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1. Introduction

1.1. MOTIVATION. A core tool for practically solving NP-hard problems is data
reduction through preprocessing. Weihe [1998, 2001] gave a striking example when
dealing with the NP-complete RED/BLUE DOMINATING SET problem appearing in
the context of the European railroad network. In a preprocessing phase, he applied
two simple data reduction rules again and again until no further application was
possible. The impressive result of his empirical study was that each of his real-world
instances was broken into very small pieces such that for each of these a simple
brute-force approach was sufficient to solve the computationally hard problems ef-
ficiently and optimally. In this work, we present a new and stronger scenario for data
reduction through preprocessing, namely for the NP-complete DOMINATING SET
problem, a core problem in combinatorial optimization and graph theory. According
to a 1998 survey [Haynes et al. 1998a, Chap. 12], more than 200 research papers and
more than 30 Ph.D. theses investigate the algorithmic complexity of domination and
related problems [Telle 1994]. Moreover, domination problems occur in numerous
practical settings, ranging from strategic decisions such as locating radar stations or
emergency services through computational biology to voting systems (see Haynes
et al. [1998a, 1998b] and Roberts [1978] for a survey). Two recent examples for
applications of domination problems can be found in Haynes et al. [2002] (“power
domination” in electric networks) and in Wan et al. [2003] (“connected domination”
in wireless adhoc networks). By way of contrast to the aforementioned example
given by Weihe, however, our preprocessing is, on the one hand, more involved to
develop, and, on the other hand, it does not only prove its strength through experi-
mentation but, in first place, by theoretically sound means. Thus, we come up with
a practically promising as well as theoretically appealing result for computing the
domination number of a graph, one of the so far few positive news for this impor-
tant problem. To some extent, our results also complement a recent experimental
analysis of heuristic algorithms for DOMINATING SET [Sanchis 2002].

1.2. PROBLEM DEFINITION AND STATUS. A k-dominating set Dof an undi-
rected graphG is a set ofk vertices ofG such that each of the rest of the vertices
has at least one neighbor inD. The minimumk such thatG has ak-dominating
set is called thedomination numberof G, denoted byγ (G). The DOMINATING SET
problem is to decide, given a graphG = (V, E) and a positive integerk, whether
γ (G) ≤ k. Due to its NP-completeness and its practical importance, DOMINATING
SET has been subject to intensive studies that were concerned with coping strategies
to attack its intractability. Among these coping strategies, we find approximation
algorithms and (exact) fixed-parameter algorithms. As to approximation results,
it is known that DOMINATING SET is polynomial-time approximable with factor
1+ log |V | since the problem is a special case of the MINIMUM SET COVER prob-
lem [Johnson 1974]. On the negative side, however, it is known not to be approx-
imable within (1− ε) ln |V | for anyε > 0 unless NP⊆ DTIME(nlog logn) [Feige
1998]. When restricted to planar graphs, where it still remains NP-complete [Garey
and Johnson 1979], however, a polynomial time approximation scheme (PTAS) is
stated [Baker 1994].1 There are numerous approximation results for further special

1 In Baker [1994], only the conceptually much simpler INDEPENDENTSET problem is described in
detail.
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instances of DOMINATING SET (cf. Ausiello et al. [1999]). As to fixed-parameter re-
sults, the central question is whether the problem is optimally solvable inf (k)·nO(1)

time, wheref (k) may be an exponentially fast (or worse) growing function in the
parameter konly andn is the number of graph vertices. Unfortunately, also here
the situation seems hopeless—the problem is known to be W[2]-complete Downey
and Fellows [1992, 1999] which implies fixed-parameter intractability unless very
unlikely collapses of parameterized complexity classes occur (see Downey and
Fellows [1999] for details). Again, restricting the problem to planar graphs im-
proves the situation. Then, DOMINATING SET is known to be solvable inO(c

√
k · n)

time forc ≤ 46
√

34 [Alber et al. 2002]2 and, alternatively, solvable inO(8k ·n) time
[Alber et al. 2001a]. Recently, the upper bound on the constantc was improved to
227 [Kanj and Perkovic 2002] and further to 215.13 [Fomin and Thilikos 2003a]. As
to fixed-parameter complexity, it was open whether DOMINATING SET on planar
graphs possesses a so-called problem kernel of linear size, a question we answer
affirmatively here.

1.3. RESULTS. We provide positive news on the algorithmic tractability of
DOMINATING SET through preprocessing. The heart of our results are two rela-
tively simple and easy to implement “reduction rules” for DOMINATING SET. These
rules are based on considering local structures within the graph. They produce a
reduced graph such that the original graph has a dominating set of size at mostk iff
the reduced graph has a dominating set of size at mostk′ for somek′ ≤ k. The point
here is that the reduced graph, as a rule, is much smaller than the original graph
and, thus,k′ is significantly smaller thank because the reduction process usually
determines several vertices that are part of an optimal dominating set. In this way,
these two reduction rules provide an efficient data reduction through polynomial-
time preprocessing. In the case of planar graphs, we actually can prove that the
reduced graph consists of at most 335k vertices (which is completely independent
of the size of the original graph). In fixed-parameter complexity terms, this means
that DOMINATING SET on planar graphs possesses a linear size problem kernel.
Note, however, that our main concern in analyzing the multiplicative constant 335
was conceptual simplicity for which we deliberately sacrificed the aim to further
lower it by way of refined analysis (without changing the reduction rules). Finally,
experimental studies underpin the big potential of the presented reduction rules,
leading to graph size reductions of more than 90 percent when experimenting with
random planar graphs and so-called Internet graphs [Alber et al. 2003]. Hence, we
conjecture that future algorithms for DOMINATING SET, whether approximation,
fixed-parameter, or purely heuristic, should employ data reduction by preprocess-
ing. The point here is that a problem kernel as achieved by our data reduction rules
can be the starting point for any algorithmic strategy to apply. This observation
is further substantiated by the fact that data reduction by preprocessing plays an
eminently important role when hard combinatorial problems are solved in practice.

1.4. RELATION TO PREVIOUSWORK. Our data reduction still allows to solve the
problem exactly, not only approximately. It is, thus, always possible to incorporate

2 Note that in the SWAT 2000 conference version of Alber et al. [2002], an exponential basec = 36
√

34

is stated, caused by a misinterpretation of previous results. The correct worst-case upper bound reads
c = 46

√
34.
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our reduction rules in any kind of approximation algorithm for DOMINATING SET
without deteriorating its approximation factor. In this sense, Baker’s PTAS result3

for DOMINATING SET on planar graphs [Baker 1994] probably has less applicability
than the result presented here. This is due to the fact that her scenario including dy-
namic programming (which we also used when applying our related approach based
on tree decompositions [Alber et al. 2002]) seems to require much computational
overhead (including high constant factors in the running time). Our data reduction
algorithm is conceptually much simpler and, as a preprocessing method, seems to
combine withanykind of algorithm working afterwards on the then reduced graph.

Concerning the parameterized complexity of DOMINATING SET on planar graphs,
we have the following consequences of our result. First, on the structural side,
combining our linear problem kernel with the graph separator approach presented in
Alber et al. [2003] immediately results in anO(c

√
k · k+ nO(1)) DOMINATING SET

algorithm on planar graphs (for some constantc). Also, the linear problem kernel
directly proves the so-called “Layerwise Separation Property” [Alber et al. 2001b]
for DOMINATING SET on planar graphs, again implying anO(c

√
k · k + nO(1))

algorithm. Second, the linear problem kernel improves the timeO(8k · n) search
tree algorithm from Alber et al. [2001a] to anO(8kk+ nO(1)) algorithm.

We are aware of only one further result that provides aprovabledata reduction
by preprocessing in our sense, namely the Nemhauser–Trotter theorem for VERTEX
COVER [Nemhauser and Trotter 1975; Bar-Yehuda and Even 1985; Khuller 2002].
Their polynomial-time preprocessing employs a maximum matching algorithm for
bipartite graphs and provides a reduced graph where at least half of the vertices have
to be part of an optimal vertex cover set (also see Chen et al. [2001] for details and
its implication of a size 2k problem kernel). Note, however, that from an algorithmic
and combinatorial point of view, VERTEX COVER seems to be a much less elusive
problem4 than DOMINATING SET is.

1.5. STRUCTURE OF THEARTICLE. We start with our two reduction rules based
on the neighborhood structure of a single vertex and a pair of vertices, respectively.
Here, we also analyze the worst-case time complexity of these reduction rules for
planar as well as for general graphs. Afterwards, in the technically most demanding
part, we prove that for planar graphs our reduction rulesalwaysdeliver a reduced
graph of sizeO(γ (G)). Finally, we discuss some experimental findings and give
some conclusions and challenges for future work.

2. The Reduction Rules

We present two reduction rules for DOMINATING SET. Both reduction rules are
based on the same principle: We explore local structures of the graph and try to

3 There is an ongoing discussion and investigation of the practical usefulness of (most) PTAS re-
sults [Downey 2003; Fellows 2002]. The problem with PTAS algorithms often is that they require
high-degree polynomial running time in order to achieve a reasonably good degree of approxima-
tion. Actually, the third author, attending a DIMACS workshop on approximation algorithms held in
Princeton in February 2000, remembers one of the speakers asking for any examples where a PTAS
really has been applied in practice.
4 For instance, VERTEX COVER has a simple factor 2 approximation algorithm and it has fixed-
parameter algorithms ofO(1.29k+kn) running time on general graphs [Chen et al. 2001; Niedermeier
and Rossmanith 2003].
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FIG. 1. The left-hand side shows the partitioning of the neighborhood of a single vertexv. The
right-hand side shows the result of applying Rule 1 to this particular (sub)graph.

replace them by simpler structures. For the first reduction rule, the local structure
will be the neighborhood of a single vertex. For the second reduction rule, we will
deal with the union of the neighborhoods of a pair of vertices.

2.1. THE NEIGHBORHOOD OF ASINGLE VERTEX. Consider a vertexv ∈ V of
the given graphG = (V, E). Here and in the following, forv ∈ V , let N(v) :=
{ u : {u, v} ∈ E } be theneighborhoodof v. We partition the vertices ofN(v) of v
into three different setsN1(v), N2(v), andN3(v) depending on what neighborhood
structure these vertices have. More precisely, settingN[v] := N(v)∪{v}, we define

N1(v) := {u ∈ N(v) : N(u) \ N[v] 6= ∅},5
N2(v) := {u ∈ N(v) \ N1(v) : N(u) ∩ N1(v) 6= ∅},
N3(v) := N(v) \ (N1(v) ∪ N2(v)).

An example that illustrates the partitioning ofN(v) into the subsetsN1(v), N2(v),
andN3(v) can be seen in the left-hand diagram of Figure 1.

Note that, by definition of the three subsets, the vertices inN3(v) cannot be
dominated by vertices fromN1(v). A good candidate for dominatingN3(v) is given
by the choice ofv. Observing that this indeed is always an optimal choice lies the
base for our first reduction rule.

Rule1. If N3(v) 6= ∅ for some vertexv, then

—removeN2(v) andN3(v) from G and
—add a new vertexv′ with the edge{v, v′} to G.

We use the vertexv′ as a “gadget vertex” that enforces us to takev (or v′) into an
optimal dominating set in the reduced graph.

Example1. Figure 1 shows the neighborhood of a vertexv before and after
applying Rule 1 to it.

LEMMA 1. Let G= (V, E) be a graph and let G′ = (V ′, E′) be the resulting
graph after having applied Rule 1 to G. Thenγ (G) = γ (G′).

PROOF. Consider a vertexv ∈ V such thatN3(v) 6= ∅. The vertices inN3(v)
can only be dominated by eitherv or by vertices inN2(v) ∪ N3(v). But, clearly,
N(w) ⊆ N(v) for everyw ∈ N2(v) ∪ N3(v). This shows that an optimal way to

5 For two setsX,Y, whereY is not necessarily a subset ofX, we use the convention thatX \ Y :=
{x ∈ X : x /∈ Y}.
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dominateN3(v) is given by takingv into the dominating set. This is simulated by
the “gadget vertex”v′ in G′ which enforces us to takev (or v′) into an optimal
dominating set. It is safe to removeN2(v)∪N3(v) sinceN(N2(v)∪N3(v)) ⊆ N(v),
that is, since the vertices that could be dominated by vertices fromN2(v) ∪ N3(v)
are already dominated byv. Hence,γ (G′) = γ (G).

LEMMA 2. Rule1 can be carried out in O(n) time for planar graphs and in
O(n3) time for general graphs.

PROOF. We first discuss the planar case. To carry out Rule 1, for each vertexv
of the given planar graphG we have to determine the neighbor setsN1(v), N2(v),
and N3(v). By definition of these sets, one easily observes that it is sufficient to
consider the subgraphG that is induced by all vertices that are connected tov by a
path of length at most two. To do so, we employ a “partial” depth-first search tree
of depth two, rooted atv. More precisely, this means that we explore all vertices
as distance one fromv (i.e., connected tov by an edge inG) and some vertices at
distance two fromG (to be described in more detail in the following). We perform
two phases.

In phase 1, constructing the search tree we determine the vertices fromN1(v).
Each vertex of the first level (i.e., distance one from the rootv) of the search tree
that has a neighbor at the second level of the search tree belongs toN1(v). Observe
that it is enough to stop the expansion of a vertex from the first level as soon as its
first neighbor in the second level is encountered. Hence, denoting the degree ofv
by deg(v), phase 1 takes timeO(deg(v)) because there clearly are at most 2·deg(v)
tree edges and at mostO(deg(v)) non-tree edges to be explored. The latter holds
true since these non-tree edges all belong to the subgraph ofG induced byN[v].
Since this graph is clearly planar and|N[v]| = deg(v)+ 1, the claim follows.

In phase 2, it remains to determine the setsN2(v) andN3(v). To getN2(v), one
basically has to go through all vertices from the first level of the above search
tree that are not already marked as being inN1(v) but have at least one neighbor
in N1(v). All this can be done within the planar graph induced byN[v], using the
already markedN1(v)-vertices, in timeO(deg(v)). Finally, N3(v) simply consists
of vertices from the first level that are neither marked being inN1(v) nor marked
being in N2(v). In summary, this shows that for a vertexv the setsN1(v), N2(v),
andN3(v) can be constructed in timeO(deg(v)).

Once having determined these three sets, the sizes of which all are bounded
by deg(v), it is clear that the possible removal of vertices fromN2(v) andN3(v) and
the addition of a vertex and an edge as required by Rule 1 all can be done in time
O(deg(v)). Finally, it remains to analyze the overall complexity of this procedure
when going through alln vertices ofG = (V, E).

But this is easy. The running time can be bounded by
∑

v∈V O(deg(v)). SinceG
is planar, this sum is bounded byO(n), that is, the whole reduction takes linear time.

For general graphs, the method described above leads to a worst-case cubic
time implementation of Rule 1. Here, one ends up with the sum∑

v∈V

O((deg(v))2) = O(n3).

Note that the size of the graph that is induced by the neighborhoodN[v] again
is relevant for the time needed to determine the setsN1(v), N2(v), andN3(v). For
general graphs, this neighborhood may containO((deg(v))2) many edges.
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FIG. 2. The left-hand side shows the partitioning of a neighborhoodN(v,w) of two verticesv andw.
The right-hand side shows the result of applying Rule 2, Case 2 to this particular (sub)graph.

2.2. THE NEIGHBORHOOD OF APAIR OF VERTICES. Similar to Rule 1, we ex-
plore theneighborhoodset N(v,w) := N(v) ∪ N(w) \ {v,w} of two vertices
v,w ∈ V . Analogously, we now partitionN(v,w) into three disjoint subsets
N1(v,w), N2(v,w), andN3(v,w). SettingN[v,w] := N[v] ∪ N[w], we define

N1(v,w) := {u ∈ N(v,w) : N(u) \ N[v,w] 6= ∅},
N2(v,w) := {u ∈ N(v,w) \ N1(v,w) : N(u) ∩ N1(v,w) 6= ∅},
N3(v,w) := N(v,w) \ (N1(v,w) ∪ N2(v,w)).

The left-hand diagram of Figure 2 shows an example that illustrates the parti-
tioning of N(v,w) into the subsetsN1(v,w), N2(v,w), andN3(v,w).

Our second reduction rule—compared to Rule 1—is slightly more complicated.

Rule2. Considerv,w ∈ V (v 6= w) and suppose that|N3(v,w)| > 1. Suppose
that N3(v,w) cannot be dominated by a single vertex fromN2(v,w) ∪ N3(v,w).

Case1. If N3(v,w) can be dominated by a single vertex from{v,w}:
(1.1) If N3(v,w) ⊆ N(v) as well asN3(v,w) ⊆ N(w):

—removeN3(v,w) andN2(v,w) ∩ N(v) ∩ N(w) from G and
—add two new verticesz, z′ and edges{v, z}, {w, z}, {v, z′}, {w, z′} to G.

(1.2) If N3(v,w) ⊆ N(v), but notN3(v,w) ⊆ N(w):
—removeN3(v,w) andN2(v,w) ∩ N(v) from G and
—add a new vertexv′ and the edge{v, v′} to G.

(1.3) If N3(v,w) ⊆ N(w), but notN3(v,w) ⊆ N(v):
—removeN3(v,w) andN2(v,w) ∩ N(w) from G and
—add a new vertexw′ and the edge{w,w′} to G.

Case2. If N3(v,w) cannot be dominated by a single vertex from{v,w}:
—removeN3(v,w) andN2(v,w) from G and
—add two new verticesv′,w′ and edges{v, v′}, {w,w′} to G.

Clearly, Cases (1.2) and (1.3) are symmetric to each other. Again, the newly
added verticesv′ andw′ of degree one act as gadgets that enforce us to takev or w
into an optimal dominating set. A special situation is given in Case (1.1). Here, the
gadget added to the graphG simulates that at least one of the verticesv or w has
to be taken into an optimal dominating set.

Example2. Figure 2 shows an application of Rule 2, Case 2.
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LEMMA 3. Let G= (V, E) be a graph and let G′ = (V ′, E′) be the resulting
graph after having applied Rule2 to G. Thenγ (G) = γ (G′).

PROOF. Similar to the proof of Lemma 1, we observe that vertices from
N3(v,w) can only be dominated by vertices fromM := {v,w} ∪ N2(v,w) ∪
N3(v,w). All cases in Rule 2 are based on the fact thatN3(v,w) needs to be dom-
inated. All cases only apply if there is not asinglevertex inN2(v,w) ∪ N3(v,w)
which dominatesN3(v,w).

We first of all discuss the correctness of Case (1.2) (and similarly obtain the
correctness of the symmetric Case (1.3)): Ifv dominatesN3(v,w) (andw does
not) then it is optimal to takev into the dominating set—and at the same time
still leave the option of taking vertexw—than to take any combination of two
verticesx, y from the setM \ {v}. It may be that we still have to takew to get
a minimum dominating set, but in any case,v andw dominate at least as many
vertices asx and y. The “gadget edge”{v, v′} simulates the effect of takingv.
It is safe to removeR := (N2(v,w) ∩ N(v)) ∪ N3(v,w) since, by takingv into
the dominating set, all vertices inR are already dominated and since, as discussed
above, it is always at least as good to takev into a minimum dominating set than
to take any other of the vertices fromM .

In the situation of Case (1.1), we can dominateN3(v,w) by both eitherv or w.
Since we cannot decide, at this point, which of these vertices should be chosen to
be in the dominating set, we use the gadget with verticesz andz′, which simulates
a choice betweenv or w, as can be seen easily. In any case, however, it is at least as
good to take one of the verticesv andw (maybe both) than to take any other two
vertices fromM . The argument for this is similar to the one for Case (1.2). The
removal ofN3(v,w) ∪ (N2(v,w) ∩ N(v) ∩ N(w)) is safe by a similar argument as
the one that justified the removal ofR in Case (1.2).

Finally, in Case 2, we clearly need at least two vertices to dominateN3(v,w).
Since N(v,w) ⊇ N(x, y) for all pairs x, y ∈ M it is optimal to takev andw
into the dominating set, simulated by the gadgets{v, v′} and {w,w′}. As in the
previous cases the removal ofN3(v,w) ∪ N2(v,w) is safe since these vertices
are already dominated and since these vertices need not be used for an optimal
dominating set.

It is easy to see that applying the reduction rules to planar graphs always results
in a planar graph again. This is due to the fact that the removal of vertices and edges
does not affect planarity and the gadget vertices (and edges) that are introduced
by Rules 1 and 2 clearly can be drawn without causing edge crossings. Here,
only Case (1.1) of Rule 2 needs a little care: SinceN3(v,w) ⊆ N(v) as well as
N3(v,w) ⊆ N(w), the removal ofN3(v,w) provides “space” for the (clearly planar)
gadget drawn betweenv andw without any edge crossings.

LEMMA 4. Rule2 can be carried out in time O(n2) for planar graphs and in
time O(n4) for general graphs.

PROOF. To prove the time bounds for Rule 2, basically the same ideas as for
Rule 1 apply (cf. proof of Lemma 2). Instead of a depth-two search tree, one now
has to argue on a search tree where the levels indicate the minimum of the distances
to vertexv or w. Hence, we associate the verticesv andw to the root of this search
tree. The first level consists of all vertices that lie inN(v,w) (i.e., at distance one
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from either of the verticesv or w). Determining the subsetN1(v,w) means to
check whether some vertex on the first level has a neighbor on the second level.
We do the same kind of construction as in Lemma 2. The running time again is
determined by the size of the subgraph induced by the vertices that correspond to
the root and the first level of this search tree, that is, byG[N[v,w]] in this case.
For planar graphs, we have|G[N[v,w]] | = O (deg(v)+ deg(w)). Hence, we get∑

v,w∈V O (deg(v)+ deg(w)) as an upper bound on the overall running time in the
case of planar graphs. Making use of the fact that

∑
v∈V deg(v) = O(n) for planar

graphs, this is upperbounded by

O

( ∑
v,w∈V

deg(v)+
∑

v,w∈V

deg(w)

)
= O(n2).

In case of general graphs, we have|G[N[v,w]] | = O((deg(v)+ deg(w))2), which
trivially yields the upper bound∑

v,w∈V

O((deg(v)+ deg(w))2) = O(n4)

for the overall running time.

We remark that the running times given in Lemmas 2 and 4 are pure worst-case
estimates and turn out to be much lower in our experimental studies [Alber et al.
2003]. In particular, for practical purposes, it is important to see that Rule 2 can
only be applied for vertex pairs that are at distance at most three. The algorithms
implementing these rules appear to be much faster (see Section 4).

2.3. REDUCED GRAPHS. We say that an application of a reduction rule leaves
the graphunchangedif the “new” graph after applying the rule is isomorphic to the
old one. Clearly, we are only interested in applications of the reduction rules that
changethe graph:

Definition 1. Let G = (V, E) be a graph such that both the application of
Rule 1 and the application of Rule 2 leave the graph unchanged. Then we say that
G is reducedwith respect to these rules.

Observing that the (successful) application of any reduction rule always “shrinks”
the given graph implies that there can be onlyO(|E|) successful applications of
reduction rules. This leads to the following.

THEOREM 1. A graph G can be transformed into a reduced graph G′ with
γ (G) = γ (G′) in O(n3) time in the planar case and in O(n6) time in the general
case.

PROOF. We prove the general statement that, for a graph withm edges, there
can be at mostO(m) successful applications of reduction rules. The decisive claim
we show is that, after one application of Rule 1 or Rule 2, which changes the graph,
the resulting graph has at most the same number of vertices, but at least one edge
less than before the application of the rule.

Note that it is easy to verify that the total number of vertices never increases by
applying the reduction rules. Now we go through Rule 1 and the various subcases
of Rule 2, checking the validity of our claim. As to Rule 1, a change only occurs if
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there is more than one vertex affected by the rule—this means that more than one
vertex and at least two edges are removed, whereas one vertex and one edge are
newly introduced by the gadget.

Cases (1.2) and (1.3) of Rule 2, trivially fulfill the claim since only one gadget
vertex and one gadget edge are introduced but at least twoN3(v,w) vertices together
with at least two incident edges are deleted. The validity of Case 2 of Rule 2 also
follows easily because clearly the rule never adds more than it deletes—at least two
vertices together with their edges are removed. If a change takes place, however,
more edges will be removed.

Finally, concerning Case (1.1) of Rule 2, we can observe that, although the
gadget introduces two more vertices and four more edges, at least the same number
of vertices and more than four edges are deleted. This is true because, if this case
applies, then at least twoN3(v,w) vertices with edges tov as well asw each must
exist. These and at least one additional edge will be deleted if a change takes place
(otherwise, there were no change).

This concludes the proof of the claim and the theorem follows by Lemmas 2 and 4
noting thatm= O(n) for planar graphs andm= O(n2) for general graphs.

In the next section, we will make use of the following observations.

Remark1. A graphG = (V, E) which is reduced with respect to reduction
Rules 1 and 2 has the following properties:

(1) For all v ∈ V , the setN3(v) is always empty (these vertices are removed by
Rule 1) except for it may contain a single gadget vertex of degree one.

(2) For all v,w ∈ V , there exists a single vertex inN2(v,w) ∪ N3(v,w) that
dominates all verticesN3(v,w) (in all other cases, Rule 2 is applied).

3. A Linear Problem Kernel for Planar Graphs

Here, we show that the reduction rules given in Section 2 yield a linear size problem
kernel for DOMINATING SET on planar graphs. Such a result is very unlikely to hold
for general graphs, since DOMINATING SET is W[2]-complete and the existence of
a (linear) problem kernel implies fixed-parameter tractability.

THEOREM 2. For a planar graph G= (V, E) which is reduced with respect to
Rules1 and2, we get|V | ≤ 335· γ (G), that is, theDOMINATING SET problem on
planar graphs admits a linear problem kernel.

The rest of this section is devoted to the proof of Theorem 2. The proof can
be split into two parts. In a first step, we try to find a so-called “maximal region
decomposition” of the verticesV of a reduced graphG. In a second step, we
show, on the one hand, that such a maximal region decomposition must contain
all but O(γ (G)) many vertices fromV . On the other hand, we prove that such a
region decomposition uses at mostO(γ (G)) regions, each of which containing at
mostO(1) vertices. Combining the results then yields|V | = O(γ (G)).

The notion of “region decompositions” heavily relies on the planarity of our
input graph and cannot be carried over to general graphs.

3.1. FINDING A MAXIMAL REGION DECOMPOSITION. Suppose that we have a
reduced planar graphG with a minimum dominating setD. We know that, in
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particular, neither Rule 1 applies to a vertexv ∈ D nor Rule 2 applies to a pair of
verticesv,w ∈ D. We want to get our hands on the number of vertices which lie
in neighborhoodsN(v) for v ∈ D, or neighborhoodsN(v,w) for v,w ∈ D. A first
idea to prove that|V | = O(|D|) would be to find (̀ = O(|D|) many) neighborhoods
N(v1,w1), . . . , N(v`,w`) with vi ,wi ∈ D such that all vertices inV lie in at least
one such neighborhood; and then use the fact thatG is reduced in order to prove
that eachN(vi ,wi ) has sizeO(1). Even if the graphG is reduced, however, the
neighborhoodsN(v,w) of two verticesv,w ∈ D may contain many vertices: the
size ofN(v,w) in a reduced graph basically depends on how bigN1(v,w) is.

In order to circumvent these difficulties, we define the concept of a regionR(v,w)
for which we can guarantee that in a reduced graph it consists of only a constant
number of vertices.

Definition 2. Let G = (V, E) be a plane6 graph. Aregion R(v,w) between
two verticesv,w is a closed subset of the plane with the following properties:

(1) the boundary ofR(v,w) is formed by two simple pathsP1 and P2 in V that
connectv andw, and the length of each path is at most three,7 and

(2) all vertices that are strictly inside8 the regionR(v,w) are fromN(v,w).

For a regionR= R(v,w), let V(R) denote the vertices belonging toR, that is,

V(R) := {u ∈ V | u sits inside or on the boundary ofR}.
In the following, the boundary of a regionR will be denoted by∂R.

Definition 3. Let G = (V, E) be a plane graph andD ⊆ V . A D-region
decompositionof G is a setR of regions between pairs of vertices inD such that

(1) for R(v,w) ∈ R no vertex fromD (except forv,w) lies in V(R(v,w)) and
(2) for two regionsR1, R2 ∈ R, it holds (R1 ∩ R2) ⊆ (∂R1 ∪ ∂R2).

For a D-region decompositionR, we defineV(R) := ⋃
R∈R V(R). A D-region

decompositionR is calledmaximalif there is no regionR /∈ R such thatR′ :=
R ∪ {R} is a D-region decomposition whereV(R) is a strict subset ofV(R′).

For an example of a (maximal)D-region decomposition, we refer to the left-hand
side diagram of Figure 3.

We will show that, for a given graphG with dominating setD, we can always
find a maximalD-region decomposition with at mostO(γ (G)) many regions. For
that purpose, we observe that aD-region decomposition induces a graph in a very
natural way.

Definition 4. Theinduced graph GR = (VR, ER) of a D-region decomposi-
tion R of G is the graph with possible multiple edges that is defined byVR :=
D and

ER := {{v,w} | there is a regionR(v,w) ∈ R betweenv,w ∈ D}.

6A plane graph is a particular planar embedding of a planar graph.
7The length of a path is the number of edges on it.
8By “strictly inside the regionR(v,w),” we mean lying in the region, but not sitting on the boundary
of R(v,w).
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FIG. 3. The left-hand side diagram shows an example of a possibleD-region decompositionR of
some graphG, whereD is the subset of vertices inG that are drawn in black. The various regions
are highlightened by different patterns. The remaining white areas are not considered as regions.
The givenD-region decomposition is maximal. The right-hand side shows the induced graphGR
(Definition 4).

Note that, by Definition 3, the induced graphGR of a D-region decomposition is
planar. For an example of an induced graphGR, see Figure 3.

Definition 5. A planar graphG = (V, E) with multiple edges isthin if there
exists a planar embedding such that no two multiedges are homotopic: This means
that if there are two edgese1, e2 between a pair of distinct verticesv,w ∈ V , then
there must be two further verticesu1, u2 ∈ V that sit inside the two disjoint areas
of the plane that are enclosed bye1, e2.

The induced graphGR in Figure 3 is thin.

LEMMA 5. For a thin planar graph G= (V, E), we have|E| ≤ 3|V | − 6.

PROOF. The claim is true for planar graphs without multiple edges. We prove
the claim by an induction on the number`G of multiple edges inG. More precisely,
for a graphG = (V, E) with multiple edges (i.e.,E is a multiset), we let

`G := 1

2

( ∑
v,w∈V

(( ∑
{v,w}∈E

1

)
− 1

))
For `G = 0, the claim is true, since a planar graph (without multiple edges) has at
most 3|V | − 6 edges. Now, suppose the claim is true for all graphs which have at
most`G multiple edges. Consider a planar graphG = (V, E) with `G+1 multiple
edges. Choose a pair of verticesv,w ∈ V that is connected by at least two edges
e1, e2 ∈ E. SinceG is thin, we may consider a planar embedding, in whiche1 and
e2 are not homotopic. LetG1 = (V1, E1) be the subgraph ofG that consists of
the verticesv,w, the edgee1 and all vertices and edges that sit strictly inside the
areaA of the plane that is enclosed bye1 ande2. Similarly, letG2 = (V2, E2) be
the subgraph ofG that consists of the verticesv,w, the edgee2 and all vertices
and edges that sit strictly outside the areaA. Hence, we have|E| = |E1| + |E2|
and|V | = |V1| + |V2| − 2. Since, by construction,̀G1, `G2 < `G, the induction
hypothesis yields

|E| = |E1| + |E2|
≤ (3|V1| − 6)+ (3|V2| − 6)
= 3|V | − 6.
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FIG. 4. Greedy-like construction of a maximalD-region decomposition.

Using the notion of thin graphs, we can formulate the main result of this
subsection.

PROPOSITION 1. For a reduced plane graph G with dominating set D, there
exists a maximal D-region decompositionR such that GR is thin.

PROOF. We give a constructive proof on how to find a maximalD-region de-
compositionR of a plane graphG such that the induced graphGR is thin. Con-
sider the algorithm presented in Figure 4. It is obvious that the algorithm returns a
D-region decomposition, since—by construction—we made sure that regions are
between vertices inD, that regions do not contain vertices fromD, and that regions
do not intersect. Moreover, theD-region decomposition obtained by the algorithm
is maximal: If a vertexu does not belong to a region, that is, ifu /∈ Vused, then the
algorithm eventually checks, whether there is a regionSu such thatR ∪ {Su} is a
D-region decomposition.

It remains to show that the induced graphGR of theD-region decompositionR
found by the algorithm is thin. We embedGR in the plane in such a way that an
edge belonging to a regionR ∈ R is drawn inside the area covered byR. To see that
the graph is thin, we have to show that, for every multiple edgee1, e2 (belonging to
two regionsR1, R2 ∈ R that were chosen at some point of the algorithm) between
two verticesv,w ∈ D, there exist two verticesu1, u2 ∈ D that lie inside the areas
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enclosed bye1, e2. Let A be such an area. Suppose that there is no vertexu ∈ D
in A. We distinguish two cases. Either there is also no vertex fromV \ D in A or
there are other verticesV ′ from V \ D inside A. In the first case, by joining the
regionsR1 andR2 we obtain a bigger region which fulfills all the four conditions
checked by the algorithm in Figure 4, a contradiction to the maximality ofR1 and
R2. In the second case, sinceD is assumed to be a dominating set, the vertices inV ′
need to be dominated byD. Sincev,w are the only vertices fromD which are part
of A, R1 or R2, the vertices inV ′ need to be dominated byv,w, hence they belong
to N(v,w). But then again, by joining the regionsR1 and R2 we obtain a bigger
region which again fulfills all the four conditions of the algorithm in Figure 4, a
contradiction to the maximality ofR1 andR2.

3.2. REGION DECOMPOSITIONS AND THESIZE OF REDUCED PLANAR GRAPHS.
Suppose that we are given a reduced plane graphG = (V, E) with a minimum
dominating setD. Then, by Proposition 1 and Lemma 5, we can find a maximal
D-region decompositionR of G with at mostO(γ (G)) regions. In order to see that
|V | = O(γ (G)), it remains to show that

(1) there are at mostO(γ (G)) vertices that do not belong to any of the regions
inR, and that

(2) every region ofR contains at mostO(1) vertices.

These issues are treated by the following two propositions.
We first of all state two technical lemmas, one which characterizes an important

property of a maximal region decomposition and another one which gives an upper
bound on the size of a special type of a region.

LEMMA 6. Let G be a reduced plane graph with a dominating set D and letR
be a maximal D-region decomposition. If u∈ N1(v) for some vertex v∈ D, then
u ∈ V(R).

PROOF. In the following, we say that an edgecrossesa regionR, if the edge
lies (possibly except for its endpoints) strictly insideR. Similarly, we say that a
pathcrossesa regionR if at least one edge of the path crossesR.

Let u ∈ N1(v) for somev ∈ D and assume thatu /∈ V(R). By definition
of N1(v), there exists a vertexu′ ∈ N(u) with u′ /∈ N[v]. We distinguish two
cases. Eitheru′ ∈ D or u′ needs to be dominated by a vertexw ∈ D with w 6= v.
If u′ ∈ D, we consider the (degenerated) region consisting of the path{v, u, u′}.
SinceR is assumed to be maximal, this path must cross a regionR ∈ R. But this
implies thatu ∈ V(R), a contradiction.

In the second case, we consider the (degenerated) region consisting of the path
〈v, u, u′,w〉. Again, by maximality ofR, this path must cross a regionR =
R(x, y) ∈ R between two verticesx, y ∈ D. Since, by assumption,u /∈ V(R),
neither the edge{v, u}, nor the edge{u, u′} can crossR. This implies that the
edge{u′,w} crossesR. From this we know thatw lies on the boundary of or
inside R and, hence,w ∈ V(R). However, in accordance with the definition of
a D-region decomposition, the only vertices fromD that are inV(R) are x, y.
Hence, without loss of generality,x = w. At the same time,u′ must lie on the
boundary ofR; otherwise,u ∈ V(R). By definition of a region, there exists pathP
of length at most three betweenw and y that goes throughu′ and that is part of
the boundary ofR. Observe thatu′ 6= y, sincey ∈ D and we assume thatu′ /∈ D.
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FIG. 5. Simple regions of Type 0, Type 1, Type 2. This figure illustrates the largest possible simple
regions in a reduced graph. Vertices marked with horizontal lines are inN1(v,w), vertices marked
with vertical lines belong toN2(v,w), and white vertices are inN3(v,w).

We claim, however, thatu′ is a neighbor ofy: To see this, observe that, the edge
{w, u′} cannot be part ofP, since we already know that this edge crossesR. As
a consequence, the pathP uses more than one edge in order to reachu′ from w.
On the other hand, sinceu′ 6= y, and P has length at most three, we know that
the pathP (betweenw and y) uses exactly two edges to reachu′ from w. This,
however, implies thatu′ is a neighbor ofy as claimed. But then, the (degenerated)
regionR′ consisting of the path{v, u, u′, y} is a region between two verticesv and
y in D, which does not cross (it only touchesR) any region inR. For theD-region
decompositionR′ := R ∪ {R′}, we haveu ∈ V(R′) \ V(R), contradicting the
maximality ofR.

We now investigate a special type of a region specified by the following definition.

Definition 6. A regionR(v,w) between two verticesv,w ∈ D is calledsimple
if all vertices contained inR(v,w) except forv,w are common neighbors of bothv
andw, that is, if (V(R(v,w)) \ {v,w}) ⊆ N(v) ∩ N(w).

Let v, u1,w, u2 be the vertices that sit on the boundary of the simple re-
gion R(v,w), when walking along the boundary in clockwise order. We say that
R(v,w) is a simple region ofType i (0 ≤ i ≤ 2) if i vertices from{u1, u2} have a
neighbor outsideR(v,w).

LEMMA 7. Every simple region R of Type i of a plane reduced graph contains
at most5+ 2i vertices.

PROOF. Let R = R(v,w) be a simple region of Typei between verticesv
andw. We will show that|V(R)| ≤ 5+ 2i . The worst-case simple regions are
depicted in Figure 5. Firstly, let us count the number of vertices inV(R) which
belong toN1(v,w) ∪ N2(v,w). Clearly, only vertices on the boundary (except
for v andw) can have a neighbor outsideR. Thus, all vertices inN1(v,w) ∩ V(R)
lie on the boundary ofR. By definition of a simple region of Typei , we have
|N1(v,w) ∩ V(R)| ≤ i . Moreover, it is easy to see that, by planarity, every vertex
in N1(v,w)∩ V(R) can contribute at most one vertex toN2(v,w)∩ V(R). Hence,
we get|(N1(v,w) ∪ N2(v,w)) ∩ V(R)| ≤ 2i .

Secondly, we determine the number of vertices inN3(v,w) ∩ V(R). SinceG is
reduced, by Remark 1, we know that these vertices need to be dominated by a single
vertex inN2(v,w)∪ N3(v,w). Moreover, since the region is simple, all vertices in
N3(v,w) ∩ V(R) are neighbors of bothv andw. By planarity, it follows that there
can be at most 3 vertices inN3(v,w) ∩ V(R).

In summary, together with the verticesv,w ∈ V(R), we get|V(R)| ≤ 5+2i .
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We use Lemmas 6 and 7 for the following two proofs.

PROPOSITION 2. Let G = (V, E) be a plane reduced graph and let D be a
dominating set of G. IfR is a maximal D-region decomposition, then|V \ V(R)| ≤
2|D| + 56|R|.

PROOF. We claim that every vertexu ∈ V \ V(R) is either a vertex inD or
belongs to a setN2(v) ∪ N3(v) for somev ∈ D. To see this, suppose thatu /∈ D.
But sinceD is a dominating set, we know thatu ∈ N(v) = N1(v)∪ N2(v)∪ N3(v)
for some vertexv ∈ D. SinceR is assumed to be maximal, by Lemma 6, we know
that N1(v) ⊆ V(R). Thus,u ∈ N2(v) ∪ N3(v).

For a vertexv ∈ D, let N∗2 (v) = N2(v) \ V(R). The above observation implies
thatV \ V(R) ⊆ D ∪ (

⋃
v∈D N3(v)) ∪ (

⋃
v∈D N∗2 (v)).

First, we upperbound the size of
⋃

v∈D N3(v). Since, by Remark 1,|N3(v)| ≤ 1,
we get|⋃v∈D N3(v)| ≤ |D|.

We now upperbound the size ofN∗2 (v) for a given vertexv ∈ D. To this end,
for a vertexv ∈ D, let N∗1 (v) be the subset ofN1(v) that sit on the boundary of
a region inR. It is clear thatN∗2 (v) ⊆ N(v) ∩ N(N∗1 (v)). Hence, we investigate
the setN∗1 (v). Suppose thatR(v,w1), . . . , R(v,w`) are the regions betweenv
and some other verticeswi ∈ D, where` = degGR(v) is the degree ofv in the
induced region graphGR. Then, every regionR(v,wi ) can contribute at most two
verticesu1

i , u
2
i to N∗1 (v), that is, in the worst-case, we haveN∗1 (v) =⋃`

i=1{u1
i , u

2
i }

with u1
i , u

2
i ∈ V(R(v,wi )), that is,|N∗1 (v)| ≤ 2 degGR(v). We already observed

that every vertex inN∗2 (v) must be a common neighbor ofv and some vertex in
N∗1 (v). We claim that, moreover, the vertices inN∗2 (v) can be grouped into various
simple regions. More precisely, we claim that there exists a setSv of simple regions
such that

(1) everyS∈ Sv is a simple region betweenv and some vertex inN∗1 (v),
(2) N∗2 (v) ⊆⋃S∈Sv

V(S), and
(3) |Sv| ≤ 2 · |N∗1 (v)|.
The idea for the construction of the setSv is similar to the greedy-like construction
of a maximal region decomposition (see Figure 4). Starting withSv as empty set,
one iteratively adds asimpleregionS(v, x) betweenv and some vertexx ∈ N∗1 (v)
to the setSv in such a way that (1)Sv ∪ {S(v, x)} contains moreN∗2 (v)-vertices
thanSv, (2) S(v, x) does not cross any region inSv and (3)S(v, x) is maximal (in
space) under all simple regionsS betweenv andx that do not cross any region in
Sv. The fact that we end up with at most 2· |N∗1 (v)| many regions can be seen as
follows: Consider the induced graphGSv , which has the set{v} ∪ N∗1 (v) as vertices
and an edge betweenv and a vertexu ∈ N∗1 (v) if and onlySv contains a simple
region betweenv andu. In other words,GSv is a star with possible multiple edges.
Since, by construction, all simple regions were chosen maximal in space, the graph
GSv is thin. It is not hard to see that a thin star onn+ 1 vertices can have at most
2n edges. In particular, this shows thatGSv has at most 2· |N∗1 (v)| edges, that is,
|Sv| ≤ 2 · |N∗1 (v)|.

Since, by Lemma 7, every simple regionS(v, x) with x ∈ N∗1 (v) contains at
most seven vertices—not counting the verticesv andx, which clearly cannot be
in N∗2 (v)—we conclude that|N∗2 (v)| ≤ 7 · |Sv| ≤ 14 · |N∗1 (v)| ≤ 28 · degGR(v).
From the fact thatV \V(R) ⊆ D ∪ (

⋃
v∈D N3(v))∪ (

⋃
v∈D N∗2 (v)) (see above) we
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FIG. 6. The left-hand diagram shows a worst-case scenario for a regionR(v,w) between two ver-
ticesv andw in a reduced planar graph (cf. the proof of Proposition 3). Such a region may contain up
to four vertices fromN1(v,w), namelyu1, u2, u3, andu4. The vertices fromR(v,w) which belong
to the setsN2(v,w) and N3(v,w) can be grouped into so-called simple regions of Type 1 (marked
with a line-pattern) or of Type 2 (marked with a crossing-pattern); the structure of such simple re-
gionsS(x, y) is given in the right-hand part of the diagram. InR(v,w), there might be two simple
regionsS(d, v) and S(d,w) (of Type 2), containing vertices fromN3(v,w). And, we can have up
to six simple regions of vertices fromN2(v,w): S(u1, v), S(v, u3), S(u4,w), S(w, u2), S(u2, v), and
S(u4, v) (among these, the latter two can be of Type 2 and the others are of Type 1). See the proof of
Proposition 3 for details.

then get

|V \ V(R)| ≤ |D| + |D| +
∑
v∈D

|N∗2 (v)|

≤ 2 · |D| + 28
∑
v∈D

degGR(v) ≤ 2 · |D| + 56 · |R|.

We now investigate the maximal size of a region in a reduced graph. The worst-case
scenario for a region in a reduced graph is depicted in Figure 6.

PROPOSITION 3. A region R of a plane reduced graph contains at most55ver-
tices, that is,|V(R)| ≤ 55.

PROOF. Let R = R(v,w) be a region between verticesv,w ∈ V . As in the
proof of Lemma 7, we count the number of vertices inV(R) ⊆ N[v,w] which
belong toN1(v,w), N2(v,w), andN3(v,w), separately.

We start with the number of vertices inN3(v,w) ∩ V(R). Since the graph is
assumed to be reduced, by Remark 1, we know that all vertices inN3(v,w) need
to be dominated by a single vertex fromN2(v,w) ∪ N3(v,w). Denote byd the
vertex that dominates all vertices inN3(v,w). Since all vertices inN3(v,w) are
also dominated byv or w, we may writeN3(v,w) = S(d, v) ∪ S(d,w) where
S(d, v) ⊆ N(d) ∩ N(v) and S(d,w) ⊆ N(d) ∩ N(w). In this way,S(d, v) and
S(d,w) form simple regions betweend andv, andd andw, respectively. In Figure 6,
these simple regionsS(d, v) and S(d,w) (of Type 2) are drawn with a crossing
pattern. By Lemma 7, we know thatS(d, v) andS(d,w) both contain at most seven
vertices each, not counting the verticesd, v andd, w, respectively. Sinced maybe
from N3(v,w), we obtain|N3(v,w) ∩ V(R)| ≤ 2 · 7+ 1= 15.
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It is clear that vertices inN1(v,w)∩V(R) need to be on the boundary ofR, since,
by definition ofN1(v,w), they have a neighbor outsideN(v,w). The regionR is
enclosed by two pathsP1 and P2 betweenv andw of length at most three each.
Hence, there can be at most four vertices inN1(v,w) ∩ V(R), where this worst-
case holds ifP1 and P2 are disjoint and have length exactly three each. Consider
Figure 6, which shows a region enclosed by two such paths. Suppose that the four
vertices on the boundary besidesv andw areu1, u2, u3, andu4.

Finally, we count the number of vertices inN2(v,w) ∩ V(R). It is important to
note that, by definition ofN2(v,w), every such vertex needs to have a neighbor
in N1(v,w) and at the same time needs to be a neighbor of eitherv or w (or both).
Hence,N2(v,w) =⋃4

i=1(S(ui , v)∪S(ui ,w)), whereS(ui , v) ⊆ N(ui )∩N(v) and
S(ui ,w) ⊆ N(ui ) ∩ N(w). All the setsS(ui , v) andS(ui ,w), where 1≤ i ≤ 4,
form simple regions insideR. Due to planarity, however, there cannot exist all
eight of these regions. In fact, in order to avoid crossings, the worst-case scenario
is depicted in Figure 6 where six of these simple regions exist (they are drawn
with a line-pattern in the figure).9 Concerning the type of these simple regions,
it is not hard to verify, that in the worst-case there can be two among these six
regions of Type 2, the other four of them being of Type 1. In Figure 6, the simple
regionsS(u2, v) and S(u4, v) are of Type 2 (having two connections to vertices
outside the simple region), and the simple regionsS(u1, v), S(u2,w), S(u3, v), and
S(u4,w) are of Type 1 (having only one connection to vertices outside the region;
a second connection to vertices outside the region is not possible because of the
edges{u1, v}, {u2,w}, {u3, v}, and{u4,w}). In summary, the worst-case number
of vertices inN2(v,w) ∩ V(R) is given by four times the number of vertices of a
simple region of Type 1 and two times the number of vertices of a simple region
of Type 2; each time, of course, excluding vertices from{u1, u2, u3, u4, v,w}. By
Lemma 7, this amounts to|N2(v,w)∩V(R)| ≤ 4· (3+2·1)+2· (3+2·2)= 34.10

The claim now follows from the fact thatV(R) = {v,w} ∪ (V(R) ∩
N3(v,w)) ∪ (V(R) ∩ N1(v,w)) ∪ (V(R) ∩ N2(v,w)), which yields
|V(R)| = 2+ 15+ 4+ 34= 55.

In summary, in order to prove Theorem 2, we first of all observe that, for a
graphG with minimum dominating setD, by Proposition 1 and Lemma 5, we
can find aD-region decompositionR of G with at most 3γ (G) regions, that is,
|R| ≤ 3γ (G). By Proposition 3, we know that|V(R)| ≤∑R∈R |V(R)| ≤ 55|R|.
By Proposition 2, we have|V \ V(R)| ≤ 2|D| + 56|R|. Hence, we get|V | ≤
2|D| + 111|R| ≤ 335γ (G).

4. Concluding Remarks

In this work, two lines of research meet. On the one hand, there is DOMINATING
SET, one of the NP-complete core problems of combinatorial optimization and graph
theory. On the other hand, the second line of research is that of algorithm engineering

9 Observe that regionsS(u1,w) and S(u3,w) would cross the regionsS(u2, v) and S(u4, v),
respectively.
10 Note that for the size of, for example, a regionS(ui , v) we do not have to countui andv, since they
are not vertices inN2(v,w).
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and, in particular, the power of data reduction by efficient preprocessing. Presenting
two simple and easy to implement reduction rules for DOMINATING SET, we proved
that for planar graphs a linear size problem kernel can be efficiently constructed.
Our result complements and partially improves previous results [Alber et al. 2002,
2001a, 2001b, 2001c; Fomin and Thilikos 2003a; Kanj and Perkovic 2002] on the
parameterized complexity of DOMINATING SET on planar graphs. We emphasize
that the proven bound on the problem kernel size is a pure worst-case upper bound.
In practice, we obtained much smaller problem kernels (see below).

An immediate open question is to further lower the worst-case upper bound
on the size of the problem kernel, improving the constant factor to values say
around 10. This would bring the problem kernel for DOMINATING SET on planar
graphs into “dimensions” as known for VERTEX COVER, where it is of “optimal”
size 2k [Chen et al. 2001]. This could be done by either improving the analysis
given or (more importantly) further improving the given reduction rules or both.
Improving the rules might be done by further extending the concept of neighborhood
to more than two vertices. From a practical point of view, however, one also has to
take into account to keep the reduction rules as simple as possible in order to avoid
inefficiency due to increased overhead. It might well be the case that additional,
more complicated reduction rules only improve the worst-case bounds, but are
of little or no practical use due to their computational overhead. A question that
deserves further attention, however, is to find out whether by the use of dynamic
graph data structures or other implementation tricks the worst-case time complexity
of our rules can be significantly improved.

It might be interesting to see whether similar reduction rules with a provable
guarantee on the size of the reduced instances can also be found for variations
of DOMINATING SET problem, such as TOTAL DOMINATING SET, or PERFECT
DOMINATING SET (see Telle [1994] for a description of such variants). The study
of preprocessing by reduction rules is valuable for various other problems (see
Fellows [2003] for a recent survey).

Finally, we mention that the techniques in this article are of a topological nature
and might carry over to prove a similar result (including, however, the genus into
the linear size factor for the problem kernel) for DOMINATING SET on graphs of
bounded genus. Recently, there has been increased interest in solving domination-
like problems on somewhat more general graph classes than planar ones—cf., for
example, Chen et al. [2003], Demaine et al. [2003, 2002], Ellis et al. [2002], and
Fomin and Thilikos [2003a, 2003b]. In particular, an open question is whether a lin-
ear problem kernel can also be proven for other graph classes such as, for example,
disk intersection graphs, for which the parameterized complexity of DOMINATING
SET is not known (see Alber and Fiala [2002]). Altogether, we would like to em-
phasize that basically all the cited work on domination-like problems on planar and
related graphs seems to be of purely theoretical nature with so far no impact in prac-
tical computing. By way of contrast, our work delivers easy to implement reduction
rules whose value has been proven in experimental work [Alber et al. 2003].

4.1. EXPERIMENTAL STUDIES. We briefly report on the efficiency of the given
reduction rules in some experiments with random planar graphs. More experimen-
tal results in particular with respect to “Internet graphs” can be found in Alber et al.
[2003]. The performance of the preprocessing was measured on a set of combi-
natorial random planar graphs of various sizes. These graphs have been generated
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with the standard function provided by the algorithm library LEDA [Mehlhorn and
Näher 1999].11 More precisely, we created eight sample sets of 100 random planar
graphs each, containing instances with 100, 500, 750, 1000, 1500, 2000, 3000, and
4000 vertices. The preprocessing seems, at least on the given random sample sets,
to be very effective. As a general rule of thumb, we may say that, in all of the cases,

—more than 79% of the vertices and
—more than 88% of the edges

were removed from the graph. Moreover, the reduction rules determined a very
high percentage (for all cases, approximately 89%) of the vertices of an optimal
dominating set. The overall running time for the reduction ranged from less than
one second (for small graph instances with 100 vertices) to around 30 seconds (for
larger graph instances with 4000 vertices).

We remark that, in our experiments, we used a slight modification of the re-
duction rules: Formally, when Rule 1 or Rule 2 is applied and some vertexv is
determined to belong to an optimal dominating, the reduction rules attach a gadget
vertexv′ of degree one tov. In our setting, we simply removed the vertexv from
the graph and “marked” its neighbors as being already dominated. In this sense, we
dealt with an annotated version of DOMINATING SET, where the input instances are
black-and-white graphs consisting of two types of vertices: black vertices which
still need to be dominated; and white vertices which are assumed to be already dom-
inated. A slight modification makes Rule 1 and Rule 2 applicable to such instances
as well.

Finally, we enriched our reduction rules by further heuristics. We additionally
used three (very simple) extra rules that were presented in the search tree algorithm
in Alber et al. [2001a]. These extra rules are concerned with the removal of white
vertices in such black-and-white graphs for the annotated version of DOMINATING
SET (for the details and their correctness, see Alber et al. [2001a]): (1) delete a
white vertex of degree zero or one; (2) delete a white vertex of degree two if its
neighbors are at distance at most two from each other; (3) delete a white vertex of
degree three if the subgraph induced by its neighbors is connected.

Enriching our reduction rules with these extra rules led to a very powerful data
reduction on our set of random instances described above. We observed that in this
extended setting, the running times for the data reduction went down to less than
half a second (for graphs of 100 vertices) and less than eight seconds (for graphs
of 4000 vertices) in average. Most interestingly, the combination of these rules
removed, in average,

—more than 99.7% of the vertices and
—more than 99.8% of the edges

of the original graph. A similarly high percentage of the vertices that belong
to an optimal dominating set could be detected. A more thorough discussion of
the experiments with random planar graphs can be found in Alber [2003] and

11For each instance withn vertices, first a “maximal planar graph” with 3n − 6 edges is randomly
generated, then a numberm betweenn − 1 and 3n − 6 is randomly chosen and all butm edges
are removed from the graph. We remark that this method does not generate graphs according to the
uniform distribution (see Mehlhorn and N¨aher [1999] for details).
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experiments with “Internet graphs” (which are sparse but not planar) can be found
in Alber et al. [2003].
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