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Abstract 
 

Rainfall is the key input for the hydrology predictions used in water supply reservoir 

simulations. In principal, rainfall data can be obtained from General Circulation 

Models (GCMs; grid resolution of ~250 km) at the global scale, and at finer 

resolutions from Regional Climate Models (RCMs). This thesis assesses the ability 

of RCM simulations to accurately reproduce observed rainfall statistics (temporal 

and spatial) important for water availability analysis in reservoir simulations. The 

dynamically downscaled 10 km resolution RCM simulations used in this thesis have 

been produced by the New South Wales (NSW)/Australian Capital Territory (ACT) 

Regional Climate Modelling (NARCliM) project. The assessment is performed for 

four time periods, two current day periods (1950-2009 and 1990-2009) and two 

future periods (2020-2040 and 2060-2080); four GCMs; three configurations of the 

RCMs (called R1, R2, R3) for each GCM; and five study regions along the NSW 

eastern seaboard.  

This thesis has three main foci. The first focus was on the assessment of the ability 

of NARCliM RCM data to generate the correct statistical properties of current day 

rainfall. Understanding the properties of the NARCliM generated rainfall and how 

they differ from observed rainfall is important when using the NARCliM data for 

hydrology modelling, particularly for models calibrated or designed using observed 

rainfall. Time series and spatial statistics of RCM simulations are compared against 

the ground based measurements for selected Bureau of Meteorology rainfall stations 

and 5 km gridded data from the Australian Water Availability Project (AWAP). The 

second focus was an assessment of the impacts of orography on regional rainfall, 

both observed and NARCliM rainfall. The third focus was on how the NARCliM 

rainfall properties will change in the future. 

Statistical testing of the NARCliM rainfall performed along the east coast of 

Australia suggest that bias corrected rainfall from the NARCliM RCMs are better at 

reproducing the daily rainfall distribution of AWAP rainfall than uncorrected, yet 

fail to reproduce the entire probability distribution of the rainfall, particularly the 

probabilities of the light rainfall events (rainfall less than 1 mm). The bias corrected 



 

 

xi 
 

NARCliM rainfall is able to reproduce both the magnitudes and spatial pattern of 

distribution statistics such as mean, standard deviation and coefficient of variation. 

The spatial correlation function of AWAP rainfall is well captured by both 

uncorrected and bias corrected NARCliM rainfall, however, both AWAP and 

NARCliM overestimate the correlation between rain gauges by 20-30%. Both the 

uncorrected and bias corrected NARCliM rainfall fail to reproduce the time series 

statistics such as autocorrelations of the rainfall. NARCliM overestimates the 

magnitudes of autocorrelations of AWAP, even though all NARCliM rainfall series 

are able to capture the seasonal cycle in the autocorrelation. Similar results for both 

the uncorrected and bias corrected NARCliM rainfall suggest that the bias correction 

does not influence the time series statistics, particularly the autocorrelations.  

The spatial pattern of both the time series and spatial statistics was generally well 

reproduced by the bias corrected data, though at high elevations there were some 

significant differences with AWAP. The ability to reproduce the spatial pattern of 

the rainfall statistics is an important but not sufficient requirement for hydrological 

studies, particularly reservoir modelling, since many reservoirs are located in areas 

of localised high rainfall.  

The relationship between the mean rainfall and elevation, and impacts from East 

Coast Lows (ECLs) on this relationship was investigated. The results suggest that 

there is a statistically significant positive linear relationship between observed 

rainfall and elevation, in a region close to the coast where the ECL impacts are 

known to be dominant. When the distance from the coast increases, this relationship 

becomes weaker. Compared with AWAP, the RCM R2 is best able to replicate the 

linear relationship between the gauged rainfall and elevation. A relationship for the 

rainfall combining distance from the coast and elevation difference between two 

points was also found.  

The RCM future projections suggest that mean rainfall will change by approximately 

-19% to 54% and the monthly rainfall coefficient of variation will change by -19% 

to 40%. All GCMs, except Commonwealth Scientific and Industrial Research 

Organisation (CSIRO-Mk3.0) project rainfall increases along the coast. There is a 

general trend that regions with reduced coefficient of variation for rainfall have a 

higher mean rainfall and vice versa, for all sites except for Sydney.
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Introduction 

1.1 General background 

The hydroclimate of the Australian east coast is distinct from other regions of 

Australia and is characterized by the influence of the Eastern Australian Current and 

an extended coastal mountain range, known as the Great Dividing Range (Hopkins 

and Holland, 1997; Kiem and Franks, 2001, Verdon et al., 2004). The coastal area, 

east of the Great Dividing Range, responds differently to large scale ocean drivers 

and experiences higher rainfall variability than west of the Great Dividing Range 

(Kiem and Franks, 2001; Verdon et al., 2004; Risbey et al., 2009; Murphy and 

Timbal, 2008; Verdon-Kidd et al., 2010, 2016; Callaghan and Power, 2014; Di Luca 

et al., 2016; Browning and Goodwin, 2016; Kiem et al., 2016). For example, the 

influence of large-scale modes of variability such as the El Niño/Southern 

Oscillation (ENSO), the Indian Ocean Dipole (IOD) and the subtropical ridge (STR) 

is notably different to the region immediately to the west of the Great Dividing 

Range (Risbey et al., 2009; Timbal, 2010; Timbal and Drosdowsky, 2013; Pepler et 

al., 2014; Dowdy et al., 2015;). Given that over 50% of Australia’s population 

resides along the east coast of Australia, detailed studies are needed to improve 

understanding about the rainfall variability that exists in this region, particularly as 

rainfall is used to assess water security.  

The Eastern Seaboard Climate Change Initiative (ESCCI) – East Coast Low (ECL) 

project is a strategic project initiated and funded by the New South Wales (NSW) 

government in Australia and aims to understand the climate of the Eastern seaboard 

(roughly the area between the east-coast and the Great Dividing Range), the effect of 

climate change on the Eastern seaboard, and the implications for climate change 

adaptation in this area. ESCCI-ECL project 5 (one of the six projects within ESCCI-

ECL) consists of seven subprojects that are carried out by six PhD students and one 

postdoctoral research fellow. The subprojects are as follows. 

 Project 5.1a: Climatological Drivers of Eastern Australia by Callum Twomey 

(PhD candidate) 
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 Project 5.1b: Climatological Drivers of Extratropical Cyclones – ECLs by 

Andrew Magee (PhD candidate) 

 Project 5.2:   Statistical Testing of Downscaled Rainfall Data for Water 

Security Assessment by myself (PhD candidate) 

 Project 5.3a: Stochastic rainfall and hydrology modelling by AFM Kamal 

Chowdhury (PhD candidate) 

 Project 5.3b: Incorporating ECLs and Climate Change trends into 

WATHNET by Lanying Zhang (PhD candidate) 

 Project 5.3c: Improving hydrologic modelling under climate change by 

Proloy Deb (PhD candidate) 

 Project 5.3d: Stochastic Water Infrastructure Management using WATHNET 

by Natalie Lockart (Postdoctoral research fellow) 

 
A major motivation for ESCCI is that the relatively narrow (100 km east to west) 

coastal strip is poorly resolved in current generation General Circulation Models 

(GCMs; grid resolution of ~250 km × 250 km) so it has proven difficult to infer 

climate change trends and impacts for the region. However, Regional Climate Model 

(RCM) simulations which downscale data from GCMs can better resolve regional 

detail. Therefore, as part of the ESCCI- ECL project 5, this thesis is based on Project 

5.2 which aims to validate the dynamically downscaled RCM rainfall data from 

NARCliM (NSW/Australian Capital Territory (ACT) Regional Climate Modelling 

project) against ground based rainfall data. NARCliM is a project running parallel 

with ESCCI (independent of ESCCI but also funded by NSW government) which 

provides dynamically downscaled climate data for (1) the CORDEX-AustralAsia 

region at 50 km, and (2) southeast Australia at a 10 km resolution (Evans et al., 

2014). NARCliM used three configurations (R1, R2 and R3) of the weather research 

and forecasting (WRFv3.3) regional climate model (RCM) to generate both 

reanalysis—driven by National Centers for Environmental Prediction 

(NCEP)/National Center for Atmospheric Research (NCAR) reanalysis climate data 

(Kalnay et al. 1996)—and GCM projected (driven by four GCMs) climate data. 

In general the 10 km RCM datasets generated by NARCliM have a sufficient 

resolution to capture the size of many water supply catchments (most are about 100-

200 km2) on the eastern seaboard. But, what is less clear is how well these climate 
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data will be at replicating the hydrology of a catchment when they are used in 

hydrology models or in capturing the persistence of runoff that is important in the 

performance of reservoirs systems. Poor results can be experienced when using 

stochastic rainfall simulators in hydrology models. Therefore, it is important that the 

statistical properties of the rainfall dataset are correctly reproduced for the current 

day data. Therefore the emphasis in this thesis is on rainfall, hence NARCliM 

rainfall datasets are tested against current day observed rainfall focusing on the 

statistics such as temporal and spatial correlations, hydrology mean and variability of 

the rainfall which are important for the correct simulation of runoff and reservoir 

performance. 

1.2 Objectives and scope 

This thesis has three main foci. The first focus is on the assessment of the ability of 

NARCliM RCM data to generate the correct statistical properties of current day 

rainfall. Understanding the properties of the NARCliM generated rainfall and how 

they differ from observed rainfall is important when using the NARCliM data for 

hydrology modelling, particularly for models calibrated or designed using observed 

rainfall. The second focus is an assessment of the impacts of orography on regional 

rainfall, both observed and NARCliM rainfall. The third focus is on how the 

NARCliM rainfall properties will change in the future. 

The specific objectives of this thesis are to: 

 Test and validate the rainfall statistics of the downscaled RCM data which 

are important for reservoir modelling and water availability analysis. In 

order to remove the scale discrepancy between datasets, the downscaled 

RCM data are tested against point and grid scale observations ; 

 Identify the similarities and differences between the performance of 

NARCliM RCM rainfall to capture the temporal and spatial statistics of 

observed rainfall for various sites, from north to south along the broader east 

coast of NSW, and with different orography, exposure to coastal weather 

systems and ECL occurrence; 

 Compare the performance of RCM rainfall with and without bias correction; 
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 Study the impact of orography on water security. Most of the water supply 

catchments along the east coast are subjected to orographic rainfall due to 

proximity of the Great Divide to the coast. Therefore, the relationship 

between the rainfall and elevation is explored; and 

 Determine the future change in NARCliM rainfall properties compared with 

current rainfall statistics. 

1.3 Overview of the thesis  

A summary of the main components of the thesis is shown in Figure 1.1. 

The organization of the thesis chapters is as follows; 

 Chapter 2 - This chapter provides the motivation of this thesis, and a detailed 

literature review on the background and previous approaches of assessing 

GCM and downscaled RCM data. 

 Chapter 3 – The downscaled RCM data are assessed at various sites along the 

east coast of Australia. A description of these sites and data used are 

presented in this chapter.  

 Chapter 4 – The general methodology of assessing different statistical 

measures is presented in this chapter. 

 Chapter 5 - The temporal statistics of the NARCliM reanalysis RCMs are 

tested against observed rainfall as a pilot study in this chapter. The analysis is 

performed at a study site called Merriwa, located within the Goulburn River 

catchment in NSW. 

 Chapter 6 – In this chapter, the analyses in Chapter 5 are extended for the 

four selected study sites located along the broader east coast of NSW. The 

objective of this chapter is to test the time series statistics of uncorrected and 

bias corrected NARCliM reanalysis RCMs (1950-2009) against Bureau of 

Meteorology's Australian Water Availability Project (AWAP) rainfall. 

 Chapter 7 - The spatial statistics, particularly the spatial correlations of the 

NARCliM reanalysis RCMs (1950-2009) are evaluated against the observed 

rainfall in this chapter. 
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 Chapter 8 - This chapter explores the relationship between the rainfall and 

orography using both observed and NARCliM reanalysis RCMs (1950-

2009).  

 Chapter 9, 10 and 11 - Statistical testing of temporal statistics of NARCliM 

GCM driven RCMs (1990-2009) is presented for the broader east coast sites 

in these three chapters. The analyses presented in these chapters are similar to 

that of Chapter 6, however, the main focus is on the performance of 

NARCliM GCM driven RCMs.  

 Chapter 12 – This chapter evaluates the spatial correlation of the NARCliM 

GCM driven RCMs against the observed rainfall. 

 Chapter 13 – Using NARCliM future projections, this chapter determines the 

projected change in rainfall and its variability for 2060-2079 relative to 1990-

2009. 

 Chapter 14 - This chapter presents a synthesis on the performance of 

NARCliM RCM data along the east coast sites studied in this thesis. 

 Chapter 15 – This final chapter summarises how the objectives of this thesis 

were achieved, the major findings and future research directions.  

 

Differentiated by the datasets used, chapters 5-13 are grouped into two sections as 

Section 1 and 2; in Section 1 (Chapters 5-8), all statistical testings are performed 

only for NARCliM reanalysis RCMs (1950-2009), while Section 2 (Chapters 9-13) 

presents results for the 20-year period GCM driven RCMs (1990-2009). More details 

on these datasets are presented in Chapter 2 and 3. Additionally, in each section, two 

types of rainfall statistics are assessed; (1) temporal and (2) spatial. The temporal 

statistics are calculated at individual grid points while spatial statistics are calculated 

between the grid points at a site.  

To conclude, chapters 14-15 are grouped as Section 3 presenting a final synthesis on 

the performance of NARCliM RCM data (Chapter 14), followed by conclusions 

(Chapter 15) of this thesis. 
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Figure 1.1 Summary of thesis components  

As a result of the research work carried out during the course of this thesis, three 

journal articles, three peer-reviewed conference papers and eight international 

conference presentations have been published. 

Journal papers: 

Parana Manage, N., Lockart, N., Willgoose, G., Kuczera, G., Kiem, A. S., 

Chowdhury, A.F.M.K., Zhang, L. and Twomey, C. (2016), Statistical Testing of 

Dynamically Downscaled Data for the Upper Hunter Region, New South Wales, 

Australia, Journal of Southern Hemisphere Earth System Science, 66(2), 203-227. 

Lockart, N., Willgoose, G. R., Kuczera, G.,  Kiem, A. S., Chowdhury, A.F.M.K., 

Parana Manage, N., Zhang, L., and Twomey, C. (2016), Case study on the use of 

dynamically downscaled GCM data for assessing water security on coastal 

NSW, Journal of Southern Hemisphere Earth System Science, 66(2), 177–202. 

Sites and RCM data (Ch 2 and Ch 3) 

Methodology (Ch 4) 

Analysis of NARCliM data 

Section 1: NARCliM reanalysis 
(1950-2009) 

Section 2: NARCliM GCM 
projections (1990-2009) 

Spatial statistics (Ch 7) 

Assessment of temporal 
statistics (Ch 5 and Ch 6) 

Assessment of temporal 
statistics (Ch 9 and Ch 11) 

Relationship between rainfall 
and orography (Ch 8) 

Assessment of NARCliM 
future projections (Ch 13) 

Section 3 

Final synthesis (Ch 14) 

Conclusions (Ch 15) 

Spatial statistics (Ch 12) 
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Kiem, A.S., Twomey, C., Lockart, N., Willgoose, G.R., Kuczera, G., Chowdhury, 

A.F.M.K., Parana Manage, N. and Zhang, L. (2016), Links between East Coast 

Lows and the spatial and temporal variability of rainfall along the eastern seaboard 

of Australia, Journal of Southern Hemisphere Earth System Science, 66(2), 162-

176. 

Chowdhury, A.F.M.K., Lockart, N., Willgoose, G., Kuczera, G., Kiem, A. S. and 

Parana Manage, N. (in revision), Development of a decadal and hierarchical 

Markov Chain daily rainfall model with long-term variability. 

 

Conference papers: 

Parana Manage, N., Lockart, N., Willgoose, G., Kuczera, G., Kiem, A. S., and 

Chowdhury, A.F.M.K. (2015), Testing the Statistics of Dynamically Downscaled 

Rainfall Data for the East Coast of NSW, 36th Hydrology and Water Resources 

Symposium, Hobart, Tasmania, 7-10 December.  

Lockart, N., Willgoose, G. R., Kuczera, G., Kiem, A. S., Chowdhury, A.F.M.K., and 

Parana Manage, N. (2015), Use of NARCliM Rainfall data for Simulating 

Streamflow in the Williams River Catchment, 36th Hydrology and Water 

Resources Symposium, Hobart, Tasmania, 7-10 December.  

Chowdhury, A.F.M.K., Lockart, N., Willgoose, G., Kuczera, G., Kiem, A. S. and 

Parana Manage, N., (2015), Modelling daily rainfall along the east coast of 

Australia using a compound distribution Markov Chain model, 36th Hydrology 

and Water Resources Symposium, Hobart, Tasmania, 7-10 December.   

 

Conference presentations: 

Parana Manage, N., Lockart, N., Willgoose, G., Kuczera, G., Kiem, A. S., and 

Chowdhury, A.F.M.K. (2016), Evaluation of spatial correlations of dynamically 

downscaled rainfall data for eastern Australia, European Geosciences Union 

General Assembly, Vienna, Austria, 17–22 April (poster presentation).  

Chowdhury, A.F.M.K., Lockart, N., Willgoose, G., Kuczera, G., Kiem, A.S., and 

Parana Manage, N., (2016), Comparison of two stochastic daily rainfall models 
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and their ability to preserve multiyear rainfall variability, European Geosciences 

Union General Assembly, Vienna, Austria, 17–22 April (oral presentation). 

Parana Manage, N., Lockart, N., Willgoose, G., Kuczera, G., and Chowdhury, 

A.F.M.K. (2015), Statistical Testing of Dynamically Downscaled Rainfall Data 

for the East Coast of Australia, European Geosciences Union General Assembly, 

Vienna, Austria, 12–17 April (poster presentation). 

Chowdhury, A.F.M.K., Lockart, N., Willgoose, G., Kuczera, G., and Parana 

Manage, N., (2015), Development of a compound distribution Markov Chain 

model for stochastic generation of rainfall with long term variability, European 

Geosciences Union General Assembly, Vienna, Austria, 12–17 April (oral 

presentation). 

Parana Manage, N., Lockart, N., Willgoose, G., Kuczera, G., Kiem, A. S., and 

Chowdhury, A.F.M.K. (2015), Statistical validation of dynamically downscaled 

climate data for the Hunter Region of New South Wales, Australia, Australian 

Meteorological and Oceanographic Society Conference, Brisbane, Australia, 15-

17 July (oral presentation). 

Chowdhury, A.F.M.K., Lockart, N., Willgoose, G., Kuczera, G., Parana Manage, N., 

and Kiem, A.S. (2015), A stochastic model for rainfall generation with long-term 

variability – Calibration to NARCliM data at catchments with characteristic 

influence of east coast lows, Australian Meteorological and Oceanographic 

Society Conference, Brisbane, Australia, 15-17 July (oral presentation). 
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Background 

2.1 Introduction 

Assessments of global and regional rainfall projections to reproduce the current day 

observed rainfall statistics are important when these projections are used in 

applications such as agriculture, water resources planning and climate change 

studies. The following is a comprehensive review on the availability, applicability 

and previous approaches of evaluating global and regional rainfall projections 

obtained from GCMs and RCMs. This review supports the importance of evaluating 

the high-resolution rainfall projections focusing on the statistics which are important 

for the water security assessments before these projected rainfall datasets are used in 

hydrology models in generating the runoff. 

2.2 GCM rainfall projections 

General Circulation Models, also known as Global Climate Models (GCMs) are the 

primary and most common tool used to simulate present climate worldwide. There 

are two recent databases of global climate projections; the Coupled Model 

Intercomparison Project 3 and Project 5 (CMIP3; CMIP5; Meehl et al., 2007; Taylor 

et al., 2012) which have been produced as an international collaborative effort of 

worldwide GCM groups. These two databases of global climate projections which 

describe a large number of GCMs (23 and 47 GCMs by CMIP3 and CMIP5 

respectively) (IPCC, 2007; IPCC, 2013) have been widely used to investigate global 

climate system processes as well as large scale climate change projections. However, 

as stated in IPCC (2007; 2013) “The confidence of these GCM outputs depends on 

their physical basis and the ability of reproducing the observed climate”.   

Of the climate variables produced by GCMs, rainfall is the key variable required for 

hydrology predictions used in water supply reservoir simulations (Wigley and Jones, 

1985; Sankarasubramaniam et al., 2001; Chiew, 2006). Therefore, this review 

mainly focuses on the rainfall projections and the assessment of their statistical 

properties simulated by GCMs. The knowledge of how observed rainfall has been 
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reproduced by GCMs is important, particularly for a country like Australia where the 

rainfall is highly variable throughout the year. Therefore, the evaluation of GCM 

performance for the Australian climate is critically reviewed here. In particular, the 

focus is on the assessments which cover the east coast of Australia as this region is 

the region of interest in this thesis. The east coast of Australia is considered as a 

separate climate entity compared to other regions of Australia and is characterized 

by the influence of the Eastern Australian Current and an extended coastal mountain 

range, the Great Dividing Range (Hopkins and Holland, 1997; Kiem and Franks, 

2001, Verdon et al., 2004). This chapter will identify research gaps about evaluating 

GCMs which have not been addressed by previous studies. One major argument in 

this review is that rainfall projections should be evaluated not only focusing on the 

biases of the rainfalls, but also the other temporal and spatial statistics such as spatial 

correlations and autocorrelations which are important for water security assessments.  

2.3 Climate of Eastern Australia and ECLs 

The general climate of eastern Australia is subtropical and the region experiences 

more rainfall in the summer than the winter months. During the winter, rainfall is 

more associated with East Coast Lows (ECLs) and cold fronts (Dowdy et al., 2015). 

ECLs are intense low pressure systems that occur over the subtropical east coasts of 

northern and southern hemisphere continents (Verdon-Kidd et al., 2010). Due to the 

large influence on severe weather conditions and high rainfall volumes generated by 

ECLs which cause significant inflows into the major water storages along the east 

coast, there is substantial interest on these ECLs from the research community. 

Many authors have studied ECLs (Verdon- Kidd et al. 2010, 2016; Kiem and 

Twomey, 2014; Pepler et al. 2014a, 2014b; Kiem et al., 2016; Browning and 

Goodwin, 2016). Browning and Goodwin (2013) classified ECL events into five 

main types (Easterly trough lows (ETL); Southern secondary lows (SSL); Inland 

troughs (IT); Continental lows (CL) and Extratropical cyclones (XTC)) which affect 

eastern Australia while Kiem et al. (2016) explained how rainfall pattern and the 

impacts to the coastal region can vary depending on the type of ECL that occurs. In 

particular, Kiem et al. (2016) found that there is a large degree of spatial variability 

in the location of different ECL impacts, therefore, there is a significant geographical 

spread of the location depending on the type of the ECL. This spatial variability in 



 

Chapter 2 - Background  

 

11 
 

the location of different ECL types is particularly important for water resources 

planning as a small change in the location can directly affect which catchment 

experiences reservoir filling rainfall. Due to this spatial variability in the ECL 

locations, assessment on the rainfall variability at different locations along the east 

coast of Australia is important. Therefore, instead of studying the east coast as a 

whole, the study in this thesis is performed at various sites along the east coast. One 

of the major motivations in this project (ESCCI-ECL project 5) is to use the findings 

in this thesis for the future research on the ECL impacts along the east coast of 

Australia.  However, it should be noted that this thesis does not assess ECL impacts 

at each site, instead the main focus is on how well the rainfall statistics (ECL or non-

ECL) which are important for the water security assessments have been reproduced 

by the GCM projections.    

In the next section, past studies evaluating GCM climate projections over Australia 

are reviewed. The extent of GCMs’ capability to capture the climate variability in 

the east coast is also investigated in this section.  

2.4 Evaluating GCM projections for the Australian Climate  

The evaluation of the performance of GCMs at the regional scale is important 

because performance of GCMs can vary from one region to another, and can 

simulate different responses to increasing greenhouse gas concentrations at regional 

scales. This section presents past studies by many authors, which evaluate GCM 

projections for the climatology of Australia. In particular, the statistical methods and 

different approaches used in the evaluation of the GCMs are reviewed. Additionally, 

models which perform best in capturing the observed rainfall for Australia are 

identified to compare them with the results in this thesis. The review in this section 

has led to two main conclusions: (1) Some GCMs are able to capture the rainfall 

variability in regions such as east coast of Australia, yet, none of these models reveal 

km scale variability in the rainfall (or temperature) within a region because of the 

coarse resolutions of GCMs, the averaging of the results for large regions over 

Australia (for example, regions of 10°×10°) and averaging the model skill between 

all available models, and (2) most of the past studies have evaluated the skill of 

GCMs’ reproduction of observed rainfall or temperature by only focusing on the 
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distribution statistics such as mean, mean square or mean absolute error, root mean 

square error, probability distribution, and the spatial patterns of the statistics. None 

of these studies focused on the temporal or spatial variability of the rainfall which 

are important for water security assessment studies. 

Suppiah et al. (2007) tested the reliability of 23 GCM projections from CMIP3 for 

the Australia region (110-155ºE, 11-45ºS) for the period of 1961-1990 by comparing 

observed and simulated patterns of the seasonal mean rainfall. AWAP rainfall data 

from Australian Water Availability Project (AWAP, Jones et al., 2009; Raupach et 

al., 2009, 2012; also see Section 3.3.3) was used as the observed dataset in 

calculating the patterns of rainfall at individual grid points which have been 

interpolated on to a 0.5°×0.5° grid over Australia. Note that the same AWAP data is 

used in this thesis as the observed rainfall, but to be consistent with the 10 km 

resolution NARCliM (NSW/Australian Capital Territory (ACT) Regional Climate 

Modelling project, see Section 2.6.3) RCM simulations, the 5 km dataset is 

aggregated up to 10 km resolution (see Section 3.3.3). In the selection of best 

models, Suppiah et al. used a combined approach of satisfying two statistical 

measures; pattern correlation coefficient and root mean square error (RMSE) i.e. 

pattern correlation coefficients of 1.0 indicating a perfect match between the 

observed and simulated spatial pattern of the rainfall and RMSE error of 0.0 to 

indicate a perfect match between the observed and simulated magnitudes of the 

rainfall. The results of Suppiah et al. (2007) showed that there is high rainfall 

variability along the east coast of Australia during the summer, while in winter the 

region experiences significant rainfall due to cold fronts and low pressure systems. 

In particular, the GCMs that capture this rainfall variability had high pattern 

correlations. According to the results of the statistical tests, 15 models (shown in 

Table 2.1) including CSIRO-Mk3.0, ECHAM5 and MIROC-M (these three GCMs 

have been used to produce the downscaled RCMs used in this thesis) were selected 

as ‘best’ by using a subjective demerit point system (Whetton et al., 2005). The use 

of a subjective demerit point system in deciding on the ‘best’ performing GCMs has 

since become a common practice and has been used in several recent studies 

including the NARCliM design project. In particular, the NARCliM project used the 

demerit point system of Suppiah et al. (2007) as one criterion for selecting the best 
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performing GCMs for the east coast of Australia (see Section 2.6.3 and Evans et al., 

2014).  

Table 2.1 Demerit points based on comparison of observed and simulated MSLP, 
temperature and rainfall  

Originating group(s) Model 

Mean 
sea-
level 

press-
ure 

Temp
eratu-

re 

Rai-
nfall 

Total 
includin
g extra 
demerit 
points 

Beijing Climate Centre  BCC  9 3 5 17 

Bjerknes Centre for Climate Research BCCR 0 0 5 5 

Canadian Climate Centre CCCMA T47 6 1 1 8 

Canadian Climate Centre  CCCMA T63  5 4 1 10 

Meteo-France  CNRM  2 1 1 4 

Commonwealth Scientific and Industrial 

Research Organisation (CSIRO)  
CSIRO-MARK3  3 2 2 7 

Geophysical Fluid Dynamics Lab GFDL 2.0 4 0 0 4 

Geophysical Fluid Dynamics Lab GFDL 2.1 0 1 1 2 

NASA/Goddard Institute for Space Studies GISS-AOM 3 4 1 8 

NASA/Goddard Institute for Space Studies GISS-E-H 5 4 5 14 

NASA/Goddard Institute for Space Studies GISS-E-R 4 3 1 8 

LASG/Institute of Atmospheric Physics IAP 0 0 2 2 

Institute of Numerical Mathematics  INMCM  1 3 3 7 

Institute Pierre Simon Laplace IPSL 9 1 4 14 

Centre for Climate Research  MIROC-H  5 0 2 7 

Centre for Climate Research  MIROC-M  6 0 1 7 

Meteorological Institute of the University of 

Bonn, Meteorological Research Institute of 

KMA  

MIUB  1 2 1 4 

Max Planck Institute for Meteorology DKRZ  MPI-ECHAM5  1 0 0 1 

Meteorological Research Institute  MRI 1 1 1 3 

National Center for Atmospheric Research  NCAR-CCSM 1 0 1 2 

National Center for Atmospheric Research  NCAR-PCM1 3 3 5 11 

Hadley Centre  HADCM3 4 0 2 6 

Hadley Centre  HADGEM1 0 2 0 2 

One point is given for an rms error greater than 2 or a pattern correlation less than 0.8 in any given 

season. An extra demerit point was allocated to models with an rms error greater than 4 or a pattern 

correlation below 0.6. The 15 models with less than eight demerit points are shown by shaded cells 

(from Suppiah et al. (2007). 
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However, the pattern correlation used in Suppiah et al. (2007) is an important 

measure of assessing the ability to correctly distribute the rainfall (or temperature) 

over a region, but it is not sensitive to the biases between model and observed 

rainfall and therefore, only explains the spatial similarity of rainfall over a region.  

Of past studies performed over Australia, the study by Perkins et al. (2007) is 

important to this thesis because like Suppiah et al. (2007), their results were also 

used in Evans et al. (2014) in the design of the NARCliM project when determining 

the best models that perform well in southeast Australia. Therefore, this study is 

reviewed in detail here. More details on the NARCliM project design are given in 

Section 2.6.3.  

Perkins et al. (2007) evaluated CMIP3 models for the daily simulation of 

precipitation, minimum temperature, and maximum temperature (from 1961-2000) 

by dividing Australia into 12 regions (10°×10°, Figure 2.1) (note that the focus in 

this review is on the precipitation). The evaluation was based on probability density 

functions (PDFs). In calculating the PDFs for each variable, all observed data within 

each 10°×10° region were used to construct the representative distribution for each 

region. The similarity between the observed and simulated PDFs (Figure 2.2) was 

evaluated by a skill score (Sscore) calculated using Equation 2.1.      

                                           om

n

score ZZS ,min
1
  …………. (2.1)   

where n is the number of bins used to calculate the PDF for a given region, Zm is the 

frequency of values in a given bin from the model, and Zo is the frequency of values 

in a given bin from the observed data. The basis for this evaluation was that if a 

model simulates the observed conditions perfectly, the skill score will equal one, 

which is the total sum of the probability at each bin centre in a given PDF whilst a 

skill score close to zero with negligible overlap between the observed and modelled 

PDFs shows that the model poorly simulates the observed PDF (Perkins et al., 2007).  
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Figure 2.1 Regions used in Perkins et al. (2007) 

 

 

Figure 2.2 Diagrams of modelled vs observed PDF illustrating the total score in (a) a 
near perfect score test (0.9) and (b) a very poor skill score (0.02) (from Perkins et al., 

2007)  

Perkins et al. (2007) then ranked the climate models as shown in Table 2.2. They 

noted that some models show major biases with overestimation of the observed 

probability of 1-2 mmday-1 rainfall values by 2-3 times in many regions. 

Additionally, there was a tendency of the climate models to simulate too many light 

rainfall events (a common problem called “GCM drizzle”). However, the ensemble 

skill score for precipitation of each model averaged over all 12 regions suggested 

that nine models have an average exceeding 0.7 which was the cut-off for selecting 

the best models. In particular for rainfall, BCCR, ECHAM, and ECHO-G models 

were identified as the best models for simulating the observed precipitation across 

Australia.  
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Table 2.2 Ranking of climate models for precipitation P, maximum temperature 
TMAX, and minimum temperature TMIN over all regions of Australia. These results 

are an average of all 12 regions.  

 P Rank TMAX Rank TMIN Rank Overall Rank 

MIROC-m  0.77  5  0.87  3  0.84  5  0.83  1 

CSIRO  0.73  7  0.80  6  0.88  2  0.80  2 

ECHO-G  0.83  3  0.87  2  0.69  12  0.80  3 

IPSL  0.65  12  0.85  4  0.83  7  0.78  4 

MRI  0.65  11  0.78  8  0.86  4  0.76  5 

GISS AOM  0.64  13  0.78  7  0.83  8  0.75  6 

FGOALS  0.70  9  0.81  5  0.69  13  0.73  7 

CGCM-l  0.60  14  0.68  10  0.86  3  0.71  8 

BCCR  0.85  1    0.73  11  0.79   

CGCM-h    0.72  9  0.84  6  0.78   

GFDL2.0  0.79  4      0.79   

GFDL2.1  0.76  6    0.89  1  0.82   

GISS ER  0.73  8    0.80  10  0.76   

MIROC-h    0.87  1    0.88   

ECHAM  0.84  2    0.81  9  0.83   

CCSM  0.67  10      0.67   

 

The study sites in this thesis fall into region 1 and 2 (see Figure 2.1), with most of 

the sites falling in region 2 of Perkins et al. (2007). In particular at region 2, 

ECHAM GCM had a higher skill score of 0.84 than the CSIRO and MIROC-M 

GCMs which had a skill score of 0.7. Therefore, the performance of ECHAM can be 

compared with the results in this thesis, though the analysis in this thesis was only 

based on the cumulative probability distribution (CDF) of the daily rainfall at 

selected grid points without using any skill score method. There are two main 

reasons for not using in this thesis the skill methods of Perkins et al. (2007):  

(1) In calculating the PDF, Perkins et al. used all data (of either observed or model) 

available within a region. For example, at region 2, all daily rainfall data available 

for a large area covering most of NSW was used to construct a single PDF. This 

method provides the general idea of the model performance within a region, but does 

not reveal more details at the catchment scale. Therefore, instead of constructing a 

single PDF for a large area, a method of constructing PDFs of daily rainfall at single 
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grid points is needed. By doing this, comparisons of simulated and observed PDFs 

can reveal more details on the temporal variability of the rainfall at a specific 

location as well as how well the entire rainfall distribution has been captured by 

GCMs. The ability of GCMs to reproduce the temporal variability in the observed 

rainfall is important for water security assessments because if GCMs do not 

reproduce the actual variability of the observed rainfall, the use of these data to 

genarte catchment average rainfalls to run a rainfall runoff model will cause errors in 

the simulated runoff; and,  

(2) The skill score method (Equation 2.1) used by Perkins et al. (2007) measures the 

overlap between the simulated and observed rainfall distributions. Measuring the 

overlap between the model and observed data is important for the atmospheric 

science studies which intend to identify best GCMs which can be used to generate 

future climate projections for a specific region. However, this method does not 

provide enough detail about the time series characteristics of the rainfall or the 

location where the rainfall event occurred. In other words, this method does not 

evaluate the differences in the spatial and temporal variability between GCM 

simulated and observed rainfall. Therefore, in order to test the hydrologic 

capabilities of GCMs (the ability to capture the observed rainfall time series statistics 

important for reservoir water availability analysis), more sophisticated analysis 

methods are required. 

Maxino et al. (2008) used a similar methodology as Perkins et al. (2007) for the 

Murray-Darling Basin, Australia by constructing PDFs for each season for the period 

from 1980-2000. They recommended three CMIP3 models, CSIRO, IPSL and 

MIROC-M that captured the observed PDFs of maximum and minimum temperature 

and precipitation relatively well. However, the ECHAM GCM, which had captured 

the precipitation better than CSIRO and MIROC-M for eastern Australia in Perkins 

et al. (2007), had similar performance for the Murray-Darling Basin which is also 

located in eastern Australia (Maxino et al., 2008).  

Smith and Chandler (2010) evaluated 22 CMIP3 models for Australia based on the 

evaluation method of RMSE and spatial correlation between model and observations 

used in Suppiah et al. (2007), and found a set of five models (ECHAM5, GFDL2.0 

GFDL2.1, MIROC3.2 (hires) and UKMO_HADCM3) that provided good 
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representations of the Australian rainfall. To find out how these five models 

performed in future, the percentage change in annual rainfall (2070-2099) versus 

(1971-2000) for the Murray-Darling Basin had also been calculated. They found that 

on a seasonal basis, this set of five GCMs tended to agree on the sign of the changes 

that may occur. These five models simulated different changes in rainfall (with 

different magnitudes of increases or decreases) compared to the remaining 17 

models. The differences between the set of 5 models and the remaining set of 17 

models are most evident in winter and spring seasons. However, the similarity 

between the sign of the mean projected change in rainfall of ECHAM5 and 

MIROC3.2 found by Smith and Chandler (2010) for the Murray-Darling Basin does 

not agree with the findings in this thesis (see Chapter 12) where the assessment is for 

the east coast of Australia (east of the Great Dividing Range). Therefore, their results 

appear to be only acceptable to the Murray-Darling Basin (west of the Great 

Dividing Range) so cannot be generalized for east coast of Australia. 

Moise et al. (2015) evaluated the mean climate skill score of 47 CMIP5 models and 

23 CMIP3 models against AWAP data using M-Statistics (Watterson, 1996; 2008) 

by interpolating each model to a common 1.5°× 1.5° grid over Australia. In some of 

their evaluations they studied Australia as five main spatial clusters while some 

clusters had been further divided into sub-regions. In Watterson (1996) M-statistic is 

defined as follows. 

  arcsin2M ……………….. (2.2) 

ρ is the Mielke’s measure of agreement which is defined in Mielke (1984 ; 1991) as; 

 1    ……………………… (2.3) 

where δ is either mean square or mean absolute error calculated between the 

simulated and observed values of the climate variable and μ is the expected value of 

δ if the simulated values are distributed randomly over the global grid-points. 

However, the skill of models in simulating climatological rainfall across Australia 

was found to vary strongly (Moise et al., 2015). MIROC-ESM and MIROC-ESM-

CHEM were identified as poor models as they did not simulate temperature and 

rainfall well over Australia and also did not produce monsoon westerlies during the 
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monsoon season and therefore showed deficient wet season rainfall (spatial 

distribution). They also found that most of the CMIP5 global climate models were 

able to reproduce the major climate features (SAM, monsoon, pressure systems, sub-

tropical jet and circulation) and modes of variability (seasonal cycle, ENSO, Indian 

Ocean Dipole) while three models (IPSL-CM5A-MR, IPSL- CM5A-LR and CSIRO-

MK3-6-0) showed unusually low skill with respect to the ENSO-rainfall 

teleconnection which was partly due to their bias in the equatorial sea surface 

temperatures. In particular for the mean precipitation from 1980-1999, the models 

(mean CMIP3 models) showed a dry bias along the East coast of Australia compared 

with AWAP. During the winter, there was a good match between the models and 

AWAP rainfall suggesting that models are able to capture the higher winter rainfall 

amounts experienced in the East coast cluster due to ECLs and fronts. However, 

compared with models used in this thesis the authors only used CSIRO-Mk3.60 and 

two other versions of MIROC GCM (MIROC-ESM and MIROC-ESM-CHEM). 

The results of Moise et al. (2015) contributed to the recent climate projections 

produced for Australia by Commonwealth Scientific and Industrial Research 

Organisation (CSIRO) in 2015 (CSIRO and Bureau of Meteorology, 2015). Overall, 

Moise et al. (2015) assessed the performance of individual models as well as mean 

CMIP3 models (averaged across 47 models). However, they only used the statistics 

mean absolute error, and the expected value of mean error between observed and 

model values in calculating M-statistics. Additionally, the authors have only used the 

mean daily rainfall averaged over a time period. The approach of calculating a single 

value as the mean daily rainfall over a long time period hides internal variability 

within the daily rainfall time series, and therefore, can be considered as a deficiency 

in their method.  Further, M-statistics can be identified as useful for assessing the 

overall model performance, but does not provide much information on the ability of 

GCMs to reproduce the hydrologically important statistics such as temporal and 

spatial variabilities in the rainfall. Bhend and Whetton (2015) evaluated regional 

trends in daily maximum and minimum temperature, and rainfall in simulations from 

the CMIP5 archive from 1956-2005 using a z-score defined for the observed and 

modelled climate variables on a grid (1.5°×1.5°) over Australia. In their study, 

significant (at the 10% level) differences between simulated and observed trends in 

rainfall and temperature were found in some areas. In particular, rainfall was 
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overestimated in north-western Australia in summer and autumn and in north-eastern 

Australia in spring, while significant underestimates in rainfall were found for large 

areas of south-eastern Australia in autumn. However, the approach used by Bhend 

and Whetton (2015) did not reveal much information on the individual performance 

of each model, since they had used a single z-score which had been averaged across 

all models for each grid point. 

Overall, the review in this section shows that some GCMs are more capable than 

others to capture the rainfall variability over large regions of Australia, yet, due to 

the coarse resolution of these GCMs, none of them are able to capture the regional 

variability in the rainfall. Therefore, there is a need for high-resolution climate 

projections at regional scales. As a result, researchers have focus on downscaling 

GCMs, expecting that downscaled high-resolution GCM projections will be able to 

resolve more regional details in the climate better than the coarse resolution GCMs.  

Therefore, the following sections of this chapter focus on the regional climate 

projections produced by downscaling coarse resolution GCMs, and the performance 

of these projections worldwide. 

2.5 Downscaling GCMs  

The previous section showed that direct outputs from Global Climate Models 

(GCMs) fail to capture the internal variability in the climate within small regions. 

This is because they do not provide realistic daily rainfall at resolutions finer than 

200 km (Meehl et al., 2007; Liu and Zuo, 2012) at which hydrological processes are 

typically assessed (Kundzewicz et al., 2007). Therefore, different downscaling 

techniques have been developed to produce high-resolution Regional Climate Model 

(RCM) projections with a focus of resolving the scale discrepancy between current 

GCMs and the resolution required for hydrological impact assessment (Fu et al., 

2011). These downscaling methods can be divided into two types: statistical and 

dynamical. Statistical downscaling involves deriving statistical relationships between 

some large scale predictors and the local variable of interest (Buytaert et al., 2010). 

Dynamical downscaling uses the initial and time-dependent lateral boundary 

conditions of GCMs to achieve a high spatial resolution by nesting RCMs (Caya and 

Laprise, 1999). Note that the NARCliM RCM projections used in this thesis have 
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been produced by the dynamical downscaling method (see Section 2.6.3 for more 

details on the design process of NARCliM).    

There are numerous studies which evaluate these downscaling methods. However, 

this review does not intend to present more details on the comparison studies 

between different downscaling methods as it is out of the scope of this thesis. 

Instead, the next section focuses on the assessment and performance of the RCM 

simulations downscaled by either dynamical or statistical methods around the globe.     

2.6 Evaluation of RCM simulations  

An assessment of RCM simulations is necessary to evaluate the reliability of 

predictions at the hydrological catchment scale. In general, there are many studies 

with different views and approaches on GCM and RCM evaluation and selection. 

Some authors (e.g. Kirono and Kent, 2011; Vaze et al., 2011) argue that the 

evaluation and selection criteria of RCMs can simply be based on the climate 

variable of interest (for most hydrological applications these variables are rainfall 

and potential evapotranspiration), while others (e.g. Smith and Chandler, 2010) 

suggest that there is a need to use of a broader range of variables, including the 

atmospheric-oceanic climate drivers such as the Southern Annular Mode (SAM) and 

the El Nino Southern Oscillation (ENSO). This is because climate variables (e.g. 

rainfall) are mostly associated with the dynamics of climate drivers, and successful 

simulation and prediction over a wide range of these drivers increases confidence in 

the GCM used for climate projections in the future (Randall et al., 2007). In general, 

RCMs are often evaluated with a focus on temperature and precipitation as these are 

the most commonly observed climate variables.  

This section reviews past studies on the evaluation of RCM simulations in and 

outside Australia, with a focus on various statistical approaches used by different 

authors worldwide. In the next section, NARCliM RCM simulations, which are used 

in this thesis, are reviewed in detail followed by a subsection on the pre- and post-

evaluation of NARCliM projections over south-eastern Australia. However, note that 

this section focuses on RCM precipitation projections, as the focus in this thesis is 

precipitation.  



 

Chapter 2 - Background  

 

22 
 

The review in this section has led to two main conclusions: (1) none of the RCM 

evaluation studies have focused on the time series statistics of the rainfall or the 

spatial correlation between the rainfalls at two different locations which are two 

important statistics for the predictions of reservoir water availability analysis, i.e. 

none of the RCMs have been evaluated in a way that explains how GCMs are 

capable to capture the regional scale variability (temporal or spatial) in the observed 

rainfall, and (2) most of RCM evaluation studies have been performed for the 

aggregated time resolutions such as monthly, seasonal and annual, which can hide 

the submonthly variability and systematic biases presents in the daily time 

resolution. Therefore, there is a need to assess the statistics at high temporal 

resolutions such as daily, weekly and fortnightly. 

2.6.1 Evaluation of RCM simulations outside Australia  

Evans et al. (2005) investigated the performance of many variables through time 

simulated using four RCMs (RegCM2, MM5/BATS, MM5/SHEELS, and 

MM5/OSU) including daily precipitation, seasonal precipitation, runoff, soil 

moisture and monthly mean temperature. They assessed RMSE and the daily 

probability distributions of the modelled and observed data in Kansas, United States, 

but only for a single grid point (20 km × 20 km). They found that all RCMs are able 

to capture the correct qualitative behaviour of the inter-annual variability, though 

there are considerable deviations in the magnitudes between models and 

observations. 

The approach in Evans et al. (2005) of assessing the statistics, particularly the 

rainfall probability distribution at a single grid point provide more insights towards 

understanding of the daily rainfall probability distribution properties at regional 

scale, compared with Perkins et al. (2007) who constructed individual PDFs 

averaged over large regions of 1000 km ×1000 km (10°×10°) over Australia.  

Argüeso et al. (2012) evaluated the ability of the Weather Research Forecasting 

(WRF) RCM to simulate both the mean and extreme precipitation over Spain. The 

WRF model was driven by ERA-40 and two GCMs (ECHAM5 and CCSM3). In 

their evaluation, longer term means such as annual, seasonal and monthly 

precipitation were calculated. Although substantial errors were observed in the 
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monthly precipitation, especially during the spring, they found that the model was 

largely able to capture the various precipitation regimes. Further, they found that the 

major benefits of using WRF were related to the spatial distribution of rainfall and 

the simulation of extreme events, which are two facets of climate that are difficult to 

estimate with GCMs (Parry et al., 2007; Randall et al., 2007; Stainforth et al., 2007; 

Koutsoyiannis et al., 2008; Kiem and Verdon-Kidd, 2011; Stephens et al., 2012). 

The ability of WRF to capture the spatial distribution of the rainfall was similar to 

the results of NARCliM simulations in this thesis, which have been downscaled 

using the WRF RCM. However, note that the spatial resolution of WRF in Argüeso 

et al. (2012) is 20 km while the resolution of WRF datasets used in this thesis is 10 

km.  

Comparing the boundary conditions used, Argüeso et al. (2012) found that WRF 

simulations, driven by ERA-40 better matched with observations than the 

simulations driven by GCM boundary conditions. The comparison between RCM 

performances for different boundary condition is useful when selecting datasets for a 

particular application. The analysis in this thesis also focuses on the performance of 

WRF model (the same RCM used in Argüeso et al., 2012) driven by two different 

boundary conditions: NCEP/NCAR reanalysis and four GCMs projections (CSIRO-

Mk3.0, MIROC3.2, ECHAM5 and CCCMA3.1). 

Salon et al. (2008) focused on monthly averages and seasonal spatial distribution of 

precipitation in the drainage basin of the Venice lagoon. Their RCM (the ICTP 

RCM; Giorgi et al. (1993a,b), Pal et al. (2007)) data showed a good agreement 

between climate observations, monthly area averages, and seasonal spatial 

distribution of precipitation. Further, they found that frequencies of annual mean 

distribution of rainfall events with 1-5 days duration were satisfactorily reproduced 

by the model. Similar to Argüeso et al. (2012), Salon et al. (2008) have also 

evaluated the rainfall statistics only at the monthly, seasonal and annual time 

resolutions and none of them used the daily rainfall statistics in their evaluations. 

Evans et al. (2004) and Evans (2009) also evaluated RCM performance in the 

Middle East using monthly, annual and seasonal totals of temperature and 

precipitation. As in Evans et al. (2005), the model performance was evaluated 

against observations using several statistics, including the bias, RMSE and the 
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modified coefficient of efficiency. The RegCM2 RCM which was used in Evans et 

al. (2004) was able to capture the spatial variability of temperature and precipitation 

better than European Centre for Medium-Range Weather Forecasts–Tropical Ocean 

and Global Atmosphere (ECMWF-TOGA) project analyses despite model biases 

being present. Further, the RCM, based on MM5, used in Evans (2009) showed that 

the model was able to simulate the precipitation well for most of the domain, while 

displaying a negative bias in temperature throughout the year. As in Argüeso et al. 

(2012) and Salon et al. (2008), the longest time resolution used in both Evans’ 

studies (Evans et al., 2004; Evans, 2009) was annual while monthly was the shortest. 

However, when testing the usefulness of RCM simulations for the reservoir water 

availability analysis, there is a need to assess the ability of RCMs to capture the 

observed rainfall statistics at time resolutions such as daily or weekly. Runoff 

generation responds to daily rainfall and reservoirs of different capacities respond to 

rainfall differently. Small reservoirs respond to daily variations in rainfall while 

large reservoirs respond to rainfall variations over weeks or months. Therefore, the 

lack of knowledge on how RCMs perform at time resolutions such as daily and 

fortnightly has been addressed in this thesis by evaluating the statistics at four 

different time resolutions as daily, fortnightly, monthly and annual. 

2.6.2 Evaluation of RCM simulations over Australia 

To date, few studies involving high spatial‐resolution (finer than 30 km) regional 

climate simulations over Australia have been published. Song et al. (2008) evaluated 

a 30 year simulation (1961-1990) from the RegCM3 high-resolution climate model 

at 20 km resolution against the Australian Bureau of Meteorology (BoM) observed 

rainfall and temperature gridded (0.25° by 0.25°) monthly and daily datasets (these 

datasets are described in Lavery et al. (1997)). By evaluating the mean bias between 

RegCM3 and BOM observed rainfall for January and July months, they found that 

the extent of summer monsoon rainfall, the winter rainfall maximum in the 

southwest of Western Australia, and the topographically driven high rainfall belt 

along the Great Dividing Range were well simulated by the RegCM3 model. Over 

southwest Western Australia and the Murray-Darling Basin, the model was able to 

reproduce the observed probability distribution functions of daily rainfall, maximum 
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and minimum temperatures, but the model underestimated probabilities for the light 

rain events compared with observed.  

As explained in Song et al. (2008), the ability of 20 km resolution RegCM3 RCM to 

resolve the topographically driven high rainfall belt along the Great Dividing Range 

is important to this thesis, because this suggests that finer resolution RCMs (finer 

than 20 km) may resolve more regional details if they are used to simulate the 

climate along the Great Dividing Range.  

Additionally, the results in this thesis also show a direct link between the rainfall 

statistics and topography. Therefore, the relationship between observed rainfall and 

topography is comprehensively investigated in Chapter 8 in this thesis. Further, 

while assessing how observed rainfall statistics are related to the topography, the 

ability of 10 km resolution NARCliM RCMs to replicate this relationship is also 

investigated.  

In a pre-NARCliM assessment, Evans and McCabe (2010) evaluated the WRF RCM 

data (10 km grid resolution) driven by the lateral boundary conditions of 

NCEP/NCAR reanalysis (~250 km) against AWAP gridded precipitation and 

temperature at daily, monthly, inter-annual and multi-annual resolutions for the 

period from 1985 to 2008, focusing on the Murray-Darling Basin. They evaluated 

the ability of WRF model simulations to reproduce the PDF of the AWAP rainfall 

using a similar skill score method used by Perkins et al. (2007) (see Section 2.4). 

Additionally, using similar statistics used in previous studies such as bias, RMSE, 

pattern, and anomaly correlations (spatial correlation) of WRF rainfall were 

compared over the 250 km original NCEP/NCAR reanalysis gridded dataset and 

finally both 10 km and 250 km RCM datasets were evaluated against AWAP. They 

also focused on the representation of El Niño-Southern Oscillation (ENSO) and its 

impact on drought in the Murray-Darling Basin, with the results showing that the 

WRF simulations were able to capture the drought experienced over the Murray-

Darling Basin from ~1997-2010 (for references on this drought see: Verdon-Kidd 

and Kiem, 2010; Kiem and Verdon-Kidd, 2011 and Gallant et al., 2012). Examining 

ENSO cycles showed that WRF was able to capture the correct spatial distribution of 

precipitation anomalies associated with El Niño/La Niña events during their 24 year 

(1985-2008) testing period. The ability of WRF simulations (driven by 
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NCEP/NCAR reanalysis) to represent the spatial distribution of the rainfall is 

consistent with the results in this thesis, even though there are some discrepancies 

between the observed rainfall and model outputs. 

Similar to Evans and McCabe (2010), many authors later evaluated the performance 

of WRF RCM over south-eastern Australia as pre- and post-NARCliM assessments, 

with the increasing availability of these high-resolution datasets when the NARCliM 

project progresses. As explained in the introduction, NARCliM is a project which 

provides 10 km resolution climate projections for eastern Australia by dynamically 

downscaling four GCM and one reanalysis datasets using WRF RCM. Since 

NARCliM are the same datasets used in this thesis, hence, there is a need to 

understand the technical background as well as the performance of these datasets in 

capturing the climate variability in Eastern Australia. Therefore, the next two 

subsections focus on the background to the NARCliM design and the past 

assessments of these high-resolution projections over south-eastern Australia.  

2.6.3 NARCliM - High-resolution RCM data for southeast Australia  

There are two recent climate projections available for NSW, Australia: NARCliM 

(NSW/ACT Regional Climate Modelling) and national climate projections 

developed by CSIRO and the Bureau of Meteorology (CSIRO and BoM, 2015). 

However, there are differences between NARCliM and the national climate 

modelling projections. The national climate projections use GCMs from CMIP5 and 

provide projections at a coarse resolution of 1.5° latitude/longitude grid (~150 km) 

for the entirety of Australia (Irving et al., 2012; Bhend and Wetton, 2014) while 

NARCliM projections use data from the earlier CMIP3 project and provide 

projections at a finer resolution of 10 km, but only for south-eastern Australia. The 

national climate projections provide data as time series as well as averages for five 

different periods: 1986-2005, 2020-2039, 2040-2059, 2060-2079 and 2080-2099. 

The high-resolution climate projections by NARCliM are also available as current 

(1990-2009) and future datasets (2020-2039 and 2060-2079).  

Of the above two recent climate projections for Australia, NARCliM projections are 

used throughout this thesis and therefore, the NARCliM project including RCM 
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selection and GCM selection in Evans et al. (2014) are critically reviewed in this 

section.  

The purpose of NARCliM was to deliver climate change projections for NSW and 

the Australian Capital Territory (ACT) governments to design their long term 

climate change adaptation plans (see Evans et al., 2014 and Adapt NSW website: 

http://climatechange.environment.nsw.gov.au/Climate-projections-for-NSW/About-

NARCliM). The project was limited to 12 GCM and RCM ensemble which had been 

produced by downscaling four GCMS with three different RCMs. Each RCM 

simulation was produced at 10 km resolution in an inner domain, which was selected 

within a 50 km resolution domain that covers the CORDEX-AustralAsia region 

(Figure 2.3). As stated by Evans et al. (2014), “the selection of this 50 km large 

domain ensures that a future stage of the project using CMIP5 results can take 

advantage of simulations performed for the CORDEX initiative (Evans et al., 2014; 

Giorgi et al., 2009) while the inner domain simulates the east-coast climate”. As 

explained in previous sections, this relatively narrow coastal strip, east of the Great 

Dividing Range, responds differently to the oceanic drivers compared to the west of 

the Divide (Kiem and Franks, 2001; Verdon et al., 2004; Murphy and Timbal, 2008; 

Risbey et al., 2009; Verdon-Kidd et al., 2010, 2016; Callaghan and Power, 2014; Di 

Luca et al., 2016; Browning and Goodwin, 2016; Kiem et al., 2016). In particular, 

this region is strongly influenced by east-coast lows (Hopkins and Holland, 1997; 

Speer et al., 2009) and is poorly modelled by the current generation of GCMs 

(Suppiah et al., 2007), therefore, a better representation of this unique climate was 

expected from the NARCliM projections. 
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Figure 2.3 Topographic map showing the outer and inner (in red) NARCliM model 
domain and state boundaries. New South Wales is just to the centre of the inner 

domain (from Evans et al., 2014).  

There are two main phases in the NARCliM project. In the first phase, three RCM 

configurations of the Weather Research and Forecasting (WRF) model were used to 

downscale the NCEP/NCAR reanalysis (Kalnay et al., 1996) for the period of 1950 

to 2010. The reanalysis was chosen to allow a 60-year long historical simulation 

(referred as NARCliM reanalysis in this thesis) with the intention of estimating the 

RCM quality including the systematic biases.  

The WRF regional climate modelling system (Skamarock et al. 2008) was developed 

as a collaborative effort between the National Center for Atmospheric Research 

(NCAR), the National Centers for Environmental Prediction (NCEP) and the 

Forecast Systems Laboratory, the Air Force Weather Agency, the Naval Research 

Laboratory, Oklahoma University, and the Federal Aviation Administration in the 

United States. In particular in the NARCliM design, the version 3.3 of the WRF was 

used, with spatial configuration of the model consisting of two one-way nested 

domains; 50 km and 10 km (Evans and Westra, 2012). The sea surface temperature 

field was derived from the reanalysis and does not contain any diurnal cycle. The 

precipitation simulations uses 6 hourly boundary conditions from the NCEP/NCAR 

~250 km reanalysis (Evans and McCabe, 2010).  

As stated by Evans et al. (2014), the three best WRF RCM configurations were 

chosen to downscale GCMs from an ensemble of 36 RCMs by following four steps 
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Note that the description that follows was taken from Evans et al. (2014). See Evans 

et al. (2014) for more details. 

1. The ensemble of 36 RCM configurations were first used to simulate eight 

different storms observed along the south east region of Australia (Speer et 

al., 2009; Shand et al., 2010),  

2. Then, 30 RCM configurations were chosen by evaluating the ability of each 

RCM to reproduce the pre- and post-event climate of those storm events, 

and the climate of storm itself against a range of observations, 

3. The chosen RCMs were then ranked based on the method of Bishop and 

Abramowitz (2013), which defines the model independence based on an 

averaged covariance matrix of model errors constructed for each variable. 

For example, if the variable is rainfall, the model independence is evaluated 

as follows; daily time series of RCM rainfall for each storm event is bias 

corrected using AWAP observations to produce an anomaly time series. 

Then, these anomaly series of each event are joined together to construct a 

single time series used to create the model error covariance matrix. The 

coefficients, calculated for linear combinations of time series of RCMs that 

minimize the mean square error are assigned to a covariance matrix 

constructed for each RCM. The size of these coefficients in the covariance 

matrix for a given RCM determines the combination of the model 

performance and the independence. i.e. RCMs with largest coefficients are 

the best performing and most independent models, and  

4. Three top ranked most independent RCMs called R1, R2 and R3 that have 

been shown to perform well over the region were finally chosen for the 

design of the NARCliM.  

The physics schemes used for R1, R2 and R3 configurations are: WRF Single 

Moment 5-class microphysics scheme; the Rapid Radiative Transfer Model (RRTM) 

longwave radiation scheme; the Dudhia shortwave radiation scheme; Monin-

Obukhov surface layer similarity; Noah land-surface scheme; the Yonsei University 

boundary layer scheme and the Kain-Fritsch cumulus physics scheme (Table 2.3).  
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Table 2.3 The model configuration for the three most independent RCMs (Evans et 
al., 2014)   

NARCliM 

ensemble 

member 

Planetary boundary 

layer physics/ surface layer 

physics 

Cumulus 

physics 

Micro physics Short-wave/long-

wave radiation 

physics 

R1 MYJ/Eta similarity  KF WDM5 class  Dudhia/RRTM 

R2 MYJ/Eta similarity BMJ WDM5 class Dudhia/RRTM 

R3 YSU/MM5 similarity KF WDM5 class CAM/CAM 

 

In the second phase of the NARCliM project, the chosen three RCMs (Table 2.3) 

were used to downscale four GCMs for three 20-year epochs (1990–2010, 2020–

2040, 2060– 2080). The four GCMs from CMIP3 data archive (Meehl et al., 2007) 

are MIROC-medres 3.2, ECHAM5, CCCMA 3.1 and CSIRO mk3.0 (IPCC, 2007). 

These four GCMs were identified as performing well for southeast Australia, and 

were used to set the initial and boundary conditions for the WRF simulations (Evans 

et al., 2013). 

The selection process for these four GCMs is summarized from Evans et al. (2014) 

as follows.  

1. Evans et al. (2014) first built a meta-analysis of GCM evaluation studies (a 

total of 11) on CMIP3 over Australia, most of which were discussed in Smith 

and Chandler (2010) and summarized earlier in Section 2.4 in this thesis.  

2. Then combining the results in all of these studies, a fractional demerit score 

was calculated to indicate the models overall performance. The lower the 

fractional demerit the better the performance. With this argument, six GCMs 

score 0.5 or higher and were removed from further analysis (See Table 2.4). 

3. As was done for assessment of the RCMs, the remaining GCMs were then 

ranked based on their level of model independence using the measure of 

Bishop and Abramowitz (2013) (see details on the RCM selection).  
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Table 2.4 Summary of CMIP GCM assessments (from Evens et al., 2014) 

 

 

Assessment region                                                         Australia                                      MDB           SE  

 

 
Model 

Fraction
al 
demerit 

  
A 

 
B 

 
C 

 
D 

 
E 

 
F 

 
G 

  
H 

 
I 

  
J 

 
K 

UKMO-HadCM3 0  0 Yes 6 608         179 
CSIRO-Mk3.5 0       5 1      207 
GFDL-CM2.1 0.111  0 Yes 2 672 Yes    No Yes  0.72 184 
GFDL-CM2.0 0.125  0 Yes 2 671 Yes    No Yes   252 
MIROC3.2 (hires) 0.125  0 Yes 7 608  12 9  Yes    201 
CSIRO-Mk3.0 0.182  1 No 7 601 Yes 1 2  Yes No  0.73 214 
UKMO-HadGEM1 0.2  0 No 2 674         163 
ECHAM5/MPI 0.222  0 Yes 1 700 Yes    No No  0.79 173 
MIUB-ECHO-G 0.222  0 No 4 632 Yes    Yes No  0.78 174 
INM-CM3.0 0.222  1 No 7 627  9 11   Yes  0.75 192 
NCAR CCSM3 0.273  0 No 2 677 No 4 6  No   0.68 245 
CNRM-CM3 0.286  0 No 4 542      No  0.73 196 
FGOALS-G1.0 0.3  2 No 2 639 No 8 4  Yes   0.66 251 
MIROC3.2 (medres) 0.364  2 Yes 7 608 Yes 11 3  Yes No  0.6 255 
CCCM3.1 (T63) 0.375  1  10 478  2 7  No   0.72 241 
MRI-CGCM2.3.3 0.455  1 No 3 601 No 10 12  Yes Yes  0.41 437 
CCCM3.1 (T47) 0.455  1 No 8 518 No 3 10  Yes No  0.77 186 
GISS-ER 0.5  0 No 8 515 Yes 6 5  No No   238 
BCCR-BCM2.0 0.5  5  5 590 Yes    No    485 
GISS-AOM 0.667  1 No 8 564 No 7 13  Yes   0.6 326 
IPSL-CM4 0.8  2 No 14 505 No 13 8  Yes   0.48 394 
NCAR PCM 0.833  3 No 11 506        0.64 309 
GISS-EH 1  5 No 14 304  14 14      487 

 

A – number of rainfall criteria failed (Smith and Chandler, 2010), B – satisfied ENSO criteria (Min et 

al., 2005; van Oldenborgh et al., 2005), C – demerit points based on criteria for rainfall, temperature 

and MSLP (Suppiah et al., 2007), D – M-statistic representing goodness of fit at simulating rainfall, 

temperature and MSLP over Australia (Watterson, 2008), E – satisfied criteria for daily rainfall over 

Australia (Perkins et al., 2007), F – order of model based on the total skill scores for each rainfall 

metric (Kirono et al., 2010), G – order of model based on the total skill scores for each of rainfall and 

PET metric (Kirono et al., 2010), H – satisfied criteria for daily rainfall over Murray-Darling Basin 

(MDB) region (Maxino et al., 2008), I – satisfied criteria for MSLP over MDB region (Charles et al., 

2013), J – combination of RMSE of mean annual rainfall across south-east Australia and mean NSE 

(rainfall greater than 1 mm) comparing GCM-simulated and observed daily rainfall distribution with 

equal weights (Vaze et al., 2011), K – RMSE of mean annual rainfall over Southeast Australia (Chiew 

et al., 2009). 
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4. The final step required placement of the GCMs within a future climate 

change space which was defined by Evans et al. (2014) using two most 

important climate variables; change in mean temperature in Kelvin, and the 

percent change in mean precipitation. Figure 2.4 shows the location of the 

GCMs within this future climate space. The GCMs are represented by their 

corresponding rank defined in step 3 above. 

 

 

Figure 2.4 Future climate change space for the CMIP3 GCMs numbered by their 
independence rank. The change is between the mean of 1990–2009 and the mean of 

2060–2079 (from Evans et al., 2014). Four groupings of future change in 
precipitation and temperature are shown in light green circles.  

Representing four groupings of future possible changes in temperature and 

precipitation, four GCMs with the highest independent model ranking were then 

chosen by Evans et al.: models 3, 9, 2 and 1. However, since some of these GCMs 

were not able to supply all the required data for various reasons, alternate GCMs 

were used. Therefore, the final GCM choice used (and their independence model 

ranking) is MIROC3.2-medres (rank 1), ECHAM5 (rank 5), CCCM3.1 (rank 9), and 

CSIRO-Mk3.0 (rank 12).  
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All of the NARCliM downscaled reanalysis and GCM rainfall projections are 

available as two types: uncorrected and bias corrected. As explained in Evans and 

Argüeso (2014), the bias correction was based on the 5 km AWAP rainfall data 

which was aggregated to align with the 10 km WRF grid using inverse distance 

weighting. The technique used in the bias-correction process is based on Piani et al. 

(2010a), who explained a method of fitting cumulative distribution function (CDF) 

of simulated data and observed data to gamma distributions, so that the fitted 

distributions are matched with each other. The bias correction has been applied at 

each WRF grid point separately. The bias correction process is described in Evans 

and Argüeso (2014) as follows. 

1. Rain days from both AWAP and simulated (NARCliM) rainfall time series 

are extracted from a NARCliM grid point by using a threshold of 0.2 mm. 

However, the threshold value used for the simulated data is slightly larger 

than 0.2 mm because in general, RCM simulations tend to produce more light 

rainfall events at coarse resolutions; 

2. Using the extracted datasets, two empirical CDFs are calculated for both 

datasets separately. The empirical CDFs are then fitted to two gamma 

distributions (Fm and Fo) (Figure 2.5). For a rainfall event i, the simulated 

rainfall intensity is (Mi) and the corresponding cumulative probability of Fm 

is (𝐶𝑃𝑚
𝑖 ). 

3.  This (𝐶𝑃𝑚
𝑖 ) is used to find the corresponding observed rainfall intensity of 

AWAP (Oi); and 

4. In the last step, Mi is replaced with Oi. Then this correction process is 

repeated for all grid points in the NARCliM domain.  

The statistical testings performed in this thesis use both uncorrected and bias 

corrected NARCliM simulations and therefore, the improvements and deficiencies of 

the bias correction process is also discussed in the following chapters. 
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Figure 2.5 Schematic of the bias correction proposed by Piani et al. (2010) (taken 
from Evans and Argüeso., 2014). Mi is the intensity of the simulated rainfall and Oi 
is the intensity of the observed event with the same cumulative probability(𝐶𝑃𝑚

𝑖 ) as 
defined by Fm and Fo which are the CDFs for simulated and observed rainfall. 

The technical background on NARCliM RCM simulations was presented in this 

section. The next section focuses on the past studies which have evaluated 

NARCliM simulations. The main focus is on how these RCMs perform at capturing 

the observed rainfall statistics in the south east Australia. In particular, the following 

review identifies research gaps in past studies, while focusing on the assessments 

required for a better understanding on the use of these RCM datasets in future water 

resources planning applications.   

2.6.4 Evaluation of NARCliM RCM simulations 

Since NARCliM high-resolution datasets are fairly new to the research community, 

most of the applications and evaluations of NARCliM are in progress. Therefore, the 

published research work on NARCliM projections is relatively limited. However, the 

most recent publications on NARCliM evaluations are reviewed in this section. It is 

worth noting that some of the past studies presented in this section are pre-

NARCliM assessments which have laid the ground work for the design of NARCliM 

high-resolution datasets. 
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As a pre-NARCliM assessment, Evans and McCabe (2010) evaluated the NARCliM  

RCM data (10 km grid resolution) driven by the lateral boundary conditions of 

NCEP/NCAR reanalysis (~250 km) against AWAP gridded precipitation over 

Murray-Darling Basin, Australia and their study was previously presented in Section 

2.6.2 under the evaluations of WRF RCM. However, since these datasets are used in 

this thesis (referred as NARCliM reanalysis) reviewing some of the highlights of 

their studies is important. In particular, the results of Evans and McCabe (2010) 

showed that NARCliM reanalysis driven RCMs successfully reproduce daily 

statistics (bias, RMSE, pattern and anomaly correlations (spatial correlation) and 

PDF) of AWAP observations. 10 km RCMs had improved results for almost all 

monthly and interannual spatial distribution of statistics relative to those of the 

uncorrected NARCliM Reanalysis, which supplied the lateral boundary conditions. 

NARCliM reanalysis simulations were able to capture the drought experienced over 

the Murray Darling basin in recent years, except for an overestimation of the 

negative anomaly in the northernmost part of the domain. Examining ENSO cycles 

showed that NARCliM reanalysis are able to capture the correct spatial distribution 

of precipitation anomalies associated with El Niño/La Niña events during this 24 

year period (1985-2008). 

In another NARCliM evaluation study, Evans and Westra (2012) investigated the 

ability of reanalysis driven NARCliM RCMs to simulate the diurnal cycle of 

precipitation over southeast Australia. Their objective was to understand various 

mechanisms that drive the diurnal variability in the precipitation. The diurnal cycle 

of a subset of the Australian subdaily rainfall records of 195 gauges located inside 

the NARCliM domain was compared against the diurnal cycle of NARCliM 

reanalysis outputs for the period of 1985-2008 using the data from the 10 km ×10 

km grid box in which the gauge resides. The 3 hr resolution seasonally averaged 

number of rainfall occurrence, intensity and the total amounts of rainfall for each 

season were evaluated in their study. They found that the NARCliM reanalysis tends 

to simulate too many occurrences and too little intensity for precipitation events at 

the 3-hourly time resolution, when compared with the gauge rainfall. However, their 

results showed that the overall precipitation amounts and the diurnal variability in 

occurrences and intensities of the observed rainfall are well reproduced by 

NARCliM reanalysis, particularly in spring and summer seasons. For precipitation 
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intensities, the NARCliM reanalysis had a tendency to overestimate the range of the 

diurnal cycle during the warmer months, while capturing the rainfall intensities 

reasonably well during the winter. In winter, the timing of the maxima and minima 

matched the observed timings well. The spatial pattern of diurnal variability in the 

NARCliM reanalysis outputs was similar to that of 195 rain gauges used in their 

study. Compared with other recent evaluation studies of NARCliM, this is the only 

study which evaluated the ability of NARCliM reanalysis to reproduce the subdaily 

statistics (occurrence, intensity and diurnal cycle) of the observed rainfall.    

As an initial NARCliM assessment, Evans et al. (2013) evaluated the bias in 

minimum and maximum temperature and precipitation of the reanalysis NARCliM 

simulations (50 km grid resolution) across Australia by comparing them against the 

gridded observations of temperature and precipitation of the Bureau of 

Meteorology's Australian Water Availability Project (AWAP). The results of Evans 

et al. (2013) showed that WRF-R2 configuration reanalysis (referred as R2 

reanalysis in this thesis) produced the best precipitation simulations with only small 

overestimates of seasonal precipitation along the Great Dividing Range. R1 and R3 

were found to overestimate precipitation over eastern Australia and R1 

underestimated precipitation over the southwest of Western Australia. Though Evans 

et al. (2013) evaluated the bias in the rainfall of NARCliM reanalysis compared with 

AWAP on a seasonal basis, the results for the mean rainfall in this thesis also agree 

with Evans et al. (2013), showing that R2 reanalysis closely reproduce the spatial 

distribution of the mean rainfall for all time resolutions studied (daily, fortnightly, 

monthly and annual), while R1 and R3 reanalyses overestimate the statistics along 

the east coast of Australia (see Chapter 5 and 6).  

Evans and McCabe (2013) evaluated the influence of model resolution on the 

performance of WRF RCMs which were downscaled from the CSIRO Mk3.5 GCM 

(~250 km) to 50 km and 10 km resolutions (1985-2009) in three regions of eastern 

Australia: Murray Basin, Darling Basin and Eastern Seaboard. This study is 

important to this thesis because the same 10 km resolution dataset is used in this 

thesis, and referred as CSIRO-Mk3.0 RCM. Using the statistical measures such as 

mean, bias, RMSE and pattern correlation of the precipitation, they found that 

increasing spatial resolution of model outputs tended to improve the simulation of 
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present day climate, with larger improvements in areas affected by mountains and 

coastlines. In particular on the eastern seaboard, the improvement in the bias in 

rainfall with increasing resolution was seen for most of the year, except for the 

period from December to March, when 10 km RCM dataset produce higher rainfall 

overestimates. The tendency of the CSIRO-Mk3.0 10 km resolution RCM 

(uncorrected) to produce high rainfall overestimates on the eastern seaboard is 

consistent with the results in this thesis, keeping in mind that the mean rainfall in this 

thesis was calculated on the annual basis, but not the seasonal basis. However, most 

of these systematic biases in the mean rainfall are removed after the bias correction 

(see Chapter 9).  

The results in Evans and McCabe (2013) further indicated that much of the 

improvement in the RCM performance can be seen in WRF 50 km dataset compared 

with the performance of 250 km CSIRO-MK3.0 GCM, and there is only a small 

additional improvement in WRF 10 km dataset. However, in a region like eastern 

seaboard where there is significant topography and coastlines, there is a need to 

assess this added value in the improvement of high-resolution RCMs not only 

considering the distribution statistics such as bias, RMSE and pattern correlation, but 

also the times series statistics such as temporal and spatial correlations.  

Evans and McCabe (2013) also investigated the differences in future climate due to 

the resolution change in RCMs. They found that largest differences in future 

projected change in the rainfall are in Murray basin and eastern seaboard where the 

topography is more complex than the Darling basin. In terms of the magnitudes, 

high-resolution CSIRO-Mk3.0 RCMs, particularly the 10 km resolution RCM 

produced changes that are more than double those projected by the raw GCM. 

However in Evans and McCabe (2013), much of these differences are attributed to 

the influence of higher topography, which has been better resolved in the 10 km 

resolution RCM dataset than the original GCM. The ability of 10 km resolution 

RCMs to better resolve the topography than coarse resolution GCMs is important, 

yet it is worth to keep in mind that an averaging of the topography within each 10 

km grid box is still expected. Due to this averaging effect, the results in this thesis 

show that NARCliM RCMs have elevations lower than the actual elevations in the 

ground (see Section 5.1.2).  
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As in Evans and McCabe (2013), the NARCliM future projections have also been 

investigated in several other studies.   

Ji et al. (2013) investigated the projected changes in the future rainfall of the Sydney 

metropolitan region through daily and monthly model outputs of 2 km grid 

resolution dynamical downscaling from CSIRO-Mk3.0 GCM. This 2 km resolution 

dataset has been produced by the boundary conditions of the 10 km outer domain of 

CSIRO-Mk3.0 RCM, which was used in Evans and McCabe (2013). However, note 

that the dataset used in Ji et al. (2013) is bias corrected. By comparing bias corrected 

projections of rainfall (2040- 2059) with the NCEP/NCAR reanalysis-driven 

simulation for the period 1990-2009, they found that Blue Mountains, Sydney, 

Central coast and Illawarra are likely to experience significant increases in the 

annual rainfall, while Hunter and Southern Highlands experiencing a decrease in the 

annual rainfall. Note that this 2 km resolution data set only covers a small part of the 

southern boundary of the Hunter Valley, so could not be used to assess rainfall over 

the Hunter Water catchments for the Hunter Site used in this thesis, which is on the 

northern side of the Hunter Valley. 

Since there is an overlap between the case study region in Ji et al. (2013) and study 

sites (Williams River and Sydney) used in this thesis, their results are comparable 

with the future mean precipitation changes presented in this thesis (Chapter 12). 

Note that both studies (this thesis and Ji et al., 2013) used RCMs downscaled from 

the same GCM, but their resolutions are different from each other. Ji et al. (2013) 

used a 2 km resolution RCM, while the RCM resolution used in this thesis is 10 km. 

The results in Section 13.2 show that there is a consistency in the expected decrease 

in the mean annual rainfall simulated by CSIRO-Mk3.0 RCMs in Hunter and 

Southern Highlands. There is a significant increase in the rainfall predicted by 2 km 

RCM in Ji et al. (2013) for the Blue Mountains, Sydney, Central coast and Illawarra 

regions while the results in this thesis only show a slight increase (about 5%) in 

rainfall for those regions. As explained in Evans and McCabe (2013), the difference 

in the increases in rainfall appears to be related with the difference between the 

model resolutions of the same RCM.   

Evans et al. (2014a) studied the projected future change in the climate using 

variables such as precipitation, temperature and wind changes from the present-day 
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period (1990-2009) to the future period (2060-2079) using the 10 km resolution 12 

GCM and RCM ensemble (see Section 2.6.3), and found temperature increases of 

more than 2ºC in summer but less than this in winter; mean precipitation increases 

particularly on the northern coast in summer and autumn, and decreases on the 

southern NSW coast in spring; small decreases in mean wind speed; and increases in 

maximum wind speeds in summer but decreases in other seasons. Most of these 

changes in climate variables are presented as the mean change of all 12 ensembles in 

their study. However, the variability in precipitation within the ensemble was also 

studied on a seasonal basis and Evans et al. (2014a) found that MIROC3.2 and 

CCCMA3.1 tend to project increases, while ECHAM5 and CSIRO-Mk3.0 projecting 

decreases in the mean precipitation, particularly along the east coast during the 

spring. Though Evans et al. evaluated these changes on a seasonal basis, the general 

trends in the change in the precipitation for the 12 members of the ensemble is 

consistent with the results in this thesis (see Section 13.2).    

Grose et al. (2015) and Dowdy et al. (2015) compared the projected change in mean 

rainfall for eastern Australia from the CMIP3 and CMIP5 GCM archives and from 

three quite disparate downscaling techniques used in the NARCliM and The Climate 

Projections for Australia’s Natural Resource Management Regions (NRM) projects: 

the NRM project (CSIRO and BoM, 2015) provided projection information and 

datasets for all of Australia based on CMIP5 and two downscaling methods using 

CMIP5 as input. The results in these two studies showed that downscaled projections 

produce different projections than CMIP3 and CMIP5 for the east coast of Australia. 

In particular, Grose et al. found that NARCliM projections tend to produce wetter 

projections than their host models (4 GCMs) in most seasons. They further attributed 

these changes to the interaction between different model components and 

configurations which are combined with the finer spatial resolution used through the 

process of downscaling.  

The review on NARCliM evaluations in this section shows that NARCliM 

simulations have mostly been evaluated as pre-NARCliM assessments. Further, the 

ability of NARCliM RCMs to reproduce the current observed rainfall statistics have 

only been tested in few studies, while many authors focused on the future climate 

simulations. Therefore, this highlights a need of evaluating these simulations in more 
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sophisticated ways to understand the employability of these datasets for water 

availability studies. In particular this thesis focuses on evaluating the high-resolution 

NARCliM rainfall projections focusing on the statistics which are important for 

water security assessments. Therefore, the next section summarizes the validation 

need for NARCliM simulations before they are used in water security assessments.  

2.6.5 Validation needs for NARCliM  

The ability of NARCliM to generate the correct observed rainfall statistics is 

necessary when using these datasets in hydrologic applications such as water 

security assessments, particularly for generating the runoff in the reservoir water 

availability analysis. The following key points highlight the validation need for 

NARCliM before these rainfall projections are used in hydrology models to generate 

runoff. 

1. All the published research are pre-NARCliM assessments and none of those 

studies compared all 12 RCM-GCM simulations together to identify their 

individual characteristics and how they capture the current observed rainfall 

statistics. In particular, many studies have only evaluated the NARCliM 

reanalysis projections (driven by NCEP/NCAR reanalysis) hence, there is a 

need to evaluate NARCliM GCM projections for the most recent climate 

(1990-2009).  

2. There are only a few studies which tested the ability of NARCliM to 

reproduce the current rainfall statistics as many authors focused on the 

NARCliM future rainfall projections. In these few studies, all evaluation 

approaches are based on the atmospheric perspective which only considers 

the distribution statistics such as bias, RMSE, pattern correlation and skill 

assessments based on the PDFs. None of the studies focused on the time 

series statistics such as temporal and spatial correlations of the rainfall which 

are necessary to be reproduced correctly by the RCM projections before these 

projections are used for the runoff generation. Therefore, while evaluating 

the ability of NARCliM projections to reproduce the observed rainfall 

distribution statistics such as mean, standard deviation, coefficient of 

variation (standard deviation/mean) and daily PDFs, there is a need to study 
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more sophisticated statistics such as temporal correlations (autocorrelations), 

spatial correlations and cross correlation of the rainfall which are important 

for the water security assessments. More details on the statistics used in this 

thesis are presented in Chapter 4 

3. Because the reservoirs of different capacities respond to rainfall differently, 

there is a need to assess the NARCliM projections, focusing on dam storages 

and how dams are sensitive to reservoir filling water volumes at different 

temporal resolutions. Therefore, rainfall statistics should be tested not only 

based on the daily time resolution, but also on the resolutions aggregated up 

to longer periods such as weeks, fortnights, months and annual.  

4. Instead of studying the RCMs over a large area, there is a need to assess the 

rainfall statistics of NARCliM projections at various study sites by 

considering different sizes, aspects of elevations and exposure to the coastal 

weather systems. Assessments of RCM projections at various catchments are 

important, particularly for a region like ES, because as explained in Section 

2.3 the eastern seaboard does not respond to the climate drivers such as ECLs 

as one region, instead the ECL impact location on the eastern seaboard varies 

depending on the type of ECL that occurs at a time.  

5. There are only a few published research works on the NARCliM bias 

corrected projections. Therefore, this highlights a need to assess both bias 

corrected and uncorrected projections to understand how they perform in 

capturing the current observed rainfall statistics. The assessment of 

uncorrected data allows the user to identify the intrinsic characteristics of the 

RCM simulations. However, it is expected that bias correction will change 

the PDF of the rainfall, correcting the distribution statistics such as mean and 

standard deviation, but it is less likely to modify the temporal and spatial 

relationships present in the observed rainfall. Therefore, there is a need to 

understand the extent of change caused by the bias correction relative to the 

uncorrected simulations. To do this more meaningfully, the NARCliM bias 

corrected and uncorrected rainfall projections should be evaluated based on 

different hydrologic aspects such as different time resolutions (see key point 



 

Chapter 2 - Background  

 

42 
 

3 on the dam related hydrology), topographic conditions and catchment sizes 

(see key point 4 on the catchment averaging of the rainfall).  

By reviewing past studies on evaluation of various GCMs and RCMs in Sections 2.4 

to 2.6.4 and identifying the validation approaches need for the NARCliM RCM 

rainfall, this thesis intends to perform more sophisticated statistical testings on the 

NARCliM RCMs while filling the research gaps which have not been addressed in 

the literature. In particular, the focus the statistics which provide information on the 

employability of these datasets to generate runoff when they are used in rainfall 

runoff models. The next section presents a summary of this chapter and motivations 

of the thesis.  

2.7 Summary and motivations of this thesis 

Climate output from RCMs can be evaluated using a range of different approaches 

and number of statistical measures such as mean, maximum, minimum, bias, RMSE, 

PDF, skill and correlation coefficient of the rainfall. However, the selection of these 

methods to evaluate RCMs often depends on the end application. For example, some 

of the statistics such as bias, RMSE and model skills can provide information on the 

climate projections for the atmosphere, but not for the hydrology. When testing 

RCMs for hydrologic applications there is a need to perform more comprehensive 

statistical testings which evaluate the spatial and temporal relationships of the 

rainfall. In particular, this study aims to make advances towards an improved 

evaluation of RCMs focusing on the hydrology and reservoir modelling applications. 

This chapter has provided a review of the background, previous work and evaluation 

methodologies on GCM/RCM projections developed by the research community, 

and deficiencies of their approaches. By doing so it identified five research gaps 

which will be addressed by this thesis. The following are the motivations for the 

objectives of this thesis. A brief summary on the statistics used in this thesis is 

presented in Objective 1 and more details on each of these statistics are presented in 

Chapter 4. 
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 Objective 1: Test and validate the rainfall statistics of the downscaled RCM 

data which are important for reservoir modelling and water availability 

analysis. 
 

The NARCliM simulations allow users to do hydrology analysis at the 

catchment scale with sufficient resolution to capture the size of many water 

supply catchments. Most recent studies assessing NARCliM showed that the 

datasets are able to capture the spatial distribution of the rainfall (Evans and 

McCabe, 2010; Argüeso et al., 2012 on WRF RCMs), but what is less clear is 

how good these climate data will be at replicating observed rainfall statistics 

important for hydrology models or in capturing the persistence of runoff that 

is important in the performance of reservoirs systems. Therefore, it is 

important to assess if the statistical properties of the observed rainfall are 

correctly reproduced by these RCM datasets for the current day data. As was 

studied earlier by Evans and McCabe (2010), Evans and McCabe (2013) and 

Evans et al. (2013), evaluation of basic statistics such as mean, maximum, 

minimum, bias, RMSE, PDF and correlation coefficient of the rainfall is 

necessary for the water resource planning and availability analysis, but not 

sufficient to understand how accurately the time series properties (e.g time 

sequencing of rainfall events) of the observed rainfall have been replicated by 

the RCMs. Therefore, while evaluating the statistics such as mean and 

coefficient of variation (ratio between standard deviation and mean) of the 

rainfall, there is a need for more sophisticated assessments focusing on the 

statistics such as temporal and spatial correlations of the rainfall and their 

variability with elevation.  

As in Perkins et al. (2007) and Evans and McCabe (2010), the PDFs of RCM 

daily rainfall are also calculated in this study and validated against 

observations. However, the validation presented in this study is different to 

Perkins et al. (2007) and Evans and McCabe (2010), and does not contain 

any skill assessment (see Section 2.4 for the reasons of not using skill 

assessment). Instead, cumulative probability distribution (CDF) of the daily 

rainfall are constructed at selected single grid points, where Perkins 
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constructed the PDFs for each variable (rainfall, precipitation, etc.) for all 

modelled and observed data over large regions (10°×10°) of Australia. 

In comparison to Evans et al. (2013) who investigated the performance of 

precipitation on a 50 km grid generated for all of Australia (CORDEX-

AustralAsia region), the finer resolution 10 km NARCliM datasets generated 

only for southeast Australia are used throughout the study in this thesis. As in 

Evans et al. (2013), the reanalysis driven datasets generated using R1, R2 and 

R3 model configurations of WRF are used in Section 1 of this thesis, but the 

focus is on autocorrelations (Evans focused on bias) as reservoir performance 

can be sensitive to the persistence of runoff. The lag-1 correlation of the 

rainfall has been studied in McMahon et al. (2008), but they have only 

focused on lag-1 correlation, whereas this study focuses on lag correlations 

up to 60 lags (e.g. for a monthly assessment this analysis calculates the 

correlation between rainfall of the first month and 60th month). Analysing the 

long term correlation of the rainfall is important as it provides insights about 

the persistence of the rainfall patterns and seasonal variations throughout a 

long period of time.  

The spatial correlation of the daily rainfall between different grid points (i.e. 

correlation at a specific time between two different locations) is evaluated in 

this thesis at the catchment scale. The spatial correlation of the rainfall is 

important when estimating the rainfall in hydrological and water availability 

analysis. If the distribution of a rain gauge network is sparse or the available 

data at a specific location is not highly reliable, an existing spatial correlation 

of the rainfall can be useful to predict the rainfall.  The spatial correlation 

calculated in this study is different to the spatial correlation (rs) which was 

studied by Smith and Chandler (2010), where they calculated the spatial 

correlation between observed and simulated fields by pairing grid point 

values across the entire continent and calculating the corresponding 

Spearman rank correlation coefficient.  

The cross correlation between the RCM and observed rainfall is also 

evaluated at the daily resolution in this study. Similar to Evans et al. (2005), 

these correlations are calculated at single grid points with contrasting terrain. 

However, Evans et al. only assessed the root mean square error (RMSE) of 
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the modelled and observed data and they did not focus on spatial and 

temporal autocorrelations and cross-correlations between variables. Further, 

the cross correlation between the rainfall and elevation is also assessed in this 

thesis.  

The gridded NARCliM RCMs can be validated against both gridded and 

point scale observations. The literature presented so far shows that validation 

of RCMs against a gridded observed dataset is most common in practice and 

removes the scale discrepancy between the datasets. However compared with 

ground-based point scale measurements, there are uncertainties and 

limitations associated with the gridded observation due to different 

interpolation techniques used in producing those datasets. Therefore, using 

point scale measurement and gridded observation in the validation of RCMs 

has their own pros and cons. To deal with these differences, NARCliM RCM 

rainfall is evaluated against both rain gauge and gridded observations 

(AWAP) whenever possible in this thesis. In particular, when an assessment 

is performed at single grid points, both rain gauge (located within the grid 

point) and gridded data are used.  

 Objective 2: Identify the similarities and differences between the 

performance of NARCliM RCM data to capture the temporal and spatial 

statistics of observed rainfall for various sites, from north to south in the 

broader east coast of NSW, and with different orography, exposure to the 

coastal weather systems and ECL occurrence. 
 

The review in Section 2.6 showed that high-resolution RCMs are more able 

to capture regional climate trends than their host GCMs. As was explained in 

Chapter 1, the major motivation for ESCCI is that the relatively narrow (100 

km east to west) coastal strip is poorly resolved in current generation global 

climate models (grid resolution of ~250 km x 250 km) and it is bounded to 

the west by a steep escarpment so it has proven difficult to capture the 

climate change trends and impacts for the region. The purpose of NARCliM 

was to use RCMs to downscale GCM data to better capture the climate 

variability along the east coast of Australia. Therefore, detailed investigations 

on how these RCMs perform along the east coast are needed. Evans and 
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McCabe (2010) assessed the effect of model resolution on the performance of 

a subset of NARCliM RCMs (CSIRO-Mk3.0 RCMs) by taking the east coast 

of Australia as a separate region compared with other regions of Australia. Di 

Luca et al. (2016) evaluated NARCliM’s 15 member ensemble across the 10 

km inner domain of NARCliM, but their focus was on assessing the ability of 

RCMs to reproduce the climatology of ECLs. In contrast, this study evaluates 

NARCliM RCMs along the broader east coast and their use for water security 

assessment studies, by performing a range of statistical methods for four 

main sites. The selection of a range of sites along the east coast renders more 

regional insights on the rainfall properties along the east coast, and how these 

properties are replicated when they are subjected to different orography and 

exposure to coastal weather systems (see Section 2.3). As was explained by 

Kiem et al. (2016), ECL impacts are not consistent along the east coast, and 

the impact location tends to vary depending on the type of ECL that occurs. 

Following this argument, Objective 2 focuses on identifying any possible 

trends in rainfall properties from north to south of the broader east coast 

which may be caused by the ECLs or any other climate phenomenon, and 

therefore the rainfall statistics are investigated for four selected sites along 

the east coast. Additionally, since the findings from this study are to be used 

in future water resource planning, each of the sites was selected so that at 

least one main water supply systems are located within. More details on these 

water supply systems located in each site are presented in Section 3.2. 

Moreover, the insights from this study will be useful for water resources 

planning for the Hunter Water’s system located in Williams River site. 

Additionally, Sydney Catchment Authority is also carrying out similar 

studies specifically for the Sydney headworks system in an internal project 

and therefore, insights on the results will be exchanged as the studies 

conclude. However, it’s worth noting that this thesis does not evaluate the 

runoff generated using NARCliM RCMs and runoff statistics and 

implications of them on hydrology have been studied in a separate study (see 

Lockart et al., 2016). 
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 Objective 3: Compare the performance of RCM data with and without bias 

correction  
 

With the exception of Ji et al. (2013) (Section 2.7.3) past studies on 

NARCliM used the uncorrected NARCliM rainfall. This is because the bias 

corrected data was only generated recently and therefore, bias corrected data 

were not available during the first two phases of the NARCliM project. 

However, it is expected that bias correction will improve the PDF of the 

rainfall, correcting the distribution statistics such as mean and standard 

deviation, but it is less clear how it might change the temporal and spatial 

correlations present in the observed rainfall. Therefore, there is a need to 

understand the extent of improvement caused by the bias correction relative 

to the uncorrected simulations. Therefore, both uncorrected and bias 

corrected RCM projections are evaluated throughout this thesis.  
 

 Objective 4: Study the impact of orography on water security. Most of the 

water supply catchments along the east coast are subjected to orographic 

rainfall due to closeness of the eastern edge of the escarpment of the Great 

Divide to the coast. Therefore, the relationship between the rainfall and 

elevation is explored. 
 

The recent climate projections for Australia issued by CSIRO and Bureau of 

Meteorology indicate that the degree of confidence in projections of future 

rainfall in the Eastern Seaboard region is generally not as high as in many 

other regions of Australia (CSIRO and BoM, 2013). This is due to the 

significant influence of the fine spatial resolution in topography on rainfall in 

the east coast region and how it is handled in different models (Evans and 

McCabe 2013). This suggests that there is a need to explore this relationship 

between the rainfall and orography further, which was previously found to 

exist in this region by several authors (McMahon, 1964; Hutchinson, 

1998a,b; Anders et al., 2015; Chubb et al., 2016). Therefore, this study will 

explore the impact of orography on rainfall and assess the impacts of ECLs 

on this relationship. In general, most water supply catchments located along 

the broader east coast are subjected to orographic rainfall due to proximity of 
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the Great Divide to the coast and if wind directions change due to ECLs or 

other synoptic systems then water security may change even with no change 

in average rainfall away from the Great Divide. 

 

 Objective 5: Determine the future change in NARCliM rainfall properties 

compared with current rainfall statistics 

Future climate projections are the basis of knowledge used by governments 

to establish their climate change adaptation plans. The understanding of the 

RCM/GCM predicted variability in the climate is important and many 

authors have evaluated the change in precipitation and temperature using 

NARCliM future projections. Similar to previous studies discussed in Section 

2.6.4, the future change in the precipitation is evaluated for 2070 relative to 

2000 in this thesis. However, the focus is to identify the differences and 

similarities between the different NARCliM RCM projections which are 

certainly caused by the underlying GCMs and RCM configurations.  
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Sites and Data 

3.1 Introduction 

This chapter provides a brief description of the five study sites located on the east 

coast of Australia and datasets used in this thesis. The sites investigated are Merriwa, 

Williams River, Richmond River, Sydney and Bega River. 

3.2 Site description 

As explained by Kiem et al. (2016) (see Section 2.3), the rainfall pattern and the 

impacts to the east coast of Australia vary depending on the ECL type and time of 

the year. In fact, results in Kiem et al. (2016) have led to one major conclusion that 

the rainfall variability along the east coast of Australia is not uniform across the 

region and can vary from one location to another depending on the type of ECL that 

occurs. Therefore, there is a need to study this variability in the rainfall at the 

regional scale. Since the heavy rainfall associated with ECLs often generates 

reservoir filling water volumes, assessment of the rainfall variability at different 

study sites where major water supply systems are located can provide directly 

applicable insights for water security as well as dam safety in those systems. 

Therefore, instead of studying the eastern seaboard as a whole, the analyses in this 

thesis are performed at various study sites where main water supply systems are 

located.   

The five study sites used throughout the thesis are shown in Figure 3.1. Note that the 

Merriwa site is used as a preliminary site and is only used for the analyses in Chapter 

5.  The remaining four sites; Williams River, Richmond River, Sydney and Bega 

River are key for the ESCCI-ECL project objectives and, therefore, investigated in 

more detail throughout this thesis. The summary statistics of each of the five sites 

are shown in Table 3.1.   
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Table 3.1 Summary statistics of site locations 

Site Elevation-m 
(min, max) 

Mean annual rainfall-mm 
(min, max) 

Merriwa  40, 1600 500, 1100 
Williams River 0,1600 650, 2000 

Richmond River 0,1600 1000,1650 
Sydney 0, 2250 600,1700 

Bega River 0,2250 750,1050 
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Figure 3.1 Map of site locations 
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3.2.1 Merriwa site 

The Merriwa site has an area of 13,000 km2 and encompasses the Goulburn River 

catchment (Figure 3.2) in the Upper Hunter region of NSW, Australia. The climate 

of the Merriwa site is semi-arid to arid. The average annual rainfall is approximately 

650 mm, varying from 500 mm to 1,100 mm spatially depending on the elevation 

(Chen, 2013). This site has previously been used for a number of hydrology studies 

and has extensive field instrumentation for monitoring hydrology. 

 

Figure 3.2 Topography map of Merriwa site. The boundary of the site is equal to the 
boundary of the NARCliM data subset (10×13 pixels with 10 km resolution) 

outlined in blue. 

3.2.2 Williams River site 

The topography map of the Williams River site is shown in Figure 3.3. This site, 

which encompasses the Williams River catchment has an area of 40000 km2 and is 

located in the Lower Hunter region of the east coast of Australia. This area has a 

range of climate types; coastal, inland, rainshadow (west of the Barington Tops) and 

East Coast Lows. The annual rainfall in the Williams River site ranges from 

1,100 mm at Newcastle to only 650 mm at Merriwa and Scone in the upper reaches. 

Around the Barrington Tops on the northern side of the site, however, annual 
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precipitation can be as high as 2,000 mm, some of which is snow since July 

minimum temperatures are often below 0 °C. The Lower Hunter water supply 

headworks system, which harvests water from the Williams River catchment, is 

located inside the boundary of the site.   

 

 

Figure 3.3 Topography map of the Williams River site. The boundary of the site is 
equal to the boundary of NARCliM data subset (20×20 pixels of 10 km resolution) 

outlined in blue.  

3.2.3 Richmond River site 

The Richmond River site, which encompasses the Richmond River catchment shown 

in Figure 3.4 has an area of 40,000 km2 and is located on the far north NSW coast. 

Similar to the Williams River site, the climate types are coastal, inland, rainshadow 

and East Coast Lows. To the north of the site lies the Border Ranges National Park 

and other reserves associated with the World Heritage listed Tweed volcanic caldera 

and its associated Gondwana rainforests. Average annual rainfall in the Richmond 

River site ranges from 1,650 mm or more along the coast to less than 1,025mm at 

inland areas.  
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Figure 3.4 Topography map of the Richmond River site. The boundary of the site is 
equal to the boundary of NARCliM data subset (20×20 pixels of 10 km resolution) 

outlined in blue. 

3.2.4 Sydney site 

The Sydney site, which encompasses the Sydney urban water supply catchments, is 

shown in Figure 3.5 and has an area of 102,500 km2. The general climatology of the 

Sydney site is characterized by; coastal, inland, rainshadow and East Coast Low 

systems. The Blue Mountains range located in the north-west of the site has the 

highest elevation of 1,215 m. The site has an annual average rainfall of 

approximately 890 mm. The Sydney water supply system which provides drinking 

water for about four million residents is located in this site. The drinking water is 

primarily supplied by surface water sources in the Nepean Hawkesbury river system. 

Additionally, Sydney Water Supply System incorporates the Shoalhaven System, the 

Warragamba and Blue Mountains dams, Prospect Dam and Woronora Dam.  
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Figure 3.5 Topography map of the Sydney site. The boundary of the site is equal to 
the boundary of NARCliM data subset (41×25 pixels of 10 km resolution) outlined 

in blue. 

3.2.5 Bega River site 

The Bega River site (Figure 3.6) is located on the far south coast of NSW and has an 

area of 40,000 km2. The climatology in the site is characterized by warm temperate 

maritime climate with rainshadows. The escarpment rises gradually to the west of 

Bega where it attains an elevation of 2,200 m. The highest elevation is at the 

Australian Alps, which is a segment of the Great Dividing Range. Orographic effects 

imposed by the escarpment largely control the distribution of rainfall in the high 

elevation regions of the site. Regional rainfall is greatest in the escarpment zone, 

where average annual rainfall is in excess of 1050 mm. Rainshadow effects decrease 

this annual average to around 750-800 mm in the central and lowland sections of the 

Bega River site (Brooks and Brierley, 1997). Average annual rainfall at the base of 

the escarpment is between 850-1,000 mm. As the main drinking water supply, Bega 

River is regulated downstream of Brogo Dam, but the rest of the catchment is 

unregulated.  

 

https://www.britannica.com/place/Great-Dividing-Range
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Figure 3.6 Topography map of the Bega River site. The boundary of the site is equal 
to the boundary of NARCliM data subset (20×20 pixels of 10 km resolution) 

outlined in blue. 

3.3 Data 

The rainfall data used in this thesis comprises 1-hourly and daily NARCliM rainfall 

for one 60 year period (1950-2009) and three 20 year epochs (1990-2009, 2060-2079 

and 1950-2009), daily rain gauge rainfall from the Bureau of Meteorology (BoM, 

2013) and Australian Water Availability Project (AWAP) 5 km resolution gridded 

daily dataset.  

3.3.1 NARCliM Rainfall data 

The climate projection datasets used in this thesis have been produced by the 

NARCliM (NSW/ACT Regional Climate Modelling) project which provides 

dynamically downscaled climate data for southeast Australia at 10 km resolution. 

The NARCliM datasets were reviewed in Section 2.6.3. Therefore, only a summary 

is presented in this section. 

NARCliM has used three configurations of the Weather Research Forecasting 

(WRF) Regional Climate Model and four different General Circulation Models 
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(CCCMA 3.1 and CSIRO-Mk3.0, ECHAM5 and MIROC 3.2) from CMIP3 to 

perform twelve ensembles of twenty year simulations for current (1990-2009) and 

future climates (2020-2039 and 2060-2079) (Evans et al., 2012; Evans et al., 2014; Ji 

et al., 2014). In addition to the GCM-driven simulations, three control run 

simulations driven by the NCEP/NCAR reanalysis for the entire period of 1950-

2009 have also been performed by the NARCliM project (Evans et al., 2013; Evans 

et al., 2014). Including these three control run simulations, there are fifteen different 

RCM simulations available for south-eastern Australia. Additionally, rainfall data 

are available in two types: uncorrected and bias corrected.  

A summary of the NARCliM datasets used in each chapter is shown in Table 3.2. 

Table 3.2 Summary of datasets used in each chapter 

Section Chapter Datasets used 

Section 1 

Chapter 5 

Chapter 6 

Chapter7 

Chapter 8 

Uncorrected NARCliM reanalysis rainfall (1950-2009)  

(referred individually as R1, R2 and R3 reanalysis, 

and collectively as reanalyses) 

Section 2 

Chapter 9 

Chapter 10 

Chapter 11 

Chapter 12 

1. Uncorrected and bias corrected GCM simulations 

(1990-2009): CCCMA 3.1, CSIRO-Mk3.0, ECHAM5 

and MIROC 3.2 

2. Uncorrected and bias corrected reanalysis simulations 

(1990-2009) 

(referred individually as CCCMA 3.1 RCM, CSIRO-Mk3.0 

RCM, ECHAM5 RCM, MIROC 3.2 RCM and reanalysis, and 

collectively as RCM simulations) 

Chapter 13 

1. Bias corrected GCM simulations (1990-2009): 

CCCMA 3.1, CSIRO-Mk3.0, ECHAM5 and MIROC 

3.2 

2. Bias corrected GCM simulations (2060-2079): 

CCCMA 3.1, CSIRO-Mk3.0, ECