± 2 (n=45)* 
         

Maternal Diastolic Blood Pressure (mm Hg) 70 ± 2 (n=32)  74 ± 1 (n=61)  71 ± 2 (n=27)  73 ± 2 (n=45)  
         

Gestational Age at Blood Pressure Measurement (weeks) 37.8 ± 0.6 (n=32)  38.4 ± 0.3 (n=61)  37.7 ± 0.6 (n=27)  38.5 ± 0.3 (n=45)  
         

PIH or Pre-eclampsia (% of subjects) 7% 16% 11% 13% 
         

Spontaneous Labour Onset (% of subjects) 83% 78% 57%* 71% 
         

Induced Labour Onset (% of subjects) 17% 22% 43% 29% 
         

Augmented Labour (% of subjects) 10% 16% 22% 17% 
         

Total Duration of Labour (hours) 6.3 ± 1.0 (n=21) 6.3 ± 0.5 (n=37)  6.1 ± 0.9 (n=18)  6.5 ± 0.8 (n=27)  
         

Duration of Ruptured Membranes (hours) 11.1 ± 2.5 (n=9) 7.5 ± 1.5 (n=20) 14.1 ± 4.4 (n=10) 8.0 ± 2.9 (n=10) 
         

Vaginal Delivery (% of subjects) 88% 79% 74% 78% 
         

C Section Delivery (% of subjects) 12% 21% 26% 22% 
         

Emergency C Section Delivery (% of subjects) 7% 10% 11% 11% 
         

Meconium Staining (% of subjects) 16% 15% 11% 22% 
         

Blood Loss (ml) 344 ± 54 (n=42)  342 ± 29 (n=61)  426 ± 87 (n=27)  359 ± 35 (n=45)  
  Values given are Mean ± Standard Error of the Mean 

*Compared to control (ANOVA, P<0.05), *Compared to control (Fisher’s exact test, P<0.05) 
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Table 5.6 Pregnancy outcomes for combined groups classified by glucocorticoid intake 

  Classification of Glucocorticoid Intake During Pregnancy 
  Control No Glucocorticoid Low Moderate High Glucocorticoid 

Number of Subjects 43 46 21 41 27 89 
             

Maternal Systolic Blood Pressure (mm Hg) 115 ± 2 (n=32)  123 ± 2 (n=45)* 122 ± 3 (n=21)  119 ± 2 (n=40)  125 ± 2 (n=27)* 122 ± 1 (n=88) 
             

Maternal Diastolic Blood Pressure (mm Hg) 70 ± 2 (n=32)  73 ± 2 (n=45)  73 ± 3 (n=21)  72 ± 2 (n=40)  75 ± 2 (n=27)  73 ± 1 (n=88)  
             

Gestational Age at Blood Pressure Measurement (weeks) 37.8 ± 0.6 (n=32)  38.3 ± 0.3 (n=45)  38.9 ± 0.2 (n=21)  38.2 ± 0.5 (n=40)  37.8 ± 0.6 (n=27)  38.2 ± 0.3 (n=88) 
             

PIH or Pre-eclampsia (% of subjects) 7% 11% 19% 10% 22% 16% 
             

Spontaneous Labour Onset (% of subjects) 83% 78% 67% 76% 57%** 68% 
             

Induced Labour Onset (% of subjects) 17% 22% 33% 24% 43% 32% 
             

Augmented Labour (% of subjects) 10% 20% 22% 22% 4% 16% 
             

Total Duration of Labour (hours) 6.3 ± 1.0 (n=21)  6.6 ± 0.8 (n=29)  6.8 ± 0.8 (n=14)  5.7 ± 0.7 (n=24)  6.3 ± 0.9 (n=15)  6.2 ± 0.5 (n=53)  
             

Duration of Ruptured Membranes (hours) 11.1 ± 2.5 (n=9) 8.5 ± 2.9 (n=17) 10.3 ± 1.8 (n=9) 9.4 ± 3.1 (n=8) 9.6 ± 3.4 (n=6)  9.8 ± 1.7 (n=23)  
             

Vaginal Delivery (% of subjects) 88% 78% 76% 73% 85% 77% 
             

C Section Delivery (% of subjects) 12% 22% 24% 27% 15% 23% 
             

Emergency C Section Delivery (% of subjects) 7% 11% 10% 17% 0% 10% 
             

Meconium Staining (% of subjects) 16% 20% 10% 20% 15% 15% 
             

Blood Loss (ml) 344 ± 54 (n=42)  294 ± 18 (n=45)  374 ± 69 (n=21)  434 ± 65 (n=41)  370 ± 43 (n=26)  401 ± 36 (n=88)  
  Values given are Mean ± Standard Error of the Mean 

*Compared to control (Kruskal-Wallis ANOVA, P<0.05), **Compared to control (Fisher’s exact test, P<0.05) 
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When data was analysed based upon inhaled glucocorticoid intake classification, 

women in the no glucocorticoid and high dose glucocorticoid groups were found to 

have significantly higher systolic blood pressure in late gestation than women in the 

control group (Kruskal-Wallis ANOVA, P=0.010, Dunn’s multiple comparisons test, 

P<0.05). Diastolic blood pressure was not significantly different between groups 

(Kruskal-Wallis ANOVA, P=0.537). There was a trend towards an increase in the 

number of women with PIH or pre-eclampsia in the high dose glucocorticoid group 

(22%) compared to the control group (7%, Fisher’s exact test, P=0.079). Interestingly, 

in the high dose group, three out of seven subjects (43%) pregnant with a male fetus had 

PIH or pre-eclampsia, while only three out of 20 subjects (15%) pregnant with a female 

fetus had PIH or pre-eclampsia. In the no glucocorticoid group, however, there was a 

higher rate of PIH and pre-eclampsia in women pregnant with a female fetus (18%) 

compared to women pregnant with a male fetus (4%). Due to the small numbers, these 

trends could not be verified statistically. 

The rate of spontaneous labour onset was found to be significantly lower in the high 

dose glucocorticoid group (57%) compared to the control group (83%, Fisher’s exact 

test, P=0.037). However, the rates of augmented labour, vaginal delivery, emergency 

caesarean section and meconium staining did not differ significantly between the groups 

(Fisher’s exact test, P>0.05).  

There were no significant differences in the total duration of labour (ANOVA, 

P=0.921), duration of ruptured membranes (ANOVA, P=0.974), or blood loss during 

delivery (Kruskal-Wallis ANOVA, P=0.179) between groups classified according to 

glucocorticoid intake. 
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5.7 The Mother - Discussion 

Previous studies have demonstrated that there is no change in lung function parameters 

such as FEV1, FEV1:FVC or PEFR across each trimester of pregnancy in asthmatic or 

non-asthmatic women (43, 81, 115, 116). These earlier studies in pregnant women did 

not take fetal sex into account when examining maternal lung function. However, my 

data shows that in asthmatic women pregnant with a female fetus, there is a decrease in 

FEV1:FVC from early to late pregnancy regardless of inhaled glucocorticoid use. This 

significant reduction in maternal lung function was observed between approximately 23 

and 32 weeks gestation, which precedes the onset of reduced female fetal growth in the 

no glucocorticoid group. This is the first report of changes in lung function as measured 

by FEV1:FVC during pregnancy in relation to fetal sex.  

Schatz et al. have previously demonstrated that poor maternal lung function, indicated 

by lower maternal FEV1 was associated with a greater incidence of birth weights in the 

lower quartile and asymmetric growth restriction (83). In their study, FEV1 was 

measured several times during pregnancy (3-25 times) and the mean percent predicted 

FEV1 was used in the data analysis. I also found a relationship between maternal lung 

function (FEV1:FVC at the first AMS visit) and neonatal birth weight among females 

from the no glucocorticoid group, suggesting that reduced lung function may be a 

contributing factor to reduced birth weight in this group. However, the lung function of 

mothers in the glucocorticoid group was significantly worse than lung function in the no 

glucocorticoid group (with a female fetus present), and yet no changes in female fetal 

growth were observed in this group and no correlation between lung function and birth 

weight was found. In addition, the use of anti-inflammatory inhaled glucocorticoids by 

women with mild asthma was associated with female birth weights comparable to 

control non-asthmatics. Together, the data suggest that alterations in maternal 

inflammatory pathways rather than alterations in lung function alone, may be a major 

component of the mechanism contributing to low birth weight in asthmatic pregnancies.  

Maternal hypoxia may not be a direct contributor to low birth weight in pregnancies 

complicated by mild asthma. Although maternal oxygenation was not directly measured 

in this study, the women who had smaller babies were mild asthmatics who reported 

few symptoms or exacerbations of asthma during their pregnancies. Mild asthmatics are 
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not thought to be hypoxic (723). Valente et al. studied a group of mild asthmatics with 

basal PO2 levels which were slightly lower than healthy controls (borderline statistical 

significance), but were within the normal range and increased with β2-agonist inhalation 

(724). Gries et al. found no difference in overnight oxygen saturation in asthmatics who 

did not use any medications compared to healthy controls (725). However, it is possible 

that PO2 in the placental circulation may be unrelated to PO2 at the level of the lungs. 

Conversely, patients with acute severe asthma requiring hospitalisation have reduced 

PO2 (89, 723) sometimes requiring oxygen therapy (90). Hypoxia is a feature of asthma 

exacerbations (88), but unlikely to be significant in the women who were classified as 

mild asthmatics and did not require inhaled glucocorticoids. A study of high altitude 

pregnancies in Saudi Arabia did find reduced birth weight in asthmatic women (62). 

They suggested that the hypoxic environment may have contributed to this outcome; 

however, all of the asthmatics in their study had severe asthma, as they were selected 

based on visits to the emergency room for asthma during pregnancy (62). The hypoxic 

high altitude environment is associated with reduced late gestation fetal growth (293), 

which was evident by ultrasound from 25 weeks gestation, in a study of over 400 

women, using regression models (320). In my study, no differences in fetal growth were 

observed by ultrasound up to 30 weeks gestation, suggesting that the overall reduction 

in fetal growth occurs after this point. Previous work in our population of asthmatics 

demonstrated altered placental blood flow in women with moderate and severe asthma, 

but not in women with mild asthma or women who did not use inhaled glucocorticoids 

(111). This suggests that altered placental blood flow, often a consequence of maternal 

hypoxia (324), may not be contributing to the reduced female birth weight in mild 

asthmatics observed in this study. 

The use of β2-agonists by women with mild asthma who did not use inhaled 

glucocorticoids is unlikely to contribute to low birth weight. Although within the no 

glucocorticoid group, women who used β2-agonists had lower female birth weights than 

those who did not use β2-agonists, this is likely to be related to asthma symptoms and 

asthma-associated inflammation, rather than the drug use itself, since the β2-agonist was 

used less than two times per week, compared to an average of 12 times per week in the 

glucocorticoid group. Schatz et al. found no effect of β2-agonist use on birth weight or 

any other fetal outcomes in 259 subjects, compared to 101 asthmatics who did not use 

β2-agonists and 295 control non-asthmatic subjects (183). In my study, there was 
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evidence of two sub-groups of asthmatic women in the no glucocorticoid group: those 

who were symptomatic and those who were in remission. Those asthmatics considered 

in remission had normal female birth weights compared to the control group, while the 

presence of very mild symptomatic asthma contributed to reduced birth weight in 

asthmatic pregnancies. The possible beneficial effect of low dose inhaled 

glucocorticoids in symptomatic women with mild asthma will need to be investigated in 

a future randomised trial. 

Asthma remission may protect against changes in female fetal growth through reduced 

inflammation as a result of improved clinical status. Noma et al. found that adolescents 

in remission from atopic asthma, had significant reductions in spontaneous IL-1α 

secretion, antigen-stimulated IL-1α or IL-1β secretion and the proliferative response to 

IL-5 in peripheral blood mononuclear cells compared to adolescents with active asthma 

(726, 727). However, airway obstruction (728) or bronchial hyperresponsiveness may 

still be present in individuals in remission (729). In addition, similar exhaled NO levels 

in patients in remission and with current asthma suggest that inflammation of the airway 

persists, despite remission of clinical symptoms (730). One study described increased 

eosinophils, T cells, mast cells and IL-5 in airway mucosa, as well as increased blood 

eosinophil counts in subjects in remission who had experienced no symptoms and used 

no medication for at least 12 months, compared to healthy controls (731). It is possible 

that inflammatory factors which are improved during clinical remission, contribute to 

reduced female fetal growth in symptomatic mild asthmatics who do not use inhaled 

glucocorticoids. 

Recent data in asthmatic pregnancies suggests that women pregnant with a female fetus 

have increasing asthma severity as gestation progresses (164, 165), and an increase in 

the incidence of complications such as pre-eclampsia or preterm delivery (49). As 

reviewed previously, the possibility of an association between fetal sex and maternal 

asthma severity was first raised in the 1930s, but in these earlier studies the effect of 

fetal sex varied between individual women and only small numbers of patients were 

studied (140, 166, 170). One recent publication found no significant association 

between fetal sex and changes in maternal asthma during pregnancy (142). In addition, 

this study examined many other factors such as season of delivery, maternal smoking 

and maternal body weight and only found that changes in rhinitis symptoms were 

significantly associated with changes in maternal asthma during pregnancy (142). I 
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found that overall, inhaled glucocorticoid intake by asthmatic women using moderate or 

high doses significantly increased in late pregnancy when women were pregnant with a 

female fetus, suggesting an up-regulation of inflammation associated with asthma as 

gestation progressed. Conversely, no significant increase in glucocorticoid requirements 

was found in asthmatic women pregnant with a male fetus. This finding may also have 

been related to the decrease in lung function found in asthmatics pregnant with a female 

fetus, leading to an increase in glucocorticoid therapy in those asthmatic women already 

using these medications. Previous work has shown that up to 42% of asthmatic women 

require more therapy during pregnancy (55). However, the studies reported by Beecroft 

et al. and Dodds et al. did not examine changes in asthma treatment with increasing 

gestation (164, 165). Beecroft et al. reported that mothers of girls were more likely to 

have a worsening of asthma symptoms in the second trimester, while those pregnant 

with boys were more likely to improve (164). These results are similar to my finding 

that there was an increase in the number of asthmatic women pregnant with a male fetus 

who were symptom free by late pregnancy, while in asthmatic women pregnant with a 

female fetus there was no change in the number who were symptom free. In addition, I 

found that women in the glucocorticoid group who were pregnant with a male fetus had 

a significant reduction in reported night-time asthma symptoms. These data support the 

hypothesis that alterations in maternal asthma during pregnancy differ with fetal sex.  

In the asthmatic women who were medically advised not to use inhaled glucocorticoids 

because they were assessed as having a very mild disease, a significant rise in the 

number of circulating monocytes was observed as gestation progressed when they were 

pregnant with a female fetus. This supports the concept that increased maternal 

inflammation is associated with reduced female fetal growth in this group. Changes in 

maternal systemic inflammation in the presence of a female fetus may also be involved 

in the increased risk of developing pre-eclampsia or preterm labour in asthmatic 

pregnancies, via a common pathway such as phenotypic activation of maternal 

monocytes which has previously been observed in women with pre-eclampsia and 

women in preterm labour (732, 733). In previous studies an increased risk for 

developing pre-eclampsia or PIH has been observed in women with asthma (42, 49-51, 

55, 61, 62). Although numbers are small in my study, there was also a trend towards a 

greater incidence of hypertension in Australian asthmatic women. Liu et al. observed an 

increased risk for pre-eclampsia in asthmatic women pregnant with a female fetus (49). 
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In this study, asthma was identified using a coded administrative database, which the 

authors claim may not have included women with mild or intermittent asthma. In my 

preliminary analysis of pregnancy outcomes, there appeared to be an increased risk for 

pre-eclampsia in women pregnant with a male fetus if they used high doses of inhaled 

glucocorticoids, and women pregnant with a female fetus who did not use inhaled 

glucocorticoids. Further investigation into the mechanisms contributing to fetal sex-

related differences in pre-eclampsia risk in the presence of maternal asthma will be 

required using larger sample sizes.  

Monocytes, the precursors to macrophages, are important inflammatory mediators in 

asthma, via their interactions with Th2 lymphocytes, eosinophils and mast cells within 

the asthmatic airway. Alveolar monocytes/macrophages from patients with mild asthma 

are highly activated (734), as demonstrated by the presence of cell wall antigens 

required for recognition by CD4+ lymphocytes (735). Previous studies have 

demonstrated that co-culture of CD4+ T cells with peripheral blood monocytes from 

atopic asthmatic subjects results in enhanced production of IL-4 and IL-5 (736, 737). In 

addition, monocytes interact with airway smooth muscle cells in vitro, inducing 

collagen degradation through the induction of matrix metalloproteinase 1, 2 and 9 (738). 

Monocytes release numerous cytokines including TNF-α (739-742), IL-1β (739, 740, 

742), IL-6 (742) and granulocyte macrophage-colony stimulating factor (GM-CSF) 

(740, 741). In my study, both the number and the percentage of monocytes in the 

maternal circulation of asthmatics who did not use glucocorticoids and were pregnant 

with a female fetus, increased during gestation, suggesting that there was a specific up-

regulation of this leukocyte, rather than simply an overall increase in white blood cell 

numbers.  

Both the number (743) and function (744-747) of monocytes can be inhibited by 

glucocorticoid use, thus supporting their specific role in pregnant asthmatic women who 

do not use inhaled glucocorticoids. Budesonide inhibits GM-CSF production from 

mononuclear blood cells (748). Steer et al. showed a reduction in peripheral blood 

lymphocytes and monocytes following methylprednisolone injection along with a 

decreased release of TNF-α from monocytes after 4 hours (749). Brohee et al. found 

that intravenous cortisol led to monocytopenia within 1 hour, while neutrophilia and 

eosinopenia were observed after 6 hours (750). Similar results were reported in patients 

on oral dexamethasone or prednisone therapy (751, 752). Increased monocytes may 
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represent a specific response to worsening asthma in the presence of a female fetus, 

which is inhibited by glucocorticoid use. 

Eosinophil numbers were also higher in early pregnancy in asthmatic mothers compared 

to non-asthmatics, which is in agreement with previous studies in non-pregnant adults 

(753). Eosinophilic inflammation has been found to predominate in exacerbations of 

mild asthma (754). However, many individuals with persistent asthma display a non-

eosinophilic pattern of airway inflammation (755), which may be associated with 

neutrophil activation (756). Although inflammation of the airway was not directly 

examined in my study, the available evidence from circulating white blood cells 

suggests that eosinophilic inflammation may not be the primary inflammatory 

mechanism operating during asthmatic pregnancies. Unlike the monocyte count, the 

eosinophil count did not differ significantly between mothers pregnant with a male and 

female fetus in the no glucocorticoid group, nor did it increase as gestation progressed. 

In fact, eosinophil numbers significantly decreased in the glucocorticoid group as 

gestation progressed in asthmatic women pregnant with male and female fetuses. These 

data suggest that in the absence of inhaled glucocorticoid use and in the presence of a 

female fetus, cytokines derived from circulating monocytes, rather than eosinophils may 

be important for alterations in placental function which contribute to reduced female 

fetal growth. 

Active maternal inflammation may contribute to low birth weight in asthmatic 

pregnancies. In women with rheumatoid arthritis, only those with active disease (rather 

than disease in remission) had reduced birth weights compared to a control group (95). 

Furthermore, women with inflammatory bowel disease had an increased risk for low 

birth weight (103), particularly when exacerbations occurred during pregnancy (101). 

Asthmatic women pregnant with a female fetus showed signs of increased maternal 

inflammation during pregnancy, with increased circulating monocytes, which may have 

contributed to reduced fetal growth. 

Proteomic analysis indicated that there were a large number of plasma protein 

differences between asthmatic and non-asthmatic pregnant women. The number of 

differences decreased during pregnancy, but at each time point, a different set of protein 

differences was represented. Despite this, there was one asthma associated peptide 

identified which was significantly higher in asthmatics compared to non-asthmatics at 
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both 18 and 30 weeks gestation. It is possible that this peptide is a novel protein, which 

could be a potential target for future drug therapies for asthma. The protein profile of 

asthmatic women in the no glucocorticoid group also showed at least one peak which 

increased as gestation progressed and may be a marker of protein modification, possibly 

oxidation. This will need to be verified with further SELDI studies.  

The objective measurements of lung function and circulating white blood cells during 

asthmatic pregnancies suggest that the female fetus has an effect on maternal 

physiology. It is possible that factors derived from the female fetus cause changes in 

inflammation in the mother. It is also possible that factors derived from the male fetus 

protect the mother against pregnancy-induced alterations in asthma. Fetal DNA (757) as 

well as mRNA of placental origin (758) has been found to circulate in women for as 

many as 27 years post-partum (757). This evidence suggests that fetally-derived factors 

may circulate in pregnant women where they could potentially alter maternal 

physiology. Preliminary evidence from the proteomic profiling shows that protein 

expression patterns in the mother also differ depending on the sex of the fetus. In 

addition, these patterns change during the course of pregnancy, suggesting that there is a 

dynamic interaction between mother and fetus during pregnancy. Plasma proteins may 

contribute to changes in maternal inflammatory pathways in asthmatic pregnancies and 

further work is required to identify these proteins and characterise their role during 

pregnancy.  
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5.8 The Mother – Summary 5.8 The Mother – Summary 

The data outlined in this chapter indicate that there is an interaction between the fetus 

and the mother (Figure 5.13). The presence of a female fetus resulted in a decrease in 

lung function as pregnancy progressed, an increasing requirement for inhaled 

glucocorticoids, and an increase in the circulating levels of monocytes. Factors derived 

from the fetus may cause changes in inflammation in the mother. The placenta, being 

vitally important in the control of fetal growth, may represent an additional link 

between the mother and fetus. The next chapter will examine various aspects of 

placental function, which may contribute to the mechanism of reduced fetal growth in 

asthmatic pregnancies. 

The data outlined in this chapter indicate that there is an interaction between the fetus 

and the mother (Figure 5.13). The presence of a female fetus resulted in a decrease in 

lung function as pregnancy progressed, an increasing requirement for inhaled 

glucocorticoids, and an increase in the circulating levels of monocytes. Factors derived 

from the fetus may cause changes in inflammation in the mother. The placenta, being 

vitally important in the control of fetal growth, may represent an additional link 

between the mother and fetus. The next chapter will examine various aspects of 

placental function, which may contribute to the mechanism of reduced fetal growth in 

asthmatic pregnancies. 
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Figure 5.13 The interaction between mother and fetus in pregnancies complicated by Figure 5.13 The interaction between mother and fetus in pregnancies complicated by 

asthma 

In the presence of a female fetus, maternal asthma worsens during pregnancy, as demonstrated by a 
significant rise in circulating monocytes and a significant reduction in lung function. These alterations in 
maternal asthma in the absence of glucocorticoid therapy are associated with significantly reduced 
female birth weight.  
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The Placenta

6.1 Placental characteristics 

Placental weight and birth weight to placental weight ratios for groups classified by 

asthma severity are shown in Table 6.1 and for groups classified by inhaled 

glucocorticoid intake in Table 6.2. When analysed by maternal asthma severity 

classification, there were no significant differences in any female or male placental 

characteristics (ANOVA, P>0.05). 

Despite reduced birth weight in females from the no glucocorticoid group, there was no 

significant reduction in placental weight in this group compared to females from the 

control and combined glucocorticoid group (Kruskal-Wallis ANOVA, P=0.663). The 

birth weight to placental weight ratio was slightly lower on average in females from the 

no glucocorticoid group due to lower birth weight, but was not significantly different 

from females of the other groups (Kruskal-Wallis ANOVA, P=0.369). There was no 

significant difference in placental weights or birth weight to placental weight ratios 

between females or males of any group (Kruskal-Wallis ANOVA, P=0.949). 

SD ratios were determined using Doppler ultrasound measurements made by Prof 

Warwick Giles and were used to assess umbilical artery flow in utero. The SD ratio is 

normally higher in early pregnancy, decreasing due to increased diastolic flow as a 

result of fetal development (759, 760). There were no significant differences between 

groups in the 18 or 30 week gestation SD ratio in females (Kruskal-Wallis ANOVA, 

P>0.05) or males (Kruskal-Wallis ANOVA, P>0.05). 

Despite normal placental size and umbilical artery blood flow, it is possible that there 

are other alterations in placental function which contribute to changes in female fetal 

growth in asthmatic pregnancies. 



 

Table 6.1 Placental characteristics for groups classified by asthma severity 

 Classification of Asthma Severity During Pregnancy 
 Female Fetus Control Mild Moderate Severe 

Placental Weight (g) 607.6 ± 31.8 (n=17) 627.2 ± 27.9 (n=21) 670.3 ± 191.3 (n=2)* 607.6 ± 32.0 (n=16) 
          

Birth Weight: Placental Weight Ratio 5.85 ± 0.21 (n=17) 5.68 ± 0.21 (n=21) 5.26 ± 0.29 (n=2)* 5.77 ± 0.29 (n=16) 
         

SD Ratio at 18 Weeks Gestation 4.15 ± 0.44 (n=8) 4.95 ± 0.35 (n=18) 4.45 ± 0.35 (n=2)* 4.96 ± 0.41 (n=15) 
         

SD Ratio at 30 Weeks Gestation 2.96 ± 0.10 (n=24) 3.18 ± 0.14 (n=28) 3.20 ± 0.23 (n=9) 2.89 ± 0.13 (n=23) 
         

Change in SD Ratio (18 to 30 Weeks) 1.35 ± 0.32 (n=8) 1.89 ± 0.41 (n=17) 0.80 ± 0.50 (n=2)* 1.98 ± 0.38 (n=15) 
     

Male Fetus Control Mild Moderate Severe 
Placental Weight (g) 653.0 ± 46.9 (n=16) 673.4 ± 37.4 (n=19) 635.6 ± 39.5 (n=11) 641.1 ± 57.3 (n=7) 

         
Birth Weight: Placental Weight Ratio 5.79 ± 0.33 (n=15) 6.00 ± 0.23 (n=19) 5.68 ± 0.27 (n=11) 5.73 ± 0.34 (n=7) 

         
SD Ratio at 18 Weeks Gestation 4.47 ± 0.26 (n=9) 4.08 ± 0.28 (n=16) 4.23 ± 0.35 (n=8) 4.24 ± 0.59 (n=5) 

         
SD Ratio at 30 Weeks Gestation 2.78 ± 0.08 (n=20) 2.73 ± 0.10 (n=24) 2.74 ± 0.08 (n=16) 2.78 ± 0.10 (n=16) 

         
Change in SD Ratio (18 to 30 Weeks) 1.64 ± 0.24 (n=8) 1.43 ± 0.29 (n=16) 1.50 ± 0.35 (n=8) 1.16 ± 0.59 (n=5) 

  Values given are Mean ± Standard Error of the Mean 
*Data not included in statistical analysis due to small number of subjects 
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Table 6.2 Placental characteristics for groups classified by glucocorticoid intake 

 Classification of Glucocorticoid Intake During Pregnancy 
Female Fetus  Control No Glucocorticoid Glucocorticoid 

Placental Weight (g) 607.6 ± 31.8 (n=17) 639.7 ± 19.3 (n=21) 615.3 ± 35.1 (n=21) 
        

Birth Weight: Placental Weight Ratio 5.85 ± 0.21 (n=17) 5.42 ± 0.17 (n=21) 5.85 ± 0.27 (n=21) 
       

SD Ratio at 18 Weeks Gestation 4.15 ± 0.44 (n=8) 5.14 ± 0.36 (n=19) 4.67 ± 0.34 (n=16) 
       

SD Ratio at 30 Weeks Gestation 2.96 ± 0.10 (n=24) 3.21 ± 0.15 (n=24) 3.00 ± 0.11 (n=36) 
       

Change in SD Ratio (18 to 30 Weeks) 1.35 ± 0.32 (n=8) 2.08 ± 0.41 (n=18) 1.62 ± 0.33 (n=16) 
    

Male Fetus Control No Glucocorticoid Glucocorticoid 
Placental Weight (g) 653.0 ± 46.9 (n=16) 664.6 ± 36.1 (n=18) 659.8 ± 31.9 (n=21) 

       
Birth Weight: Placental Weight Ratio 5.79 ± 0.33 (n=15) 5.84 ± 0.21 (n=17) 5.82 ± 0.23 (n=21) 

       
SD Ratio at 18 Weeks Gestation 4.47 ± 0.26 (n=9) 3.83 ± 0.20 (n=14) 4.44 ± 0.33 (n=15) 

       
SD Ratio at 30 Weeks Gestation 2.78 ± 0.08 (n=20) 2.69 ± 0.11 (n=21) 2.76 ± 0.06 (n=36) 

       
Change in SD Ratio (18 to 30 Weeks) 1.64 ± 0.24 (n=8) 1.11 ± 0.25 (n=14) 1.67 ± 0.32 (n=15) 

  Values given are Mean ± Standard Error of the Mean 
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6.2 Placental 11β-HSD 

Previous studies have demonstrated that placental 11β-HSD2 activity and mRNA is 

reduced in pregnancies complicated by IUGR (554, 558). In addition, cortisol itself and 

synthetic glucocorticoids are known to have anti-mitogenic effects during pregnancy 

(486, 503).  

6.2.1 Placental 11β-HSD2 activity 

Placental 11β-HSD2 activity was found to be significantly lower overall when the fetus 

was male than when the fetus was female (3.67 ± 0.35 nmol/mg/h, n=26 male vs 5.82 ± 

0.497 nmol/mg/h, n=39 female, unpaired t-test with Welch correction, P=0.0007).  

When data was analysed according to maternal asthma severity, there was no significant 

difference in 11β-HSD2 activity in placentae collected from males or females in any 

group compared to the male or female control non-asthmatic group (ANOVA, females: 

P=0.818, males: P=0.985). 

Placental 11β-HSD2 enzyme activity was lower in placentae collected from female 

neonates of the no glucocorticoid group (2.60 ± 0.33 nmol/mg/h, n=7) compared to 

placentae collected from females of the control group (4.96 ± 1.02 nmol/mg/h, n=6) and 

the combined glucocorticoid group (6.88 ± 0.59 nmol/mg/h, n=26, Kruskal-Wallis 

ANOVA, P=0.0007, Dunn’s multiple comparisons test, no glucocorticoid vs 

glucocorticoid P<0.05, Figure 6.1). Placental 11β-HSD2 activity was not significantly 

different between males in the control, no glucocorticoid or glucocorticoid groups 

(Figure 6.1, ANOVA, P=0.420). Placental 11β-HSD2 activity was significantly lower in 

placentae collected from males compared to females both within the glucocorticoid 

group (Mann Whitney test, P=0.0016) and when the control and glucocorticoid groups 

were combined (Mann Whitney test, P=0.001), but activity was not significantly 

different between males and females from the no glucocorticoid group (Mann Whitney 

test, P=0.456). 

Within the glucocorticoid group, there was no significant difference in 11β-HSD2 

activity between the low, moderate and high dose groups (ANOVA, P=0.968). Activity 

was significantly reduced in the no glucocorticoid group (Kruskal-Wallis ANOVA, 

P=0.006) compared to females from the moderate (P<0.05) and high dose groups 
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(Dunn’s multiple comparisons test, P<0.01), but was not significantly different from the 

low dose group (P>0.05). 
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Figure 6.1 Placental 11β-HSD2 activity according to glucocorticoid intake 

classification 

Mean 11β-HSD2 activity (nmol/mg/h) ± SEM for placentae collected from male and female neonates of 
the control, no glucocorticoid and glucocorticoid groups. * indicates P<0.05 (Kruskal-Wallis ANOVA, 
no glucocorticoid female vs glucocorticoid female group). 

Placental 11β-HSD2 activity was not significantly altered by maternal smoking. 

11β-HSD2 activity for smokers was 4.63 ± 0.76 nmol/mg/h (n=16) compared to 5.06 ± 

0.40 nmol/mg/h (n=49) for non-smokers (unpaired t-test, P=0.597). There was no 

significant difference in placental 11β-HSD2 activity between smokers and non-

smokers within any of the no glucocorticoid or glucocorticoid male/female sub-groups 

(data not shown). This result is consistent with in vitro studies showing no effect of 

nicotine on 11β-HSD2 activity in placental cell cultures (761). 

Multivariate analysis verified that 11β-HSD2 activity was associated with fetal sex and 

maternal glucocorticoid intake (P=0.008), but was not affected by maternal asthma 

severity or smoking. 

6.2.2 Placental 11β-HSD2 protein 

Placental 11β-HSD2 protein was not significantly related to fetal sex (1.91 ± 0.22, n=25 

male, vs 1.90 ± 0.18, n=32 female, unpaired t-test, P=0.982). 
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When placental 11β-HSD2 protein was analysed according to maternal asthma severity, 

there were no significant differences between the groups (Kruskal-Wallis ANOVA, 

females: P=0.375, males: P=0.522). 

When placental 11β-HSD2 protein was examined in relation to inhaled glucocorticoid 

intake, there were no significant differences between the groups (Figure 6.2, Kruskal-

Wallis ANOVA, females: P=0.575, males: P=0.201).  
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Figure 6.2 Placental 11β-HSD2 protein according to glucocorticoid intake 

classification 

Placental 11β-HSD2 protein was measured by Western blotting. The figure shows mean 11β-HSD2 
protein (arbitrary densitometric units) ± SEM for placentae collected from male and female neonates of 
the control, no glucocorticoid and glucocorticoid groups. 

6.2.3 Placental 11β-HSD2 mRNA 

Placental 11β-HSD2 mRNA abundance was not significantly different between 

placentae collected from male (0.654 ± 0.050, n=37) and female neonates (0.630 ± 

0.050, n=51, unpaired t-test, P=0.734).  

11β-HSD2 mRNA in placentae collected from males was not significantly different 

between the groups classified by maternal asthma severity (ANOVA, P=0.1034). 

However, there was a significant reduction in placental 11β-HSD2 mRNA in females 

from the severe asthma group compared to the control group (ANOVA, P=0.036, 

Tukey-Kramer multiple comparisons test, P<0.05).  
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Placental 11β-HSD2 mRNA was not significantly different between the groups 

classified by inhaled glucocorticoid intake (Figure 6.3, ANOVA, females: P=0.111, 

males: P=0.408). 
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Figure 6.3 Placental 11β-HSD2 mRNA according to glucocorticoid intake 

classification 

Placental 11β-HSD2 mRNA abundance was measured by quantitative real-time RT-PCR. The figure 
shows mean 11β-HSD2 mRNA abundance (relative to β-actin mRNA) ± SEM for placentae collected from 
male and female neonates of the control, no glucocorticoid and glucocorticoid groups. 

6.2.4 Placental 11β-HSD1 mRNA 

Placental 11β-HSD1 and 11β-HSD2 mRNA abundance were both determined by 

quantitative RT-PCR in 88 placental samples. Two of these samples contained more 

11β-HSD1 mRNA than 11β-HSD2 mRNA, while in the remainder, the level of 

expression of 11β-HSD1 was much lower than that of 11β-HSD2. On average the level 

of 11β-HSD2 mRNA was 36 times higher than that of 11β-HSD1 mRNA (range 0.6 to 

117). This was expected since 11β-HSD1 is found only in the endothelium of placental 

villous tissue (521), while 11β-HSD2 is found in the syncytiotrophoblast (521, 526). 

11β-HSD1 reductase activity was found to be very low in the placenta, and was not 

easily measurable above background (data not shown).  
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There was no difference in 11β-HSD1 mRNA between placentae collected from male 

(0.030 ± 0.005, n=34) and female neonates (0.029 ± 0.003, n=52, Mann Whitney test, 

P=0.519). 

Placental 11β-HSD1 mRNA abundance was not significantly different between the 

groups classified according to asthma severity (ANOVA, males: P=0.718, Kruskal-

Wallis ANOVA, females: P=0.634) or glucocorticoid intake (Kruskal-Wallis ANOVA, 

females: P=0.297, ANOVA, males: P=0.860, data not shown). 

6.3 Placental CRH 

CRH gene expression in the placenta is positively regulated by glucocorticoids (762, 

763) and it was hypothesised that exogenous glucocorticoids such as those used by 

women for asthma treatment, or endogenous glucocorticoids crossing the placenta due 

to decreased 11β-HSD2 activity, may influence placental CRH mRNA. 

There was one outlier in the CRH mRNA data. This subject was a moderate asthmatic 

using a high dose of inhaled glucocorticoids who had a preterm delivery of a female 

neonate and had been administered antenatal corticosteroids for fetal lung maturation. 

As expected, CRH mRNA relative to β-actin in this placenta was more than eight times 

greater than the control group average. This data point was removed from further 

analysis. 

There was no significant difference between CRH mRNA in placentae collected from 

male neonates (0.751 ± 0.098, n=37) and placentae collected from female neonates 

(0.818 ± 0.111, n=42, Mann Whitney test, P=0.783). 

When combining male and female data (due to small numbers in the control group), 

there was no significant difference between the control group and the asthma groups 

classified by asthma severity (Kruskal-Wallis ANOVA, P=0.827) or by inhaled 

glucocorticoid intake (Figure 6.4, Kruskal-Wallis ANOVA, P=0.730).  

No correlation was found between average pregnancy dose of inhaled glucocorticoids 

and placental CRH mRNA or the third trimester dose of inhaled glucocorticoids and 

placental CRH mRNA, suggesting that even high doses of inhaled glucocorticoids used 

for asthma treatment during pregnancy, do not have an effect on the placenta. 
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Figure 6.4 Placental CRH mRNA according to glucocorticoid intake classification 

Placental CRH mRNA was measured by quantitative real-time RT-PCR. The figure shows mean CRH 
mRNA abundance (relative to β-actin mRNA) ± SEM for placentae collected from the control, no 
glucocorticoid, low, moderate and high dose glucocorticoid groups (male and female neonates 
combined). 

6.4 Placental growth factors 

Insulin-like growth factors are important growth regulators during pregnancy, both for 

the fetus and the placenta. IGF-I, IGF-II and IGFBP-1 were possible candidates 

involved in fetal growth regulation in asthmatic pregnancies and mRNA was measured 

in the placenta by quantitative real time RT-PCR, comparing abundance to β-actin 

mRNA. 

There was no difference between overall male and female placental expression of IGF-I 

mRNA (Mann Whitney test, P=0.884), IGF-II mRNA (Mann Whitney test, P=0.436) or 

IGFBP-1 mRNA (Mann Whitney test, P=0.319). 

When data was analysed according to maternal asthma severity, there was a significant 

reduction in IGF-I mRNA in placentae from females from the severe asthma group 

compared to the placentae from females from the control group (Kruskal-Wallis 

ANOVA, P=0.008, Dunn’s multiple comparisons test, P<0.05). This was also the group 

which had a significant reduction in 11β-HSD2 mRNA compared to the control female 

group. There were no significant differences in IGF-I mRNA between the groups in 

placentae from male neonates (Kruskal-Wallis ANOVA, P=0.573).  
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There were no significant differences in placental IGF-II mRNA or IGFBP-1 mRNA in 

males or females from the mild, moderate or severe asthma groups, compared to males 

or females from the control group (Kruskal-Wallis ANOVA, P>0.05).  

When data was analysed according to inhaled glucocorticoid intake classification, there 

was a significant reduction in placental IGF-I mRNA in females from the glucocorticoid 

group compared to the control group (Table 6.3, Kruskal-Wallis ANOVA, P=0.010, 

Dunn’s multiple comparisons test, P<0.01). This may be related to the reduction 

observed in the severe asthmatic group. There were no significant differences in IGF-I 

mRNA between males of the control, no glucocorticoid or glucocorticoid groups 

(Kruskal-Wallis ANOVA, P=0.423).  

There were no significant differences between the control, no glucocorticoid and 

glucocorticoid groups in either male or female placental IGF-II mRNA or IGFBP-1 

mRNA (Kruskal-Wallis ANOVA, P>0.05).  
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Table 6.3 Placental IGF-I, IGF-II and IGFBP-1 mRNA according to glucocorticoid intake classification 

 Classification of Glucocorticoid Intake During Pregnancy 
 Female Fetus Control No Glucocorticoid Glucocorticoid 

Placental IGF-I mRNA 0.128 ± 0.024 (n=13) 0.161 ± 0.063 (n=13) 0.054 ± 0.020 (n=23)* 
       

Placental IGF-II mRNA 3.84 ± 0.79 (n=13) 4.37 ± 0.88 (n=13) 4.75 ± 0.83 (n=23) 
      

Placental IGFBP-1 mRNA 0.055 ± 0.012 (n=13) 0.079 ± 0.026 (n=13) 0.076 ± 0.017 (n=22) 
  Values given are Mean ± Standard 

Error of the Mean 
  

*Compared to control (Kruskal-Wallis ANOVA, P<0.05) 
Male Fetus Control No Glucocorticoid Glucocorticoid 

Placental IGF-I mRNA 0.242 ± 0.119 (n=9) 0.088 ± 0.042 (n=12) 0.094 ± 0.030 (n=17) 
       

Placental IGF-II mRNA 4.12 ± 0.89 (n=9) 5.10 ± 1.12 (n=12) 4.62 ± 0.79 (n=17) 
       

Placental IGFBP-1 mRNA 0.104 ± 0.039 (n=9) 0.037 ± 0.016 (n=12) 0.104 ± 0.049 (n=17) 
  Values given are Mean ± Standard Error of the Mean 
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6.5 Placental cytokines 

Local inflammatory pathways were examined within the placenta by measurement of 

mRNA abundance for various cytokines including TNF-α, (a representative Th1 

cytokine), IL-4 and IL-5 (Th2 cytokines important in asthma), IL-1β, IL-6, IL-8 and 

IL-10. The Th2:Th1 cytokine mRNA ratio was examined, as asthma is predominantly a 

Th2 disease (2) and the relative expression of these cytokine types was of interest. The 

variation in cytokine mRNA between individuals was large, but this was partially 

overcome when examining ratios. 

There was no significant difference between the control group and the mild, moderate or 

severe asthma groups, separated by fetal sex, for any of the cytokines measured 

(Kruskal-Wallis ANOVA, P>0.05).  

When groups were classified by glucocorticoid intake and fetal sex, there were no 

significant differences between any groups (Table 6.4, Kruskal-Wallis ANOVA, 

P>0.05). 

The Th2:Th1 cytokine ratio was assessed in the placenta by measuring TNF-α (Th1) 

and IL-5, IL-4 or IL-10 (Th2) mRNA. The IL-10:TNF-α ratio was always >1, ranging 

from 2-83, reflecting the relative Th2 environment of pregnancy, and specifically the 

placenta. The IL-5:TNF-α ratio was >1 in 83% of all samples tested (range 1-45) and 

the IL-4:TNF-α ratio was >1 in 77% of samples tested (range 1-17). 

There was no difference in the Th2:Th1 cytokine ratios (IL5:TNF-α, IL-4:TNF-α or 

IL-10:TNF-α) in placentae from females or males of the control, mild, moderate or 

severe asthma groups (Kruskal-Wallis ANOVA, P>0.05). 
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Table 6.4 Placental cytokine mRNA abundance according to glucocorticoid intake classification 

 Classification of Glucocorticoid Intake During Pregnancy 
Female Fetus  Control No Glucocorticoid Glucocorticoid 

Placental IL-1β mRNA 0.026 ± 0.016 (n=8) 0.020 ± 0.009 (n=10) 0.031 ± 0.014 (n=17) 
       

Placental IL-4 mRNA 0.0028 ± 0.0014 (n=8) 0.0032 ± 0.0013 (n=10) 0.0017 ± 0.0003 (n=20) 
       

Placental IL-5 mRNA 0.0065 ± 0.0029 (n=8) 0.0078 ± 0.0032 (n=11) 0.0022 ± 0.0007 (n=18) 
       

Placental IL-6 mRNA 0.0052 ± 0.0018 (n=6) 0.0025 ± 0.0010 (n=7) 0.0057 ± 0.0011 (n=16) 
        

Placental IL-8 mRNA 0.022 ± 0.008 (n=8) 0.021 ± 0.009 (n=11) 0.043 ± 0.035 (n=20) 
       

Placental IL-10 mRNA 0.0179 ± 0.0076 (n=6) 0.0081 ± 0.0028 (n=8) 0.0071 ± 0.0017 (n=18) 
       

Placental TNF-α mRNA 0.0028 ± 0.0018 (n=8) 0.0013 ± 0.0006 (n=11) 0.0011 ± 0.0003 (n=16) 
Male Fetus Control No Glucocorticoid Glucocorticoid 

Placental IL-1β mRNA 0.019 ± 0.007 (n=9) 0.017 ± 0.011 (n=6) 0.021 ± 0.009 (n=14) 
       

Placental IL-4 mRNA 0.0028 ± 0.0008 (n=9) 0.0018 ± 0.0005 (n=9) 0.0015 ± 0.0003 (n=16) 
       

Placental IL-5 mRNA 0.0048 ± 0.0016 (n=9) 0.0041 ± 0.0020 (n=9) 0.0026 ± 0.0009 (n=15) 
       

Placental IL-6 mRNA 0.0038 ± 0.0011 (n=6) 0.0047 ± 0.0026 (n=5) 0.0070 ± 0.0023 (n=13) 
        

Placental IL-8 mRNA 0.013 ± 0.004 (n=9) 0.038 ± 0.026 (n=9) 0.016 ± 0.005 (n=13) 
       

Placental IL-10 mRNA 0.0086 ± 0.0037 (n=6) 0.0100 ± 0.0044 (n=8) 0.0073 ± 0.0012 (n=15) 
       

Placental TNF-α mRNA 0.0011 ± 0.0003 (n=9) 0.0012 ± 0.0006 (n=6) 0.0016 ± 0.0007 (n=14) 
  Values given are Mean ± Standard Error of the Mean 
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Placentae collected from females of the no glucocorticoid group had higher Th2:Th1 

cytokine ratios than females of the control or glucocorticoid group. This was evidenced 

by significantly higher IL-5:TNF-α in this group (Kruskal-Wallis ANOVA, P=0.0003, 

Dunn’s multiple comparisons test, no glucocorticoid vs glucocorticoid, P<0.001). In 

placentae collected from males, there was a significant difference between the groups, 

attributable to a lower ratio in the glucocorticoid group (Kruskal-Wallis ANOVA, 

P=0.032, Dunn’s multiple comparisons test, P<0.05, no glucocorticoid vs 

glucocorticoid). Figure 6.5 shows the IL5:TNF-α ratio in the groups classified by 

inhaled glucocorticoid intake. For the IL-5:TNF-α ratio, the no glucocorticoid female 

group contained five of the 10 highest values across all samples tested. Values within 

this group ranged from 1.8 to 44.8; hence the large standard error bars (all groups were 

normally distributed). 

0

2

4

6

8

10

12

14

16

Control No Glucocorticoid Glucocorticoid

IL
-5

:T
N

F-
α

 m
R

N
A

 ra
tio

Male neonate
Female neonate*

n=9 n=8 n=6 n=11 n=13 n=12

 

Figure 6.5 Placental IL5:TNF-α mRNA ratio according to glucocorticoid intake 

classification 

The figure depicts the IL-5:TNF-α (Th2:Th1) cytokine mRNA ratio in the control, no glucocorticoid and 
glucocorticoid groups for placentae collected from male and female neonates (mean ± SEM). * indicates 
P<0.05 (Kruskal-Wallis ANOVA, no glucocorticoid female vs glucocorticoid female). 

The IL-10:TNF-α ratio was higher in placentae from females of the no glucocorticoid 

group compared to females of the glucocorticoid group (Kruskal-Wallis ANOVA, 

P=0.003, Dunn’s multiple comparisons test, no glucocorticoid vs glucocorticoid 
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P<0.01). However, the IL-4:TNF-α ratio was not significantly different between the 

groups (Kruskal-Wallis ANOVA, P=0.072 for females, P=0.717 for males). 

Alterations in placental inflammation may be linked to changes in placental 11β-HSD2 

activity, either as the cause of decreased 11β-HSD2 activity or as a consequence of this 

change. There was no relationship between placental Th2:Th1 ratio and 11β-HSD2 

activity in male neonates (n=19, r = –0.240, P=0.322). However, there was a significant 

inverse correlation between placental Th2:Th1 ratio and 11β-HSD2 activity in female 

neonates (Spearman rank correlation, n=20, r = –0.588, P=0.006). The data did not 

differ significantly from linearity (runs test, P=0.159). One female data point related to 

a very high cytokine ratio and when this point was removed, the significant inverse 

linear correlation between placental Th2:Th1 cytokine ratio and 11β-HSD2 activity in 

female neonates remained (Figure 6.6, Pearson linear correlation, n=19, P=0.016, runs 

test, P=0.834). 
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Figure 6.6 The relationship between the Th2:Th1 cytokine ratio and placental 

11β-HSD2 activity 

The figure shows the significant inverse linear correlation between 11β-HSD2 activity (nmol/mg/h) and 
IL-5:TNF-α mRNA ratio in placentae collected from female neonates (Pearson linear correlation, 
P<0.05, n=19). 
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6.6 Placental glucocorticoid receptors 

The actions of cortisol are primarily mediated through the glucocorticoid receptor (GR) 

and sometimes the mineralocorticoid receptor (MR). There are two isoforms of the GR 

which determine tissue sensitivity to glucocorticoids. GR-α is the main ligand binding 

form, while the alternatively spliced GR-β is a dominant negative inhibitor of ligand 

binding and GR-α action (764). GR-β does not alter the affinity of GR-α for its ligand, 

but may compete for GRE target sites on DNA sequences of glucocorticoid target genes 

(764). The mRNAs contain the same first eight exons, but differ in splicing of exon 9 

into 9-α or 9-β. GR-β replaces the 50 amino acid C-terminus of GR-α with 15 different 

amino acids, thus making it unable to bind glucocorticoids (764). Driver et al. localised 

the GR and MR within placental bed biopsies and cultured trophoblast cells (542) and 

suggested that some of the effects of cortisol within the trophoblast may be mediated 

via the MR (542). 

The data presented so far suggests that the male fetus is relatively insensitive to the 

growth-restricting effects of cortisol, since the levels of 11β-HSD2 activity were the 

same in males and females from the no glucocorticoid group and yet only the female 

had reduced mean birth weight. Male neonates are known to be more prone to 

developing RDS when delivered preterm, possibly due to differences in cortisol-

mediated lung maturation (70, 765). Some authors report that prevention of RDS with 

betamethasone is more effective in females than males (69, 766), suggesting greater 

glucocorticoid sensitivity in females. GR expression may give an indication of 

sensitivity to cortisol. Previous studies have shown that there is increased cytokine-

induced expression of GR-β in peripheral blood of glucocorticoid insensitive asthmatics 

(767). In the placenta of a male fetus, reduced sensitivity to cortisol may be mediated 

via increased expression of GR-β. Reduced glucocorticoid sensitivity may protect the 

male fetus from alterations in fetal growth. In the placenta of a female fetus, greater 

sensitivity to cortisol may be due to “normal” expression of GR-α and GR-β, or to 

increased GR-α expression. Greater sensitivity to cortisol in the female fetus, when 

accompanied by reduced placental 11β-HSD2 activity may result in reduced fetal 

growth (Figure 6.7). 
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Figure 6.7 Proposed model of altered glucocorticoid sensitivity of male and female 

fetuses 

Low 11β-HSD2 activity in male and female fetuses leads to an increase in the amount of cortisol crossing 
the placenta from mother to fetus. Decreased sensitivity to cortisol, possibly mediated by increased GR-β 
expression could account for the lack of change in fetal growth in males. Conversely, increased sensitivity 
to cortisol, possibly mediated by increased GR-α expression, may account for the decrease in fetal growth 
observed in female fetuses in the no glucocorticoid group.

The mRNA abundance of GR-α, GR-β and MR were measured in the placenta by 

quantitative RT-PCR. The GR-α: GR-β ratio was calculated as a relative measure of the 

active GR expression. 

When GR-α, GR-β and MR mRNA abundance and GR-α:GR-β mRNA ratio were 

examined based upon asthma severity classification, there were no significant 

differences found between the groups in either placentae from female neonates or male 

neonates (Kruskal-Wallis ANOVA, P>0.05).  

Placentae collected from females of the no glucocorticoid group had significantly lower 

GR-α (Figure 6.8A, Kruskal-Wallis ANOVA, P=0.019) and GR-β (Figure 6.8B 

Kruskal-Wallis ANOVA, P=0.010) compared to females from the control and 

glucocorticoid groups (Dunn’s multiple comparisons test, P<0.05). The GR-α:GR-β 

ratio was slightly higher in the female no glucocorticoid group compared to the female 

control and female glucocorticoid groups, but this was not significant (Figure 6.9, 

Kruskal-Wallis ANOVA, P=0.211). Placentae collected from females of the no 
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glucocorticoid group had a trend towards lower MR mRNA abundance compared to 

females from the control group (Figure 6.10, Kruskal-Wallis ANOVA, P=0.054). 

Placentae collected from males of the no glucocorticoid group had significantly higher 

GR-α mRNA compared to males from the control group (Figure 6.8, Kruskal-Wallis 

ANOVA, P=0.028, Dunn’s multiple comparisons test, P<0.05). There were no 

significant differences in GR-β, GR-α:GR-β ratio or MR mRNA between males of the 

control, no glucocorticoid and glucocorticoid groups (Kruskal-Wallis ANOVA, 

P>0.05).  

Placentae from males of the no glucocorticoid group had significantly higher GR-α 

(Kruskal-Wallis ANOVA, P=0.007, Dunn’s multiple comparisons test, P<0.05) and 

GR-β (Kruskal-Wallis ANOVA, P=0.011, Dunn’s multiple comparisons test, P<0.01) 

than placentae from females of the no glucocorticoid group (Figure 6.8). 
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Figure 6.8 Placental GR-α mRNA and GR-β mRNA according to glucocorticoid 

intake classification 

Placental GR-α (Panel A) and GR-β (Panel B) mRNA abundance relative to β-actin is shown for males 
and females of the control, no glucocorticoid and glucocorticoid groups. For both GR-α and GR-β, there 
were significant differences between females of the no glucocorticoid group and males of the no 
glucocorticoid group as well as control females and glucocorticoid females (* P<0.05, Kruskal-Wallis 
ANOVA). For GR-α, males of the control group had significantly lower expression than males of the no 
glucocorticoid group (** P<0.05, Kruskal-Wallis ANOVA). 
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Figure 6.9 Placental GR-α:GR-β mRNA ratio according to glucocorticoid intake 

classification 

The figure depicts the GR-α:GR-β mRNA ratio in the control, no glucocorticoid and glucocorticoid 
groups for placentae collected from male and female neonates (mean ± SEM). 
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Figure 6.10 Placental MR mRNA abundance according to glucocorticoid intake 

classification 

The figure depicts MR mRNA abundance (relative to β-actin) in the control, no glucocorticoid and 
glucocorticoid groups for placentae collected from male and female neonates (mean ± SEM). 
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6.7 Placental protein profile 

6.7.1 The effect of maternal asthma on placental proteins 

Protein profiling of placental homogenates was carried out using SELDI-TOF MS to 

further investigate changes in placental function which occur in the presence of 

maternal asthma. Comparisons were made between asthmatics (n=20) and non-

asthmatics (n=10), and between women pregnant with a female fetus (n=15) and women 

pregnant with a male fetus (n=15). 

There were seven proteins more highly expressed and seven proteins less highly 

expressed in asthmatic placentae compared to non-asthmatic placentae. An example is 

shown in Figure 6.11 of a peak with m/z 2944. This peak did not match any other 

peptides in the Swiss-Prot database. 
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Figure 6.11 Protein 2944 in asthmatic and non-asthmatic placentae 

Panel A shows the mean peak intensity ± SEM of a placental peak with m/z 2944 identified using a WCX 
chip, pH 9 with SPA matrix. * indicates P<0.05 (t-test). Panel B shows representative spectra from 
placentae collected from control non-asthmatic and asthmatic women in the region 2-4 kDa. 
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6.7.2 The effect of fetal sex on placental proteins 

There were four placental proteins which differed significantly between samples 

collected from male or female neonates. An example is shown in Figure 6.12 of a peak 

with m/z 3109. This peak matched no other peptides in the Swiss-Prot database. 
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Figure 6.12 Protein 3109 in placentae from male and female neonates 

Panel A shows the mean peak intensity ± SEM of a placental peak with m/z 3109 identified using a WCX 
chip, pH 9 with SPA matrix. * indicates P<0.05 (t-test). Panel B shows representative spectra from 
placentae collected from male and female neonates in the  region 2-3.3 kDa. 
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6.7.3 The effect of maternal asthma and fetal sex on 
placental proteins 

Peaks which were specifically increased or decreased in placentae from the no 

glucocorticoid female group were examined. These differences may provide 

information about the placental mechanisms involved in fetal growth restriction in 

asthmatic pregnancies. Three peaks were found to be significantly different in placentae 

from asthmatic mothers pregnant with a female fetus from the no glucocorticoid group. 

A peak with m/z 22251 (SAX pH 9, CHCA, category B) was significantly lower in 

placentae from females of the no glucocorticoid group compared to the other groups 

(ANOVA, P=0.040). A search of the Swiss-Prot protein database revealed 31 matches, 

including lactogen (accession number P01243), suppressor of cytokine signalling-2 

(SOCS-2, O14508), superoxide dismutase (P04179) and placenta specific growth 

hormone (P01242). A peak with similar properties was previously found to be 

significantly lower in maternal plasma from the no glucocorticoid female group (Figure 

5.11), and may represent a link between mother and placenta. 

A peak with m/z 3973 (WCX pH 9, SPA, category B) was significantly higher in 

females of the no glucocorticoid group compared to males (t-test, P=0.047). There was 

only one match in the Swiss-Prot database to protachykinin 1 precursor/neuropeptide K 

(P20366). A peak with m/z of 18174 (WCX pH 9, SPA high mass, category B) was 

significantly higher in females compared to males of the no glucocorticoid group (t-test, 

P=0.028). There were 18 matches for this peak in the Swiss-Prot database, including 

interleukin 17B (Q9UHF5), interleukin 18 (Q14116), endothelial monocyte activating 

protein (Q12904) and T cell surface glycoprotein CD3 gamma (P09693). Further work 

is required to positively identify these peaks and to determine their role in placental 

function in asthmatic pregnancies. 

6.7.4 Human defensins in the placenta 

Defensins are anti-microbial peptides which play an important role in the immune 

response. The α-defensins or human neutrophil peptides (HNP 1-4) are expressed by 

many immune cells including neutrophils (768), CD8 lymphocytes (769), natural killer 

cells (768), B cells (768) and monocytes and macrophages (768). Defensin peptides 

damage the membrane of bacteria (769) and have the potential to modulate 
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inflammatory responses through regulation of cytokine production in monocytes and 

endothelial cells (770) and recruitment of monocytes by neutrophils into inflammatory 

sites (771). Human neutrophil defensin mRNA was previously identified in the placenta 

by Svinarich et al. using PCR amplification and Southern analysis (772). 

Human defensin proteins were tentatively identified in the placenta for the first time 

using SELDI-TOF MS. A previous study from Zhang et al. profiled culture 

supernatants with SELDI-TOF using WCX chips at pH 4.5 and found a typical pattern 

of three peaks which upon further characterisation were identified to be the α-defensins 

2, 1 and 3 (769). I found a similar pattern of peaks using WCX pH 9 (SPA matrix) at 

m/z 3383 (α-defensin 2), 3454 (α-defensin 1) and 3498 (α-defensin 3, Figure 6.13), 

which also matched entries for these peptides in the Swiss-Prot database. No significant 

differences were observed between expression in placentae from males or females 

(t-test, P>0.05) or between any other groups (unpaired t-test, P>0.05). There was a 

tendency for the α-defensin peak intensities to be higher in placentae from females of 

the no glucocorticoid group, but these were not significantly different from placentae 

from the female control group or female glucocorticoid group (Kruskal-Wallis 

ANOVA, P=0.110, α-defensin 2, P=0.205, α-defensin 1, P=0.758, α-defensin 3). 

Further investigation is required to determine if these immune mediators have a role to 

play in asthmatic placentae. 
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Figure 6.13 Human defensin proteins in the placenta 

The figure shows a representative spectra showing the expected positions of α-defensin 2 (m/z 3383), 
α-defensin 1 (m/z 3454) and α-defensin 3 (m/z 3498) in the placenta. 
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6.8 The Placenta - Discussion 

11β-HSD2 activity, but not mRNA or protein, was significantly reduced in placentae 

from female neonates of asthmatic mothers who did not use inhaled glucocorticoids. 

These female neonates also had reduced mean birth weight compared to female 

neonates of non-asthmatic mothers, suggesting that changes in female fetal growth in 

asthmatic pregnancies may be mediated by decreased placental 11β-HSD2 activity and 

the anti-mitogenic effects of cortisol. Fowden et al. described that the cortisol surge 

towards late gestation in sheep was coincident with the slowing down of growth, 

reflected by a decrease in the increment of crown-rump length growth (503). Placental 

11β-HSD2 is an important regulator of the passage of cortisol from mother to fetus in 

humans. Significant reductions in placental 11β-HSD2 activity have previously been 

observed in IUGR placentae (554) and fetal plasma cortisol levels are higher in SGA 

fetuses compared to normally grown controls (582). Multiple doses of betamethasone, a 

steroid that is not metabolised by placental 11β-HSD2, administered to women at risk of 

preterm delivery, resulted in a 9% reduction in neonatal birth weight and 4% reduction 

in neonatal head circumference (486). I found a 14% reduction in female birth weight in 

the no glucocorticoid group, compared to female neonates from non-asthmatic mothers. 

These data support the hypothesis that decreased placental 11β-HSD2 activity, which 

may result in increased circulating concentrations of bioactive cortisol in the fetus, 

contributes to symmetrically reduced growth of the female fetus. 

Previous studies have also demonstrated reductions in mRNA levels of placental 

11β-HSD2 in pregnancies complicated by IUGR (554, 558). I did not find a relationship 

between 11β-HSD2 mRNA or protein levels and reduced birth weight in asthmatic 

pregnancies, suggesting a post-transcriptional regulation of 11β-HSD2 enzyme activity. 

Many regulators of 11β-HSD2 enzyme activity and mRNA have previously been 

identified in placental cells, including the prostaglandins, PGE2 and PGF2α, the 

leukotriene, LTB4 and calcium, which inhibit enzyme activity but not mRNA 

expression (594, 597). Other studies have indicated that placental 11β-HSD2 activity 

and mRNA can be inhibited by progesterone, while estradiol inhibits activity but not 

mRNA (590). Hypoxia may also regulate 11β-HSD2 with low levels of O2 inhibiting 

protein expression and activity in placental explants or cell cultures (595, 596). Studies 

of 11β-HSD2 enzyme activity in other cell types has suggested the possibility of 
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regulation by inflammatory cytokines such as TNF-α and IL-1β (604). Many of these 

factors are potentially associated with asthma, particularly prostaglandins, leukotrienes, 

cytokines and hypoxia. However, the regulation of placental 11β-HSD2 by these factors 

in the context of maternal asthma was not further examined in my study.  

Previous studies have demonstrated increased 11β-HSD2 in the presence of synthetic 

glucocorticoids (556, 603). Kajantie et al. found increased placental 11β-HSD2 activity 

in women who received betamethasone 24-72 hours before birth for fetal lung 

maturation in preterm infants (556). My data showed that there was a tendency for 

increased 11β-HSD2 activity in placentae from asthmatic women who used high doses 

of inhaled glucocorticoids, only when pregnant with a female fetus, but this did not 

reach statistical significance. An effect of high dose inhaled glucocorticoid use on 

placental function is possible, since systemic side effects, such as HPA axis suppression 

(773-775) and long-term alterations in bone metabolism (776), have been observed in 

adults using more than 1 mg/day of these medications (773-775). However, in my 

study, the use of high doses of inhaled glucocorticoids by pregnant women had no 

significant effect on placental CRH mRNA expression or placental 11β-HSD2 activity. 

Marinoni et al. found that betamethasone treatment to pregnant women in preterm 

labour resulted in an increase in CRH immunostaining in placental syncytiotrophoblast 

as well as an increase in maternal and umbilical cord concentrations of CRH (777). 

Together my data suggest that inhaled glucocorticoid medications used for the treatment 

of asthma do not reach the placenta in an active form. 

Sexual dimorphism of 11β-HSD2 has previously been demonstrated in the kidney of 

hypopituitary patients and healthy adults (778-780), mouse kidney and colon (781) and 

mouse placenta (634). Raven and Taylor found that there was a higher excretion ratio of 

11-oxo to 11-hydroxy cortisol metabolites in women compared to men, signifying 

greater conversion of cortisol to cortisone (778). In the mouse placenta, Montano et al. 

demonstrated greater transplacental metabolism of corticosterone from the maternal 

blood in female fetuses compared to males (634). I found a similar result, with placentae 

collected from female neonates having higher placental 11β-HSD2 activity than those 

collected from males, which would be expected to result in higher levels of maternally-

derived cortisol crossing the placenta to the male fetus. This finding may be related to 

the relative glucocorticoid insensitivity in the male fetus, demonstrated by normal 

growth in the presence of maternal asthma and low placental 11β-HSD2 and shown 
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previously by reduced responsiveness to glucocorticoid treatment for fetal lung 

maturation compared to the female fetus (69). This is the first demonstration of fetal 

sex-specific effects on human placental 11β-HSD2 activity and suggests that the fetus 

may exert some control over the passage of cortisol from the mother. 

Placental IGF-I, IGF-II or IGFBP-1 mRNA were not found to be altered in females of 

reduced birth weight and therefore were not primarily involved in the alterations in 

female fetal growth observed in asthmatic women who did not use inhaled 

glucocorticoids for treatment. Previous studies have shown that immunostaining of 

IGF-I in the placenta is increased in IUGR, possibly as a compensatory mechanism 

(428, 429), while placental IGF-II mRNA has been shown to correlate with placental 

weight (433). I did not measure IGF-I, IGF-II or IGFBP-1 protein expression, nor did I 

examine phosphorylation of placental IGFBP-1, which is known to be an important 

regulatory mechanism for controlling IGFBP-1 action during pregnancy (419). 

Circulating IGFBPs are also important components of the IGF axis in fetal growth 

control and will be examined in Chapter 7. 

Detection of cytokine protein levels can be difficult in tissue samples; however, the use 

of quantitative RT-PCR is a useful and very sensitive technique for the detection of 

cytokine mRNA (664-668). The results of my study demonstrate that there is a wide 

variability in placental cytokine mRNA expression between individuals. No significant 

differences in cytokine mRNA in females from the no glucocorticoid group were found 

to be related either to alterations in maternal asthma or to the mechanism of reduced 

fetal growth in this group. Hahn-Zoric et al. studied placental cytokine mRNA in IUGR 

and found that compared to normally grown controls, there was a decrease in IL-10 and 

an increase in IL-8 mRNA in IUGR, but no alteration in IL-1α, IL-1β, transforming 

growth factor (TGF)-β or TNF-α (109). Rivera et al. also implicated IL-10 as having a 

role in fetal growth regulation, by demonstrating that co-administration of IL-10 and 

lipopolysaccharide (LPS) to pregnant rats reduced the LPS-associated fetal death rate 

and improved fetal growth (782). I did not find any evidence for the involvement of 

IL-10 or any other individual cytokine at the mRNA level, in fetal growth regulation in 

human pregnancies complicated by asthma. 

However, there were interesting changes in the ratio of Th2 type cytokines to Th1 type 

cytokines in females from the no glucocorticoid group, with a significant increase in the 
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placental IL-5:TNF-α and IL-10:TNF-α mRNA ratios, compared to the control and 

glucocorticoid female groups. Th2 type cytokines are involved in the pathogenesis of 

asthma (2) and successful pregnancy is also considered to be the result of a Th2 bias 

(155-158). The mRNA data clearly supported the concept of a Th2 bias in the placenta, 

and also suggested that asthmatic women who do not use inhaled glucocorticoids and 

are pregnant with a female fetus have an enhanced Th2 environment in the placenta. In 

my study, the placental Th2:Th1 cytokine mRNA ratio was inversely correlated with 

placental 11β-HSD2 activity in samples collected from female neonates. Thus, an 

increase in the relative production of Th2 and Th1 cytokines may be involved in 

reducing placental 11β-HSD2 activity. Alternatively, changes in the Th2:Th1 cytokine 

ratio may occur as a result of reduced local cortisol metabolism across the placenta. 

Several studies have shown that glucocorticoids can alter the cytokine balance towards 

Th2 dominance in vitro (783-787). Agarwal and Marshall demonstrated that 

dexamethasone inhibited IFN-γ (Th1) production from human peripheral blood 

mononuclear cells, and increased IL-4 and IL-10 (Th2) production (788). These effects 

may be mediated via decreased IL-12 production in the presence of glucocorticoids, as 

Blotta et al. found that this mechanism contributed to a reduced capacity of monocytes 

to produce IFN-γ and an increased capacity for IL-4 production in T cells (789). These 

data may explain the inverse correlation between Th2:Th1 mRNA and 11β-HSD2 

activity in female placentae and may have implications for fetal programming of 

allergic disease in the children of asthmatic mothers. In vivo, mice treated with an 

11β-HSD2 inhibitor, glycyrrhetinic acid, have reduced capability to fight infection, as a 

result of a skewed cytokine balance in their spleen (790). This is very strong evidence 

for the role of 11β-HSD2 in modulating the response of T cells to the effects of cortisol 

in vivo. It has recently been suggested that increased cortisol secretion associated with 

maternal stress during pregnancy may affect the developing fetal immune system and T 

cell differentiation (791). The data presented in this section demonstrate that reduced 

11β-HSD2 activity, and hence greater cortisol availability, is associated with an 

increased ratio of Th2:Th1 cytokines in the placenta of female neonates. It is possible 

that altered 11β-HSD2 activity in the presence of maternal asthma could further 

increase the risk of the female neonate becoming atopic by altering the Th2:Th1 

cytokine balance of the placenta and possibly the fetus itself. 
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These studies are important because they suggest a possible mechanism for priming of 

the neonatal immune system in utero, which may contribute to the escalating prevalence 

of asthma worldwide. Maternal atopy is known to be a greater risk factor than paternal 

atopy for allergic sensitisation in children (792) and high maternal IgE, but not paternal 

IgE was found to correlate with cord blood and infant IgE levels and infant atopy (74). 

One study found that cord blood IgE levels were elevated in female neonates only, of 

mothers with asthma compared to neonates of non-atopic parents (73). These studies 

suggest that the in utero environment may have a role in determining childhood atopy 

and that the female fetus may be particularly susceptible to changes in this environment. 

Transplacental priming of the immune system may be involved in altering the cytokine 

profile of neonates to the Th2 allergic type (793). It has previously been hypothesised 

that atopic mothers have a greater Th2 dominance at the maternal-fetal interface than 

non-atopic mothers and this may contribute to altered neonatal immune function (794, 

795). My study demonstrates that at the mRNA level, there is a dominance of the Th2 

cytokine, IL-5 compared to the Th1 cytokine, TNF-α in the placenta of women with 

untreated asthma, when a female fetus is present. It has been suggested that the placenta 

may have a role to play in maintaining the cytokine environment through most of 

pregnancy, with the fetus and/or mother taking on a greater role only later in pregnancy 

(794). 

Cytokine levels in the feto-placental unit may be influenced by hypoxia. Benyo et al. 

demonstrated increased production of TNF-α and IL-1β by placental explants cultured 

in low (2%) O2 (796). Pierce et al. found that placental perfusion with hyperoxic 

solution resulted in elevated IL-6 and TNF-α within 4 hours, compared to perfusion 

with hypoxic solution (797). Although I did not measure cytokine production by the 

placenta, it is unlikely that the placentae from the no glucocorticoid asthmatics were 

hypoxic, since no significant changes in individual cytokine mRNA were found.  

Several studies have previously used TNF-α as a representative Th1 cytokine in studies 

of immune function (798) and pregnancy (799, 800). However, there are other cytokines 

which could be used and may be more suitable, such as IFN-γ. Future studies would 

also examine IFN-γ production as an indicator of Th1 cytokine activity. Further work is 

required to determine if there are alterations in cytokine protein production in the 

placenta from females of the no glucocorticoid group. Preliminary analysis of crude 

protein extracts demonstrated that TNF-α could not be measured in these placental 
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samples by enzyme linked immunosorbent assay (ELISA). Some studies have 

stimulated placental cytokine production using LPS in order for concentrations to be 

measurable (801, 802). Placental explant cultures stimulated with LPS may be suitable 

for an analysis of placental cytokine production by ELISA in asthmatic and non-

asthmatic placentae. 

Few studies have examined Th2 cytokine production in the human placenta. My work 

showed the presence of IL-4, IL-5 and IL-10 mRNA. Immunohistochemistry has 

previously been used to detect IL-4 and IL-4 receptors in some samples of 

syncytiotrophoblast and placental macrophages (803). In addition, mRNA for IL-4 and 

IL-4 receptor was also detected by RT-PCR in placental villous tissue (803). To my 

knowledge, no previous studies have demonstrated the presence of IL-5 mRNA or 

protein in the human placenta. I found that placental IL-5 mRNA was expressed at 

similar levels to IL-4, IL-6 and TNF-α. Since this cytokine has an important role in 

asthma, it may also have a function in the placenta from asthmatic women. My results 

showed a clear predominance of Th2 cytokines over Th1 cytokines in the human 

placenta, which is in agreement with the hypothesis that a Th2 environment is required 

for successful pregnancy (804). 

Alterations in placental GR expression may be important for determining fetal 

sensitivity to the effects of cortisol and synthetic glucocorticoids. The data suggest that 

the female fetus is particularly sensitive to the effects of maternally derived cortisol, 

when the mother has asthma. This was demonstrated by the fact that although placentae 

from both males and females of the no glucocorticoid group had similar levels of 

11β-HSD2 activity, only the female neonates of this group were smaller. In addition, 

only the females of this group had alterations in fetal HPA axis function, which will be 

discussed in the following chapter (section 7.2.2). These changes in sensitivity to 

cortisol may be mediated via altered GR expression or function. My data indicates that 

placentae from females of the control group have significantly higher GR-α expression 

than placentae from males of the control group, possibly mediating the greater 

glucocorticoid sensitivity in the female fetus. In addition, placental 11β-HSD2 activity 

was higher overall in females than males and together these data suggest that the female 

fetus is more sensitive to glucocorticoids than the male fetus.  
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In the no glucocorticoid group, placental GR-α and GR-β mRNA were both 

significantly decreased in females, possibly due to down-regulation by locally elevated 

cortisol concentrations, as a consequence of reduced 11β-HSD2 activity. Down-

regulation of the GR by cortisol and synthetic glucocorticoids has been demonstrated 

previously (805-810). Korn et al. treated bronchial epithelial cells with the synthetic 

glucocorticoid budesonide and found a dose-dependent decrease in both GR-α and 

GR-β (810, 811). In asthmatic patients treated with methyl prednisolone for 10 days, 

Vachier et al. found that there was a significant reduction in GR mRNA in isolated 

monocytes (812). Down-regulation of the MR in placentae from females of the no 

glucocorticoid group may be occurring through a similar mechanism, since in vitro 

studies have also demonstrated reduced MR number and binding following synthetic 

glucocorticoid treatment (813). Hypoxia in the no glucocorticoid group is unlikely to be 

contributing to these changes in receptor mRNA, since Jenq et al. found reduced MR 

but increased GR mRNA in human renal cortex epithelial cells cultured under mild 

hypoxic conditions (814). The higher GR-α:GR-β mRNA ratio in female placentae from 

the no glucocorticoid group may result in a greater ability of local cortisol to exert its 

effects through the transcriptionally active GR-α, possibly explaining the increased 

glucocorticoid sensitivity in this group. 

A small number of differences in placental protein expression were found between 

asthmatics and non-asthmatics using the proteomics technique, SELDI-TOF MS. These 

proteins may have important roles in modulating placental function in asthmatic 

pregnancies and further identification and characterisation is required to explore this. 

However, these data provide leads for further investigation into the placental 

mechanisms contributing to reduced fetal growth in pregnancies complicated by asthma.  

Only one study has previously used the SELDI technique to examine protein expression 

in the placenta. This study examined differences between normal placentae and those 

with complete hydatidiform mole (701). Hydatidiform mole is a gestational 

trophoblastic disease where a mass of tumour forms within the uterus at the beginning 

of pregnancy, which may develop into the malignant choriocarcinoma (701). Batorfi et 

al. used laser capture microdissection and SELDI-TOF MS to characterise proteins 

present in normal and complete mole placenta samples obtained around 10 weeks 

gestation. They successfully found three proteins with significantly higher expression in 

normal placenta using the IMAC chip at pH 7.2 with SPA matrix and hope that further 
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identification will contribute to a better understanding of the mechanisms involved in 

gestational trophoblastic disease (701). 

In my study, defensin proteins were tentatively identified in the human placenta for the 

first time. This was possible because of a previous report identifying defensin proteins 

in culture supernatants of stimulated CD8+ T lymphocytes from patients with HIV, 

which used similar SELDI-TOF conditions (769). In this publication, the profiles 

obtained using WCX chips and pH 4.5 binding conditions were published and my 

results obtained for human placenta samples on WCX chips at pH 9 show much 

similarity in the profile of these three peaks. In addition, the molecular weights obtained 

from SELDI-TOF MS were consistent with those of the defensin peptides in the Swiss-

Prot database. In the study from Zhang et al. the identity of these three peaks was 

investigated by numerous methods. The culture supernatants which had been enriched 

for these proteins were reduced with DTT to test for the existence of disulfide bonds. 

The reduced material was analysed on a normal phase chip by SELDI and comparison 

with non-reduced material showed a shift in molecular weight of 6 Da for all three 

peaks, suggesting the presence of three internal disulfide bridges, known to be present 

in defensins (769). Substantial further characterisation was performed, including 

incubation of T cell culture supernatants with beads coated with biotinylated 

monoclonal antibody specific for human α-defensin which resulted in an elimination of 

the three peaks of interest on WCX chips without affecting other peptide peaks. A 

trypsin digest of enriched protein produced a 1060 Da fragment which was further 

fragmented by collision associated MS-MS into seven unique ions which were used to 

search the Swiss-Prot and NCBI databases. This result matched the conserved region of 

human α-defensin 1, 2 and 3, which was confirmed by amino acid sequencing (769). 

Placental defensin peptides may play a wider role in all pregnancies, protecting the fetus 

from infectious agents. Amniotic fluid defensins are higher in patients with subclinical 

intrauterine infection and increase further with increasing severity of histologic 

chorioamnionitis (815). Mid-gestation bacterial vaginal infection and leukocytes in 

vaginal fluid are associated with the presence of neutrophil defensins (816, 817) and 

women with high defensin levels were found to be at increased risk of delivery prior to 

32 weeks compared to women with undetectable vaginal fluid defensins (817). The role 

of placental defensin peptides in the context of infection during pregnancy is unknown. 
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Further analysis of circulating defensins in pregnant women with asthma will be 

important to determine whether they may play a role in the inflammatory changes which 

occur during asthmatic pregnancies. It is of particular interest that α-defensins have 

monocyte chemoattractant properties and are found in increased amounts in patients 

with other inflammatory lung diseases such as cystic fibrosis (818). However, the 

current data was only able to examine their expression in the placenta and no significant 

differences between groups were found. 
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between the asthmatic mother, placenta and female fetus. 

Figure 6.14 The interactions between m ther, placenta and fetus in pregnancies 

6.9 The Placenta - Summary 

The placenta has a major role to play in the mechanisms controlling fetal growth in 

asthmatic pregnancies. In particular, activity of the placental enzyme, 11β-HSD2 is 

important for preventing the passage of cortisol from mother to fetus, where it may have 

anti-mitogenic effects. Alterations in placental 11β-HSD2 also has other downstream 

effects such as altering the Th2:Th1 cytokine ratio and decreasing GR and MR 

expression. Figure 6.14 summarises the information gained so far about the interactions 
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Chapter 7 The Fetus
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The Fetus 

7.1 Neonatal characteristics 

Female neonates from asthmatic mothers who did not use inhaled glucocorticoids were 

smaller than female neonates of non-asthmatic mothers. However, whether there were 

any other effects of maternal asthma on the fetus was unclear. Data was collected on the 

presence of fetal heart rate decelerations during labour and delivery and neonatal Apgar 

score at 1 minute and 5 minutes after birth. A summary is presented in Table 7.1 for 

asthmatics classified by severity and in Table 7.2 for asthmatics classified by 

glucocorticoid intake.  

There was a tendency for more female neonates from the no glucocorticoid group to 

have low Apgar scores (<7) at 1 minute and for fewer female neonates of this group to 

have perfect Apgar scores (10) at 5 minutes. In addition, both male and female neonates 

from the no glucocorticoid group were more likely to have fetal heart rate decelerations 

during delivery than the other groups, but again, this was not statistically significant 

(Fisher’s exact test, P>0.05).  



 

Table 7.1 Fetal and neonatal characteristics for groups classified by asthma severity 

 Classification of Asthma Severity During Pregnancy 
Female Fetus  Control Mild Moderate Severe 

Apgar Score at 1 minute 8 ± 1  (n=20) 8 ± 1 (n=32) 8 ± 1 (n=10) 8 ± 1 (n=27) 
          

Apgar Score at 5 minutes 9 ± 1 (n=20) 9 ± 1 (n=32) 10 ± 1 (n=10) 9 ± 1 (n=27) 
         

Apgar <7 at 1 minute (% of subjects) 10% 16% 30% 15% 
         

Apgar = 10 at 5 minutes (% of subjects) 30% 34% 50% 19% 
         

Heart Rate Decelerations (% of subjects) 15% 22% 30% 19% 
Male Fetus Control Mild Moderate Severe 

Apgar Score at 1 minute 8 ± 1 (n=21) 8 ± 1 (n=30) 8 ± 1 (n=17) 8 ± 1 (n=19) 
         

Apgar Score at 5 minutes 9 ± 1 (n=22) 9 ± 1 (n=29) 9 ± 1 (n=17) 9 ± 1 (n=19) 
         

Apgar <7 at 1 minute (% of subjects) 5% 3% 17% 21% 
         

Apgar = 10 at 5 minutes (% of subjects) 38% 21% 53% 21% 
         

Heart Rate Decelerations (% of subjects) 9% 20% 18% 21% 
  Values given are Mean ± Standard Error of the Mean 
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Table 7.2 Fetal and neonatal characteristics for groups classified by glucocorticoid intake 

 Classification of Glucocorticoid Intake During Pregnancy 
Female Fetus  Control No Glucocorticoid Glucocorticoid 

Apgar Score at 1 minute 8 ± 1 (n=20) 8 ± 1 (n=22) 8 ± 1 (n=47) 
        

Apgar Score at 5 minutes 9 ± 1 (n=20) 9 ± 1 (n=22) 9 ± 1 (n=47) 
       

Apgar <7 at 1 minute (% of subjects) 10% 18% 15% 
       

Apgar = 10 at 5 minutes (% of subjects) 30% 23% 34% 
       

Heart Rate Decelerations (% of subjects) 15% 27% 19% 
Male Fetus Control No Glucocorticoid Glucocorticoid 

Apgar Score at 1 minute 8 ± 1 (n=21) 8 ± 1 (n=24) 8 ± 1 (n=42) 
       

Apgar Score at 5 minutes 9 ± 1 (n=22) 9 ± 1 (n=23) 9 ± 1 (n=42) 
       

Apgar <7 at 1 minute (% of subjects) 5% 8% 12% 
       

Apgar = 10 at 5 minutes (% of subjects) 38% 25% 26% 
       

Heart Rate Decelerations (% of subjects) 9% 35% 17% 
  Values given are Mean ± Standard Error of the Mean 
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7.2 Fetal HPA axis development 

7.2.1 Umbilical vein cortisol 

Cortisol concentrations were measured in the umbilical vein plasma at delivery to 

ascertain whether changes in placental 11β-HSD2 activity had any significant effect on 

circulating cortisol levels crossing the placenta to the fetus.  

Cortisol concentrations were examined in groups classified by maternal asthma severity 

and fetal sex. There were no significant differences between males or females of the 

control, mild, moderate or severe asthma groups (Kruskal-Wallis ANOVA, P=0.229 

and P=0.682 respectively). 

Cortisol concentrations according to maternal glucocorticoid intake and fetal sex are 

shown in Figure 7.1. Mean fetal cortisol concentrations in the umbilical vein at delivery 

were similar in male and female fetuses from the no glucocorticoid group, as expected 

from low placental 11β-HSD2 activity in these groups. However, female cortisol values 

in the no glucocorticoid group were not significantly different from values in females of 

the control or glucocorticoid groups (Kruskal-Wallis ANOVA, P=0.951). Male cortisol 

concentrations were also not significantly different between the control, no 

glucocorticoid and glucocorticoid groups (Kruskal-Wallis ANOVA, P=0.472). 

The relationship between placental 11β-HSD2 activity and umbilical vein cortisol was 

examined in all samples. There was a trend towards an inverse correlation; however, 

this was not statistically significant (Pearson linear correlation, n=49, r = -0.248, 

P=0.086). 
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Figure 7.1 Umbilical vein cortisol according to glucocorticoid intake classification 

Cortisol concentrations were measured by RIA. The figure shows mean umbilical vein cortisol (nmol/l) ± 
SEM in male and female fetuses of the control, no glucocorticoid and glucocorticoid groups. 

7.2.2 Umbilical vein estriol 

Estriol is a derivative of fetal adrenal dehydroepiandrosterone sulfate (DHEA-S), 

produced by the placenta (819). A 16-hydroxylated DHEA-S precursor from the fetal 

liver is aromatised to estriol in the placenta (819). Less than 10% of estriol circulating 

during pregnancy is derived from the mother and hence estriol concentrations are used 

as an indicator of fetal adrenal function (819, 820) and have been proposed as a marker 

of fetal well-being (821, 822). Previous studies have shown decreased maternal salivary 

or urinary estriol levels following betamethasone administration (823, 824). I 

hypothesised that reduced placental 11β-HSD2 activity in females from the no 

glucocorticoid group, would result in increased maternally-derived cortisol reaching the 

fetus, which may suppress fetal adrenal function via negative feedback (Figure 7.2). 
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Figure 7.2 Production of estriol and proposed negative feedback loop 

Estriol is produced from a fetal adrenal precursor, DHEA-S, which is 16-hydroxylated in the fetal liver 
(16-OH-DHEA-S) and converted to estriol in the placenta. This conversion occurs through several steps, 
including removal of the sulfate to give 16-OH-DHEA, and formation of estriol via androstenetriol and 
16α-hydroxytestosterone derivatives (819). From the placenta estriol enters the maternal and umbilical 
circulations and can be measured from around 10 weeks gestation. Maternally derived cortisol, which 
passes the placental enzyme barrier, 11β-HSD2, may have a negative feedback effect on fetal HPA 
function. 

When analysed according to maternal asthma severity, there was no difference in estriol 

concentrations between males or females of the control, mild, moderate or severe 

asthma groups (Kruskal-Wallis ANOVA, P=0.735 and P=0.980 respectively). 

Estriol concentrations according to glucocorticoid intake and fetal sex are shown in 

Figure 7.3. Fetal estriol concentrations were significantly reduced in females from the 

no glucocorticoid group compared to females from glucocorticoid group (Kruskal-

Wallis ANOVA, P=0.007, Dunn’s multiple comparisons test, P<0.01). There was no 

significant difference in male estriol concentrations between groups (Kruskal-Wallis 

non-parametric ANOVA, P=0.308). 
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Figure 7.3 Unconjugated estriol concentrations in the umbilical vein according to 

glucocorticoid intake classification 

Mean umbilical vein unconjugated estriol (nmol/l) ± SEM in male and female fetuses of the control, no 
glucocorticoid and glucocorticoid groups. * indicates P<0.05 (Kruskal-Wallis ANOVA, no 
glucocorticoid female vs glucocorticoid female). 

There was a significant inverse correlation between umbilical vein cortisol and 

umbilical vein estriol in all samples collected (Figure 7.4, Pearson linear correlation, 

n=74, r = -0.248, P=0.033), supporting the hypothesis that reduced estriol is associated 

with increased cortisol crossing from mother to fetus.  
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Figure 7.4 Correlation between umbilical vein cortisol and estriol 

This figure shows the significant inverse linear correlation between umbilical vein cortisol (nmol/l) and 
umbilical vein unconjugated estriol (nmol/l, P<0.05, Pearson linear correlation, n=74), indicating that 
as cortisol levels increase, estriol levels decrease. 

7.2.3 Umbilical vein CRH 

There was no significant difference in male umbilical vein concentrations of CRH 

between the control, mild, moderate and severe asthma groups (Kruskal-Wallis 

ANOVA, P=0.702) or in female cord blood concentrations of CRH between the groups 

(Kruskal-Wallis ANOVA, P=0.033, Dunn’s multiple comparisons test, P>0.05). There 

was no significant difference in CRH concentrations between males or females of the 

control, no glucocorticoid and glucocorticoid groups (Kruskal-Wallis ANOVA, 

P=0.460 and P=0.165 respectively, data not shown). 

7.3 Umbilical vein IGFBP-1 and IGFBP-3 

The actions of IGF-I and IGF-II on fetal growth are regulated by a series of binding 

proteins. IGFBP-3 is a major reservoir for IGFs in the circulation, with 75% of IGF-I 

circulating complexed with IGFBP-3 and an acid-labile subunit (408). Approximately 

one quarter of IGF-I circulates with other binding proteins, while 1% circulates as free 

IGF-I (825). IGFBP-1 is thought to have an important role particularly during 

pregnancy in regulating the amount of IGF-I which is able to bind to its receptor (419). 
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There may be alterations in the IGF system in pregnancies complicated by asthma, 

which contribute to the reduced growth of female neonates in this population. The 

expression of placental IGF-I, IGF-II and IGFBP-1 mRNA was described previously in 

Section 6.4 and expression was not altered with maternal asthma. Cord blood levels of 

IGFBP-1 and IGFBP-3 were measured by RIA by a collaborator, Dr Robert Baxter.  

There were no significant differences in male or female cord blood IGFBP-1 or 

IGFBP-3 between asthmatics and non-asthmatics when classified by asthma severity or 

by inhaled glucocorticoid intake (Table 7.3, Kruskal-Wallis ANOVA, P>0.05).  

IGFBP-1 was significantly higher in male fetuses compared to female fetuses in all 

groups (Figure 7.5A, Mann Whitney test, P=0.009). Cord blood IGFBP-1 inversely 

correlated with birth weight in female neonates only (Figure 7.5B, Spearman rank 

correlation, n=43, r = -0.375, P=0.013). 
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Table 7.3 Cord blood IGFBP-1, IGFBP-3 and cortisol concentrations according to glucocorticoid intake classification 

 Classification of Glucocorticoid Intake During Pregnancy 
Female Fetus  Control No Glucocorticoid Glucocorticoid 

Cord blood IGFBP-1 (ng/ml) 81.8 ± 24.6 (n=10) 77.2 ± 14.1 (n=13) 130.4 ± 40.9 (n=20) 
       

Cord blood IGFBP-3 (μg/ml) 2.21 ± 0.16 (n=10) 2.47 ± 0.21 (n=13) 2.46 ± 0.11 (n=20) 
       

Cord blood cortisol 202.6 ± 13.2 (n=12) 267.1 ± 47.5 (n=16) 227.9 ± 20.4 (n=29) 
Male Fetus  Control No Glucocorticoid Glucocorticoid 

Cord blood IGFBP-1 (ng/ml) 156.3 ± 59.7 (n=8) 150.8 ± 36.2 (n=11) 121.4 ± 18.5 (n=15) 
       

Cord blood IGFBP-3 (μg/ml) 2.29 ± 0.24 (n=8) 1.94 ± 0.11 (n=11) 1.98 ± 0.16 (n=15) 
       

Cord blood cortisol 188.4 ± 25.8 (n=12) 267.9 ± 54.4 (n=17) 293.4 ± 44.6 (n=23) 

  Values given are Mean ± Standard Error of the Mean 
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Figure 7.5 Cord blood IGFBP-1 according to fetal sex and its correlation with birth 

weight 

Panel A shows a boxplot of cord blood IGFBP-1 concentration (ng/ml) for all male and female neonates. 
The red dot gives the mean value, while the median is given by the horizontal bar. The outsides of the box 
represent the upper and lower quartiles and the range is indicated by the vertical lines. * indicates 
P=0.009 (Mann Whitney test). Panel B shows the significant inverse correlation between cord blood 
IGFBP-1 concentration (ng/ml) and birth weight (g) in all female neonates (P<0.05, Spearman rank 
correlation, n=43). 

Overall, IGFBP-3 was significantly higher in female fetuses than males (Figure 7.6A, 

Mann Whitney test, P=0.007). This was the case in all asthmatic groups, but not the 

control group (Table 7.3). Overall, IGFBP-3 correlated positively with birth weight in 

male neonates only (Figure 7.6B, Pearson linear correlation, n=34, r = 0.537, P=0.001). 
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Figure 7.6 Cord blood IGFBP-3 according to fetal sex and its correlation with birth 

weight 

Panel A shows the mean cord blood IGFBP-3 concentration (μg/ml) ± SEM for all male and female 
neonates. * indicates P=0.007 (Mann Whitney test). Panel B shows the significant direct correlation 
between cord blood IGFBP-3 concentration and birth weight (g) in male neonates (P<0.05, Pearson 
linear correlation, n=34). 

Cord blood IGFBP-3 correlated directly with placental weight in both males (Pearson 

linear correlation, n=25, r = 0.392, P=0.053) and females (Pearson linear correlation, 

n=30, r= 0.359, P=0.051). When males and females were combined, the correlation 
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between IGFBP-3 and placental weight was significant (Pearson linear correlation, 

n=55, r = 0.333, P=0.013). 

Cord blood cortisol concentrations positively correlated with cord blood IGFBP-1 in 

females (Figure 7.7, Spearman rank correlation, n=43, r = 0.335, P=0.028), but not in 

males (Pearson linear correlation, n=34, r = –0.017, P=0.923). However, exclusion of 

two outliers which were more than 3 standard deviations from the mean resulted in a 

non-significant relationship (Spearman rank correlation, n=41, r = 0.241, P=0.129). 

There was no correlation between IGFBP-3 and cortisol in either male or female 

neonates (P>0.05). 
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Figure 7.7 The relationship between cortisol and IGFBP-1 in female cord blood 

The significant direct correlation between cord blood cortisol (nmol/l) and cord blood IGFBP-1 (ng/ml) 
in female neonates (P<0.05, Spearman rank correlation, n=43).  

7.4 Cord blood protein profile 

7.4.1 The effect of maternal asthma on cord blood proteins 

Protein profiling of umbilical vein plasma was carried out using SELDI-TOF MS. There 

were 10 peaks which differed significantly between cord blood samples taken from 

asthmatics (n=20) and non-asthmatics (n=10). Five of these were considered highly 

suitable for follow up (category A). An example is shown in Figure 7.8. This peak 
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matched one other in the Swiss-Prot database (islet amyloid polypeptide precursor or 

diabetes associated protein, P10997).  
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Figure 7.8 Cord blood peak 3899 in asthmatic and non-asthmatic pregnancies 

Panel A shows the mean peak intensity ± SEM in non-asthmatic (control) and asthmatics of a cord blood 
peak with m/z 3899 identified using an IMAC chip, pH 7 with SPA matrix. * indicates P<0.05 (t-test). 
Panel B shows representative spectra from asthmatic and non-asthmatic cord blood in the region 
3-4.3 kDa. 
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7.4.2 The effect of fetal sex on cord blood proteins 

The cord blood protein profile of all female fetuses (n=15) and all male fetuses (n=15) 

was compared and there were only three peaks which differed significantly between 

male and female fetuses. The peak intensity of one peak, assigned a category B (m/z 

37305), was influenced by very high levels in the no glucocorticoid female group. The 

mean levels of the other two peaks were less than 1.8 times different between groups 

and were considered category C (m/z 8045 and 72973). These data suggest that there 

are few differences in cord blood plasma proteins in males and females at the time of 

delivery, as measured by SELDI-TOF MS. 

7.4.3 The effect of maternal asthma and fetal sex on cord 
blood proteins 

Peaks which were significantly increased or decreased in asthmatic women who did not 

use inhaled glucocorticoids and were pregnant with a female fetus were examined. Six 

peaks found to be significantly different in asthmatic mothers pregnant with a female 

fetus from the no glucocorticoid group compared to the other groups. An example is 

shown in Figure 7.9. A search was conducted of the Swiss-Prot protein database to 

determine possible identities of this peak (m/z 8701). There were five matches, 

including pulmonary surfactant associated protein (P07988), monocyte chemotactic 

protein 1 (MCP-1, P13500) and small inducible cytokine A14 (Q16627), which has 

weak activities on human monocytes. 
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Figure 7.9 Cord blood peak 8701 in asthmatic and non-asthmatic pregnancies  

Panel A shows the mean peak intensity ± SEM of a cord blood peak with m/z 8701 identified using a SAX 
chip, pH 9 with SPA matrix. * indicates P<0.05 (t-test, no glucocorticoid male vs no glucocorticoid 
female). Panel B shows representative spectra from cord blood collected from male and female fetuses of 
the no glucocorticoid group in the region 8-9 kDa. 
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7.5 The Fetus - Discussion 

Increased fetal exposure to glucocorticoids in animal models has previously been 

associated with alterations in fetal HPA axis development and long-term changes into 

adulthood. Pregnant guinea pigs exposed to synthetic glucocorticoids have altered 

female fetal HPA function associated with increased hippocampal MR and GR 

expression (576). In rats, inhibition of placental 11β-HSD2 activity is associated with 

altered stress responses in offspring (574) and long-term changes such as delays in the 

development of puberty in females (573). My human study showed suppression of the 

female fetal HPA axis in the presence of maternal asthma and reduced placental 

11β-HSD2 activity, as demonstrated by reduced umbilical vein concentrations of estriol, 

a derivative of fetal adrenal DHEA-S (819). This data suggests that despite similar 

levels of cortisol in cord blood from males and females of asthmatic mothers not treated 

with glucocorticoids, the females of this group are more sensitive to changes in 

placental cortisol metabolism. This observation supports previous clinical data 

demonstrating a greater response to synthetic glucocorticoid treatment for lung 

maturation in female fetuses at risk of preterm delivery (69, 766) and supports the 

suggestion raised in the previous chapter that the female fetus may be more sensitive to 

changes in cortisol concentration. 

A previous study has shown that maternal infection is associated with significantly 

increased levels of the estriol precursor, DHEA-S in umbilical cord serum (826). 

Similar findings have been reported in amniotic fluid in the context of maternal 

infection (827). These data are in contrast to my results and those of others, which show 

that in situations of maternal or fetal stress (828) associated with conditions including 

miscarriage, IUGR, PIH or fetal distress, there are reduced umbilical cord 

concentrations of estriol or DHEA-S (822, 829). In addition, administration of the 

synthetic glucocorticoid betamethasone to pregnant women has been reported to 

significantly decrease urinary estriol excretion from as early as 24 hours after 

betamethasone treatment, with decreased excretion persisting for up to 3 weeks (823). 

DHEA-S is also reduced in cord blood samples 24 hours following betamethasone 

treatment (830, 831). In contrast, no significant association between high altitude 

hypoxia during pregnancy and maternal estriol concentrations could be demonstrated in 

one study (321). I found a significant inverse correlation between umbilical vein cortisol 
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and estriol, suggesting that a rise in cortisol crossing the placenta from mother to fetus 

has a negative effect on the production of estriol, which is derived from fetal adrenal 

DHEA-S. These data indicate that maternally derived or exogenous glucocorticoids 

have a significant effect on fetal adrenal function. 

It was expected that umbilical vein cortisol concentrations would be correlated with 

placental 11β-HSD2 activity, since this enzyme regulates the amount of cortisol which 

passes the placenta from mother to fetus. However, in my study, no significant 

correlation between placental 11β-HSD2 activity and fetal cortisol concentrations was 

found (P=0.086). Kajantie et al. measured placental 11β-HSD2 activity and cord vein 

cortisol and cortisone in small preterm infants (556). They also did not find any 

correlation between placental 11β-HSD2 activity rate and cord vein cortisol or 

cortisone, but did demonstrate that low birth weight was associated with reduced 

11β-HSD2 activity and reduced cord vein cortisone concentrations (556). Most of my 

cord blood samples were collected following vaginal delivery and it is possible that 

individual variation in the stress of the process of labour contributed to some variation 

in cord blood cortisol levels, such that they were not significantly different between any 

asthma groups and did not significantly correlate with the amount of enzyme activity 

measured in the placenta. Nonetheless, my data clearly show that 11β-HSD2 activity is 

reduced in placentae from females of the no glucocorticoid group, and the downstream 

effects of this reduction in transplacental cortisol inactivation were observed in the form 

of reduced placental GR and MR expression, increased placental Th2:Th1 cytokine 

mRNA and reduced umbilical vein estriol. 

The IGF system is not primarily responsible for the alterations in female fetal growth 

observed in asthmatic pregnancies, when no inhaled glucocorticoids are used for 

treatment. Animal and human studies clearly demonstrate the importance of the IGF 

system in the control of fetal and placental growth (384, 385, 435). Most previous 

studies in animal models or human twins, have examined induced or spontaneous 

IUGR. However, I examined a group where growth was reduced on average to the 35th 

centile and only a small subset were SGA. This may explain the negative findings with 

regard to the importance of fetal and placental IGF-I and IGFBP-1 in growth regulation 

in the asthmatic population. 
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Fetal hypoxia is associated with increased IGFBP-1 concentrations in the umbilical 

artery (832). In fetal distress, demonstrated by meconium staining or abnormal fetal 

heart rate, an inverse correlation between umbilical arterial or venous concentrations of 

IGFBP-1 and PO2 was found (833). In vitro, hypoxic conditions increase IGFBP-1 

mRNA in fetal hepatocytes (834). In my study neither placental IGFBP-1 mRNA or 

fetal circulating IGFBP-1 was elevated in the no glucocorticoid female group, 

suggesting that local placental or fetal hypoxia is not present in these asthmatic 

pregnancies. 

The regulation of fetal growth by IGFBPs may differ according to the sex of the fetus. 

In females, cord blood IGFBP-1 was inversely correlated with birth weight while there 

was no correlation between cord blood IGFBP-1 and male birth weight. However, for 

cord blood IGFBP-3, there was a significant positive correlation with birth weight in 

males only. These data are intriguing and suggest that the mechanisms controlling fetal 

growth are dependent upon the sex of the fetus. Previous studies have demonstrated 

positive correlations between IGFBP-3 and birth weight, but these studies did not 

separate data based upon fetal sex (446, 459). My study also found that the absolute 

levels of IGFBP-1 and IGFBP-3 in cord blood differed between males and females. 

Males had significantly higher levels of IGFBP-1, while females had significantly 

higher levels of IGFBP-3. A similar trend in fetal sex-related differences in IGFBPs was 

previously reported but not found to be statistically significant (445). However, a recent 

study examining sexual dimorphism in the growth hormone (GH)-IGF axis in cord 

blood, supported my finding that cord blood IGFBP-3 was reduced in male neonates 

compared to female neonates (629). In addition, this group also found reduced IGF-I 

and increased GH in male neonates compared to female neonates, but no difference in 

cord blood IGF-II. They suggest that this is evidence for the early establishment of the 

sexually dimorphic pattern of GH secretion and IGF production found in children (629).  

Studies have demonstrated that cortisol is an important indirect regulator of fetal growth 

through its actions on IGFs and their binding proteins. Cianfarani et al. found that there 

was a positive correlation between IGFBP-1 and cortisol in human cord blood from 

appropriately grown fetuses (835). However, they could not demonstrate any 

relationship in IUGR fetuses (835). Other studies also described increased plasma 

IGFBP-1 following cortisol infusions in adults (836) and increased cord blood IGFBP-1 

following the relative stress of labour and delivery (837). In my study, there was a 
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significant positive correlation between cord blood cortisol and cord blood IGFBP-1 in 

females only. As previously described, reduced cortisol metabolism across the placenta 

as a result of decreased 11β-HSD2 activity was associated with reduced female fetal 

growth and adrenal function in asthmatic pregnancies. These data suggest that as well as 

its direct effect on fetal growth, cortisol levels may also indirectly control female fetal 

growth through the regulation of IGFBP-1. In female fetuses, increased circulating 

IGFBP-1 may result in increased binding of free IGF-I, which would prevent IGF-I 

from exerting its effects on the fetus through the IGF-I receptor. It is known that 

phosphorylation of IGFBP-1 is an important component of its regulation and action 

during pregnancy (417). The measurement of IGFBP-1 phosphorylation was beyond the 

scope of this thesis, but may be an important component of its action in fetal growth 

regulation during human pregnancy and worth investigating in the future.  

IGFs and their binding proteins may not be the principle regulators of fetal growth in 

pregnancies complicated by asthma. However, the correlations between cord blood 

IGFBP-1 or IGFBP-3 and birth weight were different in males and females, suggesting 

that the mechanisms controlling fetal growth during pregnancy may differ depending 

upon the sex of the fetus. 

Preliminary proteomic analysis of the cord blood protein profile demonstrated several 

differences due to maternal asthma, but few differences attributable to fetal sex. The 

presence of maternal asthma may alter cord blood proteins and some of these could be 

important in establishing immune function of the neonate. Further identification of the 

protein differences is required to examine this prospect. It is also possible that fetally-

derived protein factors alter maternal physiology during asthmatic pregnancies, and 

further identification of the cord blood protein profile may lead to a better 

understanding of the mechanisms involved in pregnancy-induced alterations in maternal 

asthma. 
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7.6 The Fetus - Summary  7.6 The Fetus - Summary  

In this chapter I have demonstrated that alterations in maternal asthma and placental 

function during pregnancy have down-stream effects on the female fetus, such as 

suppressed adrenal function, demonstrated by reduced concentrations of estriol in cord 

blood. This may have implications for later life and could represent a programming 

effect. This data confirms that alterations in placental 11β-HSD2 enzyme activity has a 

functional effect on the development of the fetal HPA axis in humans. Figure 7.10 

summarises the interactions between female fetus, asthmatic mother and placenta.  

In this chapter I have demonstrated that alterations in maternal asthma and placental 

function during pregnancy have down-stream effects on the female fetus, such as 

suppressed adrenal function, demonstrated by reduced concentrations of estriol in cord 

blood. This may have implications for later life and could represent a programming 

effect. This data confirms that alterations in placental 11β-HSD2 enzyme activity has a 

functional effect on the development of the fetal HPA axis in humans. Figure 7.10 

summarises the interactions between female fetus, asthmatic mother and placenta.  
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Figure 7.10 Interactions between mother, placenta and fetus in pregnancies Figure 7.10 Interactions between mother, placenta and fetus in pregnancies 

complicated by asthma (part 2) 

In the presence of a female fetus, maternal asthma worsens during pregnancy, as demonstrated by a 
significant rise in circulating monocytes and a significant reduction in lung function. These alterations in 
maternal asthma in the absence of glucocorticoid therapy are associated with significantly reduced 
female birth weight and changes in placental function. Placental 11β-HSD2 activity is significantly 
reduced, which allows more maternally derived cortisol to reach the female fetus. Further changes in 
placental function which may be due to the decrease in 11β-HSD2 activity include a rise in the local 
Th2:Th1 cytokine mRNA ratio and decreased glucocorticoid and mineralocorticoid receptor expression. 
The changes in placental cortisol metabolism contribute to changes in the fetus, reducing growth in late 
gestation, and suppressing fetal HPA axis function, as demonstrated by significantly reduced estriol 
concentrations in female cord blood.  
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Chapter 8 Linking the Mother, 
Placenta and Fetus
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8.1 Final summary 

The key findings of this work were as follows: 

1. Maternal asthma, which is not treated with inhaled glucocorticoids is associated 

with reduced female fetal growth in late gestation. 

2. Inhaled glucocorticoids used for asthma treatment have no adverse effects on male 

or female fetal growth or HPA development. 

3. Asthma education improves asthma management in pregnant women. 

4. The presence of a female fetus is associated with worsening maternal asthma 

during pregnancy, indicated by reduced lung function and an increase in 

inflammatory pathways. In women not using inhaled glucocorticoids, there was an 

increase in the maternal monocyte count as pregnancy progressed, while women 

who did use inhaled glucocorticoids, significantly increased their dose as 

gestation progressed, only when pregnant with a female fetus. 

5. Reduced lung function is associated with reduced female birth weight in the 

absence of glucocorticoid therapy. 

6. Placental 11β-HSD2 activity is reduced in females from asthmatic mothers who 

do not use inhaled glucocorticoids and may contribute to reduced growth by 

allowing more maternally-derived cortisol to reach the fetus.  

7. Alterations in the transplacental passage of cortisol in the presence of maternal 

asthma is associated with increased placental Th2:Th1 cytokine mRNA ratios and 

reduced expression of glucocorticoid and mineralocorticoid receptors. 

8. A decrease in cortisol inactivation by placental 11β-HSD2 is associated with 

downstream effects of excess cortisol on the female fetus, such as a reduction in 

fetal adrenal function. 

9. Protein profiling demonstrated that there are alterations in several maternal, 

placental and cord blood proteins in the presence of maternal asthma which may 

also be influenced by fetal sex. 



Chapter 8 - Linking the Mother, Placenta and Fetus 

256 

8.2 Final discussion 

This study was the first to simultaneously examine the effects of asthma on the 

endocrine and immune relationships between the mother, placenta and fetus and to 

assess their role in the control of fetal growth during human pregnancy. The study used 

a standard asthma management protocol designed to maximise asthma control in 

individual patients. Subjects were classified based on both disease severity and 

treatment, allowing a comprehensive analysis of the effect of both these factors on fetal 

growth. This work uniquely contributes to the literature and proposes maternal and 

placental mechanisms which lead to decreased female fetal growth in pregnant women 

with asthma. 

The mother, placenta and fetus all played a role in alterations in fetal growth in 

pregnancies complicated by asthma. The fetus influenced maternal asthma, alterations 

in maternal asthma affected placental function, and changes in placental function 

ultimately had consequences for fetal growth and development. 

The study found that female fetal growth was reduced in asthmatic women who did not 

use inhaled glucocorticoids for treatment and had relatively mild asthma. Unlike many 

previous analyses, this study classified pregnant asthmatic women based upon disease 

severity independently of treatment. As a result, I was able to show that mild asthma, 

which was not recommended for inhaled glucocorticoid therapy contributes to reduced 

female fetal growth in late gestation. In addition, no previous studies have examined 

fetal growth by ultrasound during asthmatic pregnancies. However, I found no 

differences in fetal size as measured by ultrasound at 18 or 30 weeks, but a significant 

reduction in birth weight and a similar reduction in head size at birth, suggesting a late 

gestation symmetrical growth reduction in female neonates. 

Severe asthma was not found to be a major contributor to the alterations in placental 

function or fetal growth in asthmatic pregnancies. In addition, the use of high doses of 

inhaled glucocorticoids did not contribute to significant changes in placental function or 

fetal development. Surprisingly, women with mild asthma, who were medically advised 

that they did not require glucocorticoid therapy for asthma control, had alterations in 

maternal inflammation, placental function and female fetal growth. 



Chapter 8 - Linking the Mother, Placenta and Fetus 

257 

This was the first study to identify that changes in fetal growth in asthmatic pregnancies 

are fetal sex-specific. I found that the female fetus was particularly susceptible to 

reduced growth, and in addition, the female fetus had a different effect from the male 

fetus on the maternal immune system during pregnancy, with an up-regulation of 

inflammatory pathways and a decrease in lung function observed in asthmatic women 

pregnant with a female fetus. Previous reports had suggested the possibility that female 

fetal sex leads to a worsening of maternal asthma, while male fetal sex was associated 

with an improvement in symptoms and less drug use during pregnancy (164, 165). 

However, my study is the first to report both a worsening of asthma in the presence of a 

female fetus as well as reduced female fetal growth in the same group of asthmatic 

mothers with very mild asthma. This provides evidence of a strong link between mother 

and fetus in asthmatic pregnancies. Alterations in maternal asthma in the presence of a 

female fetus may also be involved in the observed changes in placental function, which 

included a reduction in placental 11β-HSD2 activity and a trend towards increased cord 

blood cortisol. These changes in placental function were associated with reduced fetal 

growth and suppressed fetal adrenal function in females. 

Maternal inflammation, rather than maternal hypoxia, may be the key to alterations in 

female fetal growth in this setting, since the use of anti-inflammatory inhaled 

glucocorticoids by pregnant women with mild asthma were protective. Moreover, 

changes previously observed in the context of maternal hypoxia, such as reduced 

abdominal circumference by 25 weeks gestation (320), altered uteroplacental blood 

flow (324) and changes in the expression of placental cytokines (796) and 

glucocorticoid receptors (814), were not observed in the no glucocorticoid group (111) 

in my study. Nonetheless, further investigation into maternal and fetal hypoxia in the 

context of maternal asthma will be required in future studies. The male fetus appeared 

to be insensitive to the effects of inflammation in the mother, with no changes in 

placental function or growth observed in male fetuses. In conclusion, the female fetus 

has an adverse effect on maternal asthma, which when not treated with inhaled 

glucocorticoids results in reduced fetal growth. 

A further aspect of my study was that the asthmatic women were actively managed 

during pregnancy, as was similarly performed in the many prospective studies carried 

out by Schatz and colleagues (53, 83, 134, 148). However, this also included patient 

education to improve self-management of asthma, which was found to increase 
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knowledge of medications and inhaler technique and equipped women to better manage 

their asthma in the event of an exacerbation by providing an asthma action plan. This 

education program is part of the strategy to improve the health outcomes of mothers 

with asthma and their babies. 

The placental enzyme 11β-HSD2, which prevents large amounts of the anti-mitogenic 

hormone cortisol from reaching the fetus in an active form, was found to be important 

in the mechanism of reduced fetal growth, since decreased enzyme activity was 

observed in placentae from females of the no glucocorticoid group. Previous studies 

have identified placental 11β-HSD2 to be an important controller of human fetal growth 

in relation to IUGR (554) and pre-eclampsia (563, 595). Although placental 11β-HSD2 

activity can be altered by hypoxia (595), its regulation by inflammatory mediators has 

not yet been investigated in the placenta.  

No studies from other research groups have investigated changes in placental function 

in relation to maternal asthma. My work has contributed to an understanding of the 

placental mechanisms contributing to reduced female fetal growth in asthmatics who do 

not use inhaled glucocorticoids for treatment. In addition to reduced placental 

11β-HSD2 activity, there were further alterations in placental expression of cytokines 

and glucocorticoid receptors. The placental cytokine Th2:Th1 mRNA ratio was 

increased and mRNA abundance of GR-α, GR-β and MR was reduced in females from 

the no glucocorticoid group. Such changes are likely to be a consequence of altered 

11β-HSD2 activity resulting in increased local cortisol concentrations, as suggested by 

the correlation between Th2:Th1 cytokines and enzyme activity, and may ultimately 

have effects on the developing fetal immune system and fetal glucocorticoid sensitivity 

which will need to be specifically addressed in future studies. 

It is possible that the increased maternal monocyte count in asthmatic women pregnant 

with a female fetus contributed to alterations in the placental IL-5:TNF-α (Th2:Th1) 

cytokine ratio. A recent study demonstrated that IL-5 gene transcription was up-

regulated in the presence of human monocytes (838). In cultures of CD4+ T cells, IL-5 

production was enhanced by the addition of monocytes from atopic asthmatics but not 

by monocytes from non-atopic non-asthmatic subjects (736). Placental monocyte 

infiltration in malaria has been associated with low birth weight (839). In pregnant 

women with asthma, maternal monocytes may influence placental function, particularly 
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Th2 and Th1 cytokine mRNA expression. This hypothesis will need to be tested in 

future experiments. 

Reduced transplacental metabolism of cortisol may have contributed to changes in fetal 

HPA axis development, as a significant decrease in cord blood estriol was found 

specifically in females from the no glucocorticoid group, and there was an inverse 

correlation between cord blood cortisol and estriol. Previous studies in humans have 

demonstrated that the levels of estriol or its precursor, DHEA-S, are reduced with 

maternal or fetal stress (822, 829) and maternal betamethasone administration (823, 

830, 831). Animal studies have shown that glucocorticoid exposure in utero, or 

maternal stress during pregnancy can lead to fetal programming of the HPA axis and 

altered stress responses in offspring later in life (576, 578, 579). Female fetal HPA 

function appeared to be significantly altered in the presence of maternal asthma not 

treated with inhaled glucocorticoids and this could potentially contribute to changes in 

HPA function in neonatal or later life. Future follow-up studies will examine this 

possibility in the offspring of asthmatic mothers.  

The results of my study indicated that the female fetus was particularly susceptible to 

alterations in fetal growth in the context of asthmatic pregnancies. Previous reports have 

described an increased likelihood of reduced male fetal growth in the presence of 

maternal smoking (313, 631) or caffeine use (633). On the other hand, the female fetus 

is more likely to be affected by growth restriction associated with maternal hypertension 

(632). Various other aspects of pregnancy outcome are also related to fetal sex. 

Placental dysfunction is more likely to occur in pregnancies with a male fetus compared 

to pregnancies with a female fetus (840) and women pregnant with a male fetus are 

more at risk of placenta previa (841). Eogan et al. found that women who went into 

spontaneous labour and were pregnant with a male fetus were more likely to require an 

assisted delivery or to have complications during labour and delivery, such as oxytocin 

augmentation, epidural analgesia or fetal distress, than women pregnant with a female 

fetus (842). In addition, maternal nutrient intake has been shown to differ depending on 

the sex of the fetus, with women pregnant with a male fetus having a higher energy 

intake than women pregnant with a female fetus (630). These studies and my work 

establish that there is a strong link between mother and fetus related to fetal sex.  
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These fetal sex differences may be due to variation in circulating sex hormones or other 

factors such as proteins which differ between the male and female fetus. However, 

previous data on fetal sex-specific hormonal variation during pregnancy has been 

conflicting and dependent upon gestational age. Abramovich and Rowe found that cord 

blood concentrations of testosterone were significantly higher in males than females 

between 12 to 18 weeks gestation, but were not different at term (843). Reyes et al. 

found that fetal serum testosterone was higher in males than females between 9 and 25 

weeks gestation, while follicle stimulating hormone (FSH) in fetal serum was 

significantly higher in females than in males (844). Other authors have reported that 

after 17 weeks gestation, circulating testosterone in males declines and by term is the 

same as circulating levels in females (845). However, Ketupanya and Wiest reported 

higher levels of testosterone in amniotic fluid from male fetuses throughout gestation, 

even from 31-40 weeks (846). Robinson et al. showed that between 14 and 20 weeks 

gestation, amniotic fluid levels of testosterone and androstenedione were higher in 

males, while estradiol was higher in females (847). To investigate the possibility of 

mid-gestation testosterone and FSH being used for sex determination, amniotic fluid 

levels were measured by Belisle et al. (848). They found that in the majority of cases, 

testosterone was higher in males, while FSH levels in males were 10 times lower than 

those in females (848). Forest et al. found no differences between the sexes in amniotic 

fluid levels of progesterone, estrone, cortisol and cortisone (849). They did, however, 

note an increase in testosterone and androstenedione in males between 12 and 19 weeks 

and in estradiol between 15 and 19 weeks in females, probably due to fetal gonadal 

activity at this time (849). Several progesterone metabolites including 17-

hydroxyprogesterone have been reported to be elevated in females compared to males 

(849), while another study found no sex differences in the levels of progesterone itself, 

or cortisol, estradiol and estriol in the umbilical vein between 28 and 40 weeks gestation 

(850). Riley et al. showed that inhibin B, a pituitary hormone which suppresses the 

secretion of pituitary FSH, was detectable in fetal cord serum from males but not 

females (851). Placental explants have been shown to produce more hCG if from 

females compared to males (852). Based on this information, testosterone, 

androstenedione, estradiol and FSH appear to differ between males and females at some 

times during gestation, but these differences were rarely observed in later gestation, 

when changes in maternal asthma and fetal growth occurred in asthmatic women. 
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Few studies have identified fetal sex-specific hormonal differences using maternal 

blood. However, given that fetal cells and placental mRNA can be detected in the 

maternal circulation (757, 758), it is not unlikely that sex-specific products originating 

from the fetus may circulate in the mother and alter her immune system. Previous 

studies indicate that female sex hormones alter cytokine release from macrophages 

(853). Eosinophil function can also be altered by sex hormones, with estradiol and 

progesterone causing an increase in adhesion of eosinophils to mucosal endothelial cells 

and subsequent eosinophil degranulation, while testosterone caused a reduction of 

adhesion and viability of eosinophils (854). Fetally-derived factors may also be 

involved in an alteration of monocyte/macrophage phenotype or function in the mother. 

This possibility has not previously been examined in relation to fetal sex or maternal 

asthma. An up-regulation of maternal inflammation may be directly involved in the 

reduction of placental cortisol metabolism by 11β-HSD2 and ultimately in altering 

female fetal growth and development. 

In this study, I have used the SELDI-TOF proteomics technique to examine proteins 

expressed in maternal plasma, the placenta and cord blood. Preliminary data analysis 

suggests that this method could be useful for identifying novel interactions between the 

mother, placenta and fetus in asthmatic pregnancies. There is a need for further 

replication and verification of this data. However, the initial results suggest a complex 

interplay between mother and fetus during pregnancy which contributes to changes in 

maternal plasma proteins associated with asthma as pregnancy progresses.  

In-depth statistical analysis of the SELDI data with principal component analysis (PCA) 

would be beneficial, as alterations in the pattern of protein peaks, rather than individual 

protein changes could be extremely important in the altered physiology of asthma 

during pregnancy. PCA is a technique which reduces the complexity of data with a large 

number of interrelated variables, by transforming the data into principal components or 

key variables, allowing visualisation of the data set (855-857). This method has been 

used previously to analyse data from gene expression studies using cDNA arrays (858-

860) and could also be useful for proteomic data analysis. Such an approach, coupled 

with further identification and characterisation of protein peaks would facilitate data 

interpretation. 
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An unknown factor derived from the female fetus may alter maternal immune function 

in asthmatic women. This factor could be a novel sex steroid hormone, or a novel 

protein originating from the fetus. My preliminary proteomics studies suggested that 

fetal sex alters the pattern of maternal, placental and cord blood proteins. However, only 

three protein differences were identified between male and female cord blood at term. 

Work from our laboratory has also demonstrated that there are several differences in 

unknown steroid compounds in term cord blood analysed by HPLC (Dr Vicki Clifton 

and Dr Pawel Zarzycki, unpublished data). These fetally-derived factors may play a role 

in altering maternal physiology during asthmatic pregnancies. 

The SELDI technique has not previously been used to study plasma protein profiles in 

asthma or pregnancy. Further identification of these proteins will increase our 

understanding of the factors which are exchanged between mother and fetus and how 

they are involved in the alteration of maternal asthma during pregnancy and the 

alteration of fetal growth in the female fetus. 

8.3 Clinical and scientific implications 

This study has several important clinical and scientific implications. The results have 

demonstrated that the use of inhaled glucocorticoids by women with mild asthma was 

beneficial for the growth of female fetuses, possibly by controlling maternal systemic 

inflammation. In addition, the female fetus influenced the course of maternal asthma 

through pregnancy. This has implications for the management of pregnant women with 

asthma, as the use of low dose inhaled glucocorticoids for mild symptomatic asthmatics 

may be warranted during pregnancy. A recent randomised clinical trial investigated low 

dose budesonide use (400 µg/day) in adults who had developed mild asthma within the 

previous two years (861). The study showed that budesonide decreased the requirement 

for systemic glucocorticoids to treat severe exacerbations and increased 

prebronchodilator FEV1 by 2.24% after 1 year (861). In addition, the number of 

symptom free days significantly increased and there was a significant decrease in 

hospital and emergency department visits for asthma (862). Preliminary results from the 

same trial demonstrated that in 198 pregnant women (217 pregnancies) there were no 

adverse effects of low dose budesonide treatment in mild asthmatics (204), which 

confirmed similar epidemiological data from the Swedish medical birth registry (202). 
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Low dose budesonide treatment may be beneficial for pregnant women with mild 

asthma who have not previously used inhaled glucocorticoids. Further research into the 

type of airway inflammation in pregnant women with asthma and an understanding of 

the mechanisms by which pregnancy alters asthma will improve the treatment of these 

pregnant women, which ultimately improves the health of their baby both in the short-

term and long-term. 

Scientifically, this study has contributed to an understanding of the mechanisms 

regulating fetal growth in human pregnancy. Placental 11β-HSD2 activity is a key 

component of this mechanism, through its control of active cortisol concentrations 

reaching the fetus. The female fetus was particularly sensitive to alterations in cortisol 

exposure and the downstream effects of this included reduced fetal adrenal function and 

reduced growth. These changes in fetal HPA axis development and growth potentially 

expose these female neonates to an increased risk of developing diseases in later life 

through altered fetal programming. By examining the endocrine and immune 

relationships between mother, placenta and fetus during asthmatic pregnancies, this 

study has provided evidence for a detrimental effect of maternal inflammation on 

placental function and female fetal growth and development. 

8.4 Future work 

8.4.1 Regulation of placental 11β-HSD2 

The results of this study showed that the reduction in female fetal growth is associated 

with reduced activity of the placental enzyme 11β-HSD2, which regulates the passage 

of cortisol from mother to fetus. In addition, there was an increased mRNA ratio of 

Th2:Th1 cytokines in the placenta, and 11β-HSD2 activity was inversely correlated 

with the Th2:Th1 mRNA ratio. Whether the placental enzyme 11β-HSD2 is regulated 

by inflammatory factors remains unknown and has not previously been examined by 

any other groups. In osteosarcoma cells, TNF-α and IL-1β inhibited 11β-HSD2 activity 

and mRNA (604) and these or other cytokines may also be involved in placental 

11β-HSD2 activity regulation. In addition, the balance of Th2:Th1 cytokines may be 

crucial for determining placental 11β-HSD2 activity. Future work would examine the 

regulation of placental 11β-HSD2 by inflammatory factors in a placental explant model 

and in primary syncytiotrophoblast cells. 
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8.4.2 Maternal inflammatory pathways in asthma 

Data from this study indicate that the fetus can influence how a mother’s asthma 

progresses through pregnancy. Specifically, in the presence of a female fetus, asthmatic 

women (both those treated and those not treated with inhaled glucocorticoids) have a 

worsening of their lung function from early to late pregnancy. In addition, there is an 

increase in the percentage and number of circulating monocytes in the mother from 

early to late pregnancy, in women not using inhaled glucocorticoids for treatment who 

are pregnant with a female fetus. Eosinophils are often considered the major 

inflammatory cell in asthma (754, 863). However, my data suggests that alternative 

inflammatory pathways involving monocytes may play a more important role such that, 

during pregnancy, a non-eosinophilic mechanism of asthma may be occurring. Future 

studies will use flow cytometry to examine whether there are changes in the activation 

phenotype of eosinophils, monocytes and neutrophils or in their production of cytokines 

during pregnancies complicated by asthma. This may help improve treatment options 

for pregnant asthmatic women. 

In my study, no markers of airway inflammation were specifically examined. The 

measurement of NO in exhaled breath condensate is a non-invasive method which could 

be extremely useful for monitoring airway inflammation in pregnant asthmatics. Studies 

have shown that exhaled NO reflects airway hyperresponsiveness, is reduced by inhaled 

glucocorticoid use and is a useful marker for airway inflammation in mild asthmatics 

(864, 865). Future studies will examine exhaled NO in pregnant asthmatic and non-

asthmatic women as a marker of airway inflammation and determine whether it is 

altered by pregnancy itself, fetal sex or maternal glucocorticoid use. A marker such as 

exhaled NO could be used as a management tool, to observe changes in maternal airway 

inflammation during pregnancy, and alter treatment as required.  

8.4.3 Maternal and fetal oxygenation in asthmatic 
pregnancies 

Although much of the available evidence suggests that maternal hypoxia is not likely to 

contribute to reduced birth weight and altered placental function in pregnant women 

with mild asthma, maternal and fetal oxygenation were not directly measured in this 

study. It is important to confirm that women with mild asthma who do not use inhaled 
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glucocorticoids have normal arterial oxygenation and that there are no adverse effects of 

maternal asthma on fetal oxygenation. Fetal oxygenation could be investigated by 

measuring the hematocrit or erythropoietin levels in cord blood, which if increased, are 

indicators of hypoxia (866-869).  

8.4.4 Identification and characterisation of maternal, 
placental and fetal proteins 

The results of the proteomics studies have built up a complex picture of the changes in 

plasma proteins which occur during pregnancy, highlighting the large number of plasma 

protein differences between pregnant women with and without asthma. The findings 

support the concept of a dynamic interaction between fetus and mother during 

pregnancy and with further information the data may also lead to a greater 

understanding about the effect pregnancy itself has on the progression of asthmatic 

disease in these women.  

There are several approaches to protein identification and characterisation which could 

be carried out in future studies. The SELDI data gives an estimate of the protein’s MW 

and an estimate of pI can be obtained from the known binding properties of the protein. 

Using this information, a purification technique could be designed utilising size 

exclusion and/or ion exchange column chromatography, HPLC and possibly 2D-PAGE 

for proteins >10 kDa (690, 692). Repeat examination of the purified fractions by SELDI 

would be necessary to ensure the correct peak was being isolated. The purified protein 

would be subject to trypsin digest and the fragments produced by the trypsin digest and 

subsequent collision-induced dissociation in MS-MS would produce a unique set of 

ions, which could be matched with theoretical fragments available in protein databases 

(769). Amino acid sequencing would be performed to confirm the sequence. Other 

methods such as reduction with DTT to probe for the existence of disulfide bonds and 

binding to antibodies, with subsequent SELDI analysis to visualise changes in peptide 

structure, could be performed to confirm the identity of the proteins (769). 

Some of the factors to be identified may be novel proteins, which potentially could be 

used for the diagnosis or treatment of asthma during pregnancy. These discoveries could 

improve the health care of mothers and their babies by improving the management of 

pregnant women with asthma. 
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8.5 Final conclusion 

This thesis has presented a comprehensive study of the endocrine and immune 

interactions between mother, placenta and fetus in pregnancies complicated by asthma 

(Figure 8.1). It has addressed the question of whether fetal growth is reduced in 

asthmatic pregnancies and has proposed a placental mechanism for the change in 

growth of the female fetus. Female fetal growth is reduced in women with mild asthma 

who do not used inhaled glucocorticoids, through altered placental 11β-HSD2 activity. 

In addition, the results of this study indicate that inhaled glucocorticoids have no effect 

on placental function, fetal HPA axis development or fetal growth in pregnancies 

complicated by asthma. This work has added considerably to the existing literature on 

asthma and pregnancy by examining the mechanisms involved in alterations in the 

mother’s asthma during pregnancy as well as the mechanisms contributing to reduced 

fetal growth in asthmatic pregnancies. This study has provided strong evidence both for 

the detrimental effects of maternal inflammation on placental function and female fetal 

growth and development, and for the role of the fetus in influencing maternal health 

during pregnancy. 
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Figure 8.1 Summary of the interactions between mother, placenta and fetus in Figure 8.1 Summary of the interactions between mother, placenta and fetus in 

asthmatic pregnancies 

This study has examined the endocrine and immune relationships between mother, placenta and fetus in 
pregnancies complicated by asthma. The female fetus is able to influence the course of maternal asthma 
during pregnancy. Maternal inflammation may be important in altering placental function, which 
ultimately influences female fetal growth.  
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Appendix 1 Participant information sheet and 
consent form (control subjects) 

WOULD YOU LIKE TO PARTICIPATE AS A CONTROL SUBJECT IN A 

STUDY OF ASTHMA AND PREGNANCY ? 

PLEASE READ OUR INFORMATION SHEET 

CHIEF INVESTIGATORS 

Dr Vicki Clifton   Dept of Endocrinology. Phone: 4921 4393, pager 5092 

Dr Peter Gibson  Dept of Respiratory Medicine. Phone: 4921 3470 

Professor Warwick Giles Dept of Obstetrics and Gynaecology. Phone: 4921 4381 

Professor Roger Smith Dept of Endocrinology. Phone: 4921 4380 

Ms Vanessa Murphy  Dept of Endocrinology. Phone: 4921 4380 

Ms Annette Osei-Kumah Dept of Endocrinology. Phone: 4921 4380 

Short Title: Effect of severe asthma during pregnancy on placental function and fetal 

outcome. 

Patient Initials.......................................... Patient Number................................... 

What is the purpose of the study? 

We are investigating the effects of asthma on the baby’s growth and placental function. 

Pregnancies complicated by severe asthma may be associated with preterm delivery and 

low birthweight babies. The researchers involved are Dr Vicki Clifton, Prof Warwick 

Giles, Prof Peter Gibson, Prof Roger Smith and PhD students, Ms Vanessa Murphy and 

Ms Annette Osei-Kumah at The University of Newcastle, under the supervision of Dr 

Vicki Clifton. This study will monitor the baby’s growth throughout pregnancy in 

women who have mild, moderate or severe asthma and determine if there are any 

changes in growth associated with asthma. We also want to look at the placenta (the 

afterbirth) and examine if there are any changes in how the placenta functions in women 

with asthma. We will also collect cord blood from the placenta and examine the effect 

of the blood on the activity of different cells. This study will increase our understanding 

of pregnancy and asthma and may improve the treatment of asthma during pregnancy. 
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The samples we collect from the placenta may be used for future studies of asthma and 

pregnancy. We would like to compare the findings in asthmatic women to women who 

have normal healthy pregnancies (control subjects). 

What does the study involve? 

1. 3 × 10 ml blood samples at around 12, 18 and 30 weeks of pregnancy 

2. 3 ultrasounds at 18, 30 and 36 weeks 

3. collection of a morning sample of urine at 12, 18 and 30 weeks of pregnancy 

4. the donation of your placenta after your delivery 

At your first antenatal visit you usually give a blood sample and some extra blood will 

be taken with your permission for this study. Then at 18 weeks and 30 weeks we will 

take another blood sample. These samples are not normally taken during your 

pregnancy. The blood sample may hurt a little and there could be bruising but this 

doesn’t happen very often. 

We will ask you to take home a pot for a sample of urine from your first morning visit 

to the toilet, which is any time after 4.00 am. We would like to collect a urine sample at 

12, 18 and 30 weeks of pregnancy. Our research nurse would contact you the day before 

you give the sample to ask you if it would be convenient for her to collect the sample 

the next morning. She would then collect the sample from your house at a convenient 

time of your choice. We would like to collect 2 mls of this urine to monitor hormones 

produced by you and the baby. 

As part of your usual antenatal care, at around 18, 30 and 36 weeks of your pregnancy, 

we will monitor your baby’s growth using an ultrasound and record these findings in 

our study. One study has reported that ultrasound may be associated with a 30% 

increase in left-handedness which equates to 3 children in every 100 births. No harm 

has been demonstrated from ultrasound. 

After your baby is delivered, if you agree, we will collect your placenta (the afterbirth) 

and determine whether there are any changes in how it functions. The placenta is 

delivered after the baby and our collection of it will not harm mother or baby. We will 

collect blood from the placental cord and use it in the laboratory to examine the effect 

blood from a male or female fetus has on the activity of different cells. Ms Murphy will 

conduct experiments on the placenta in our laboratory and the results will contribute to 
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her PhD thesis. Ms Annette Osei-Kumah will use the cord blood on myometrial and 

bronchial smooth muscle cells in our laboratory and the results will contribute to her 

PhD thesis.  Some of the samples of blood, urine, cord blood and placenta will be stored 

and used in the future for further studies of asthma and pregnancy. The samples of 

blood, urine and placenta may also be used by students in the future as part of their 

research projects. All of the samples collected will be de-identified so that your privacy 

is maintained.  

These samples will not be used for cloning or stem cell research. 

If you agree to donate your placenta and cord blood for this study, there will be a note 

on your medical record to tell the midwife how to contact Dr Clifton to collect it. If you 

are able to remind the midwife after the birth of your baby we would be most 

appreciative.  

What are the extra things I will have to do for this study? 

Most of the information that we will collect from you are part of your routine antenatal 

care. The additional requests are: 

1. 2 × 10 ml blood samples at 18 and 30 weeks of your pregnancy 

2. 3 × morning urine samples at 12, 18 and 30 weeks of pregnancy 

3. 2 extra ultrasounds at 30 and 36 weeks gestation 

What do I need to tell the doctor before I participate? 

We would like to know if you have any illnesses such as diabetes or hypertension. We 

would also like to know if you smoke and how many you smoke each day. Please tell us 

if you take any medicines including herbal medicines or medicines bought from the 

supermarket, chemist or health food shop. 

Is the information collected confidential? 

Any information we collect about your pregnancy and asthma will be kept confidential 

and you will not be identifiable in any reports of the study. 

What if I change my mind? 

Taking part in this study is completely voluntary and if you participate you are free to 

withdraw from the study at any time without giving a reason. Decisions you make 

regarding participation will not affect your access to care and services you would 
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normally receive. If you choose to withdraw from the study just let the doctor or nurse 

know at your next visit. 

What if I have a complaint about this study? 

Should you have a complaint concerning the manner this study is conducted it may be 

given to the doctor or write to the Professional Officer, Dr Nicole Gerrand, HAREC, c/o 

HAHS, Locked Bag No 1, New Lambton Heights, 2305, or telephone 049 21 4950. 

Can I see the results of this study? 

You can receive the results of this study by contacting Dr Vicki Clifton on 49214380 

and leaving your name and address. Study results will then be posted to your home 

address. 

CONSENT TO PARTICIPATE IN RESEARCH. 

STUDY OF THE EFFECTS OF ASTHMA ON PREGNANCY, PLACENTAL 

FUNCTION AND FETAL OUTCOME 

Chief Investigator to contact: Dr Warwick Giles, Dept Obstetrics and Gynaecology, 

phone 21 4381 

This study will assess the effect of asthma on the growth of the baby and placental 

function and will be compared to pregnancies without asthma. 

Women who present to the John Hunter Hospital Antenatal Clinic will be asked to 

participate in this study in the first trimester of their pregnancy. Participants will be 

asked to give 3 × 10 ml blood samples at around 12, 20 and 38 weeks of pregnancy, 

have 3 ultrasounds at 18, 30 and 36 weeks, have an assessment of their asthma and keep 

a record of the drugs they take for asthma, the donation of their placenta after delivery.  

It is essential that you read and understand the information sheet which gives details of 

what will happen during the study. Please ask the doctor or nurse to answer any 

questions you have before signing the consent form. You may telephone the research 

team anytime. 

All information gained from this study will remain confidential and personal identifying 

information will be deleted from all records when the study is complete. 
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CONSENT 

 

I have been asked to participate in the above research project and give my free consent 

by signing this form. I understand that: 

1. The research project will be carried out as described in the Information Sheet, a copy 

of which I have retained. 

2. If I do not volunteer, or decide to withdraw, my decision will be accepted and my 

nonparticipation will not affect the treatment I am receiving 

3. My consent to participate is voluntary and I may withdraw from the trial at any time. 

I do not have to give a reason for the withdrawal of my consent. 

4. I have read and understood the information sheet and had my questions answered to 

my satisfaction. 

5. If I wish to raise matters of concern or complaints I can contact the Professional 

Officer, Dr Nicole Gerrand, HAREC, c/o HAHS, Locked Bag No 1, New Lambton 

Heights, 2305, or telephone 049 21 4950. 

SIGNATURE.............................................   

 DATE....................................... 
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Appendix 2 Participant information sheet and 
consent form (asthmatic subjects) 

WOULD YOU LIKE TO PARTICIPATE IN A STUDY OF ASTHMA AND 

PREGNANCY ? 

PLEASE READ OUR INFORMATION SHEET 

CHIEF INVESTIGATORS 

Dr Vicki Clifton   Dept of Endocrinology. Phone: 4921 4393, pager 5092 

Dr Peter Gibson  Dept of Respiratory Medicine. Phone: 4921 3470 

Professor Warwick Giles Dept of Obstetrics and Gynaecology. Phone: 4921 4381 

Professor Roger Smith Dept of Endocrinology. Phone: 4921 4380 

Ms Vanessa Murphy  Dept of Endocrinology. Phone: 4921 4380 

Ms Annette Osei-Kumah Dept of Endocrinology. Phone: 4921 4380 

Short Title: Effect of severe asthma during pregnancy on placental function and fetal 

outcome. 

Patient Initials.......................................... Patient Number................................... 

What is the purpose of the study? 

We are investigating the effects of asthma on the baby’s growth and placental function. 

Pregnancies complicated by severe asthma may be associated with preterm delivery and 

low birthweight babies. The researchers involved are Dr Vicki Clifton, Prof Warwick 

Giles, Prof Peter Gibson, Prof Roger Smith and PhD students, Ms Vanessa Murphy and 

Ms Annette Osei-Kumah at The University of Newcastle, under the supervision of Dr 

Vicki Clifton. This study will monitor the baby’s growth throughout pregnancy in 

women who have mild, moderate or severe asthma and determine if there are any 

changes in growth associated with asthma. We also want to look at the placenta (the 

afterbirth) and examine if there are any changes in how the placenta functions in women 

with asthma. We will also collect cord blood from the placenta and examine the effect 

of the blood on the activity of different cells. This study will increase our understanding 

of pregnancy and asthma and may improve the treatment of asthma during pregnancy. 
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The samples we collect from the placenta may be used for future studies of asthma and 

pregnancy.  

What does the study involve? 

1. 3 × 10 ml blood samples at around 12, 18 and 30 weeks of pregnancy 

2. 3 ultrasounds at 18, 30  and 36 weeks 

3. collection of a morning sample of urine at 12, 18 and 30 weeks of pregnancy 

4. an assessment of your asthma at the beginning and the end of your pregnancy 

5. the donation of your placenta after your delivery and collection of cord blood 

At your first antenatal visit you usually give a blood sample and some extra blood will 

be taken with your permission for this study. The respiratory nurse will talk to you 

about what you take for your asthma and how often you get sick. We will look at your 

lung capacity using a peak flow monitor and we will ask you to record your peak flow 

every day for 2 weeks in a diary card. When you are sick with asthma we will ask you 

to record this in your diary. At the end of the pregnancy you will have another asthma 

assessment with the respiratory nurse. 

We will ask you to take home a pot for a sample of urine from your first morning visit 

to the toilet which is any time after 4.00 am. We would like to collect a urine sample at 

12, 18 and 30 weeks of pregnancy. Our research nurse would contact you the day before 

you give the sample to ask you if it would be convenient for her to collect the sample 

the next morning. She would then collect the sample from your house at a convenient 

time of your choice. We would like to collect 2 mls of this urine to monitor hormones 

produced by you and the baby. 

At 18 weeks and 30 weeks we will take another blood sample. These samples are not 

normally taken during your pregnancy. The blood sample may hurt a little and there 

could be bruising but this doesn’t happen very often. 

At around 18, 30 and 36 weeks of your pregnancy we will monitor your baby’s growth 

using an ultrasound. One study has reported that ultrasound may be associated with a 

30% increase in left-handedness which equates to 3 children in every 100 births. No 

harm has been demonstrated from ultrasound. 
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You will be given a diary card to fill out to detail your asthma symptoms and the drugs 

you take during your pregnancy. We will also give you a peak flow meter to measure 

your lung function. 

After your baby is delivered, if you agree, we will collect your placenta (the afterbirth) 

and determine whether there are any changes in how it functions. The placenta is 

delivered after the baby and our collection of it will not harm mother or baby. We will 

collect blood from the placental cord and use it in the laboratory to examine the effect 

blood from a male or female fetus has on the activity of different cells. Ms Murphy will 

conduct experiments on the placenta in our laboratory and the results will contribute to 

her PhD thesis. Ms Annette Osei-Kumah will use the cord blood on myometrial and 

bronchial smooth muscle cells in our laboratory and the results will contribute to her 

PhD thesis.  Some of the samples of blood, urine, cord blood and placenta will be stored 

and used in the future for further studies of asthma and pregnancy. The samples of 

blood, urine and placenta may also be used by students in the future as part of their 

research projects. All of the samples collected will be de-identified so that your privacy 

is maintained.  

These samples will not be used for cloning or stem cell research. 

If you agree to donate your placenta and cord blood for this study, there will be a note 

on your medical record to tell the midwife how to contact Dr Clifton to collect it. If you 

are able to remind the midwife after the birth of your baby we would be most 

appreciative.  

What are the extra things I will have to do for this study? 

Most of the information that we will collect from you are part of your routine antenatal 

care. The additional requests are 

1. 2 × 10 ml blood samples at 18 and 30 weeks of your pregnancy 

2. 3 × morning urine samples at 12, 18 and 30 weeks of pregnancy 

3. record your asthma symptoms, peak flow and the drugs you take during your 

pregnancy in a diary card  

4. 2 extra ultrasounds at 30 and 36 weeks gestation 
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What if I have an asthma attack during my pregnancy? 

If you are sick with asthma during your pregnancy, it is important that you follow your 

action plan and seek medical help from your usual doctor. In addition, please contact Dr 

Peter Gibson of Respiratory Medicine on 02 4921 3470.  If you have a severe asthma 

attack and need to come to the emergency outpatients at the John Hunter Hospital, let 

the doctor know that you are part of this study. If you go to another hospital please note 

the visit and your treatment in the diary card and let us know by ringing 02 4921 3470. 

What do I need to tell the doctor before I participate? 

We would like to know if you have any other illnesses other than asthma such as 

diabetes or hypertension. We would also like to know if you smoke and how many you 

smoke each day. Please tell us if you take any other medicines including herbal 

medicines or medicines bought from the supermarket, chemist or health food shop. 

Is the information collected confidential? 

Any information we collect about your pregnancy and asthma will be kept confidential 

and you will not be identifiable in any reports of the study. 

What if I change my mind? 

Taking part in this study is completely voluntary and if you participate you are free to 

withdraw from the study at any time without giving a reason. Decisions you make 

regarding participation will not affect your access to care and services you would 

normally receive. If you choose to withdraw from the study just let the doctor or nurse 

know at your next visit. 

What if I have a complaint about this study? 

Should you have a complaint concerning the manner this study is conducted it may be 

given to the doctor or write to the Professional Officer, Dr Nicole Gerrand, HAREC, c/o 

HAHS, Locked Bag No 1, New Lambton Heights, 2305, or telephone 049 21 4950. 

Can I see the results of this study? 

You can receive the results of this study by contacting Dr Vicki Clifton on 49214380 

and leaving your name and address. Study results will then be posted to your home 

address. 
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please place this form with my hospital notes 

 

PLACENTA AND CORD BLOOD 

DONATION 
 

 

 

I AM PARTICIPATING IN AN ASTHMA STUDY. I AM DONATING 

MY PLACENTA AND CORD BLOOD FOR RESEARCH TO THE 

DEPARTMENT OF ENDOCRINOLOGY AND OBSTETRICS AND 

GYNAECOLOGY.  

 

 

 

COULD NURSING STAFF PLEASE CONTACT DR VICKI 

CLIFTON ON 49855641 OR 49431449 OR PAGER 5092 AT ANY 

TIME DAY OR NIGHT WITHIN 45 MINUTES OF THE DELIVERY 

 

 

Signature......................................................   

 

 

 Date............................................ 
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Appendix 4 Asthma Management Service scripting 

This section describes the type of information given and questions asked to subjects at 

the Asthma Management Service (Courtesy of Sr Philippa Talbot, Research Nurse, 

Mothers and Babies Research Centre, Newcastle).  

TRIGGERS 

Asthma is an oversensitive airway disease that can be easily triggered. The following 

are examples of some possible triggers: season, exercise, upper respiratory tract 

infection, fumes, stress, laughter, premenstrual asthma, pets (especially cats), food and 

aspirin. Please let me know if any of these apply to you. 

Some triggers are unavoidable and you may need to implement your asthma 

management plan at these times. 

Other triggers should be avoided where possible. 

HISTORY PAST 2 YEARS 

Over the past 2 years, have you ever presented to casualty and been sent home with 

asthma? 

How many hospital admissions have you had for your asthma over the past 2 years? 

During the past 2 years how many prednisone courses have you taken? 

PATIENT’S BEST 

Over the past 2 years, when your asthma is at its best, do you wake at night with 

asthma? If so, around how many nights per week? 

Over the past 2 years when your asthma is at its best, do you have symptoms such as 

chest tightness, cough, wheeze or breathlessness when you wake in the morning? 

Over the past 2 years when your asthma is at its best, how many times a day do you 

require your short acting beta-agonist such as ventolin? 

When you are well and your asthma is at its best, how many times per day do you take 

your preventer or inhaled corticosteroid puffer? 

Have you been monitoring your peak flows over the last 2 years? If so, what is your 

best peak flow reading? 
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MEDICATIONS 

Over the past week what medications have you been taking for your asthma? 

Note name and dosage of drug. Prednisone dose is the dose that was taken on that day. 

ASTHMA CONTROL 

How many nights in the past week have you woken from your sleep with asthma 

symptoms? 

How many mornings over the last week have you had asthma symptoms when you 

wake? 

How many days over the last week has your activity been limited due to your asthma? 

KNOWLEDGE OF MEDICATION 

Briefly explain how your reliever medication works. 

Briefly explain how your preventer medication works. 

Which inhaler would you carry with you if you were going shopping? 

If you woke in the morning with no asthma symptoms and you felt your asthma was 

under control, which inhaler would you use? 

If you had asthma symptoms which inhaler would you use? 

ACTION PLANS 

Do you know how to recognise worsening asthma? What are the early signs and 

symptoms of worsening asthma? 

When would you begin to implement your asthma management plan? 

How would you increase your treatment? Which medication would you increase? How 

long would you stay on your increased treatment? 

When would you see your doctor? 
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Appendix 6 Cumulative inhaled glucocorticoid use 
during pregnancy 

The cumulative inhaled glucocorticoid use during pregnancy was calculated as follows: 

T1 = Dose in first trimester 

T2 = Dose in second trimester 

T3 = Dose in third trimester 

a = (T1 × 12) + (T2 × 12) + (T3 × 12) 

If using fluticasone, double a 

Subjects classified as low dose glucocorticoid users if a ≤ 14400 

Subjects classified as moderate dose glucocorticoid users if 14400 ≤ a ≥ 54000 

Subjects classified as high dose glucocorticoid users if a ≥ 54000 
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Appendix 8 Buffer recipes 

Sodium phosphate buffer with protease inhibitors 

Component Amount 
NaH2PO4.2H2O 1.48 g 
Na2HPO4.12H2O 14.5 g 

EDTA 0.38 g 
Protease inhibitor cocktail tablets 10 tablets 

Trasylol 500 μl 
Dithiothreitol 0.0075 g 
Benzamidine 0.0784 g 

Bacitracin 0.05 g 
Pepstatin A 55.5 μl of 10 mg/ml 

Distilled water Up to 500 ml 
Adjust pH to 7.4 

Western blot buffers 

SDS sample buffer 

Component Amount 
Tris pH 6.8 40 ml 

Glycerol 28 ml 
6 mM EGTA 0.228 g 

SDS 6 g 
Bromophenol blue 0.07 g 

Distilled water 19 ml 
β-mercaptoethanol * 600 μl 

* SDS sample buffer is stored at room temperature without β-mercaptoethanol. Make 

the working solution up as required with 4.4 ml SDS sample buffer and 0.6 ml β-

mercaptoethanol. 

Lower electrode buffer (10×) 

Component Amount 
Tris pH 8.8 302.8 g 

Distilled Water Up to 5 L 
 

Upper electrode buffer (10×) 

Component Amount 
Tris pH 8.3 151 g 

Glycine 720 g 
10% SDS (100 g/L) 50 ml 

Distilled Water Up to 5 L 
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Transfer buffer 

Component Amount 
Tris pH 8.3 15 g 

Glycine 72 g 
Methanol 1 L 

Distilled Water Up to 5 L 
 

Blocking buffer 

Component Amount 
Transfer Buffer 300 ml 

BSA 1 g 
Store at 4°C 

Phosphate buffered saline (10×) 

Component Amount 
NaCl 80 g 
KCl 3 g 

Na2HPO4.12H2O 21.9 g 
NaH2PO4.2H2O 7.2 g 

Dissolve all components except NaH2PO4.2H2O in 700 ml distilled water. Add 

NaH2PO4.2H2O slowly until pH reaches 7.3 and adjust total volume to 1 L. 

Antibody dilution buffer 

Component Amount 
PBS (1×) 100 ml 

BSA 0.1 g 
Sodium azide 0.0001 g 

Store at 4°C 

Tris buffered saline (TBS)/tween 

Component Amount 
Tris pH 7.4 48.5 g 

NaCl 360 g 
Tween 20 (0.1%) 4 ml 
Distilled Water Up to 4 L 

PCR buffers 

TBE (Tris Borate EDTA) buffer (10×) 

Component Amount 
Tris base 108 g 

Boric acid 55 g 
EDTA 40 ml of 0.5 M 

Distilled Water Up to 1 L 
Adjust to pH 8.0 
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SELDI buffers 

IMAC low stringency binding buffer 

(PBS/0.5 M NaCl/0.1% TX-100, pH 7) 

Component Volume 
10 × PBS 50 ml 
5 M NaCl 50 ml 

10% TX-100 5 ml 
Distilled Water 395 ml 

Adjust pH to 7 with 1N HCl 

IMAC high stringency binding buffer 

(0.1 M sodium acetate/0.5 M NaCl/0.1% TX-100, pH 4) 

Component Volume 
100 mM sodium acetate 445 ml 

5 M NaCl 50 ml 
10% TX-100 5 ml 

Adjust pH to 4 with 1N HCl 

WCX low stringency/SAX high stringency binding buffer 

(0.1 M ammonium acetate/0.1% TX-100, pH 4 or 6) 

Component Volume 
100 mM ammonium acetate 480 ml 

10% TX-100 5 ml 
Adjust pH to 4 or 6 with glacial acetic acid (approximately 15 ml to pH 4) 

WCX high stringency binding buffer 

(0.1 M Tris/0.1% TX-100, pH 9) 

Component Volume 
100 mM Tris 495 ml 
10% TX-100 5 ml 

Adjust pH to 9 with 1N HCl 

SAX low stringency binding buffer 

(0.05 M Tris/0.1% TX-100, pH 9) 

Component Volume 
50 mM Tris 495 ml 
10% TX-100 5 ml 

Adjust pH to 9 with 1N HCl 



Appendices 

341 

Appendix 9 SELDI spot protocols 

Low mass spot protocol 

Step Description 
1 Set high mass to 30000 Da, optimised from 900 Da to 20000 Da 
2 Set starting laser intensity to 195 (for SPA) or 170 (for CHCA) 
3 Set starting detector sensitivity to 7 
4 Focus mass at 10000 Da 
5 Set mass deflector to 900 Da 
6 Set data acquisition method to Seldi Quantitation 
7 Set Seldi acquisition parameters 24 delta to 5 transients per to 5 ending position to 84 
8 Set warming positions with 2 shots at intensity 200 and don’t include warming shots 
9 Process sample 

10 Identify peaks using auto identify from 900 Da to 20000 Da 
 

High mass spot protocol 

Step Description 
1 Set high mass to 200000 Da, optimised from 10000 Da to 200000 Da 
2 Set starting laser intensity to 220 
3 Set starting detector sensitivity to 9 
4 Focus mass at 16500 Da 
5 Set mass deflector to 10000 Da 
6 Set data acquisition method to Seldi Quantitation 
7 Set Seldi acquisition parameters 22 delta to 5 transients per to 5 ending position to 82 
8 Set warming positions with 2 shots at intensity 225 and don’t include warming shots 
9 Process sample 

10 Identify peaks using auto identify from 10000 Da to 200000 Da 
 

Low mass calibration spot protocol 

Step Description 
1 Set high mass to 10000 Da, optimised from 900 Da to 7500 Da 
2 Set starting laser intensity to 190 
3 Set starting detector sensitivity to 8 
4 Focus mass at 3500 Da 
5 Set mass deflector to 400 Da 
6 Set data acquisition method to Automatic Laser Adjustment 
7 Set shots to collect to 25 shots 
8 Set points on scale to accept to 3 points and on-scale intensity to 40 
9 Set points off scale to reject to 2 points and off-scale intensity to 242 

10 Increase laser intensity by 1 after 1 consecutive low shot 
11 Decrease laser intensity by 3 after 1 consecutive high shot 
12 Revive signal with increased laser after 8 consecutive shots without signal, boost intensity 5 
13 Set minimum number of shots per fresh spot to 2 shots 
14  Set maximum shots per position to 10 shots 
15 Process sample 
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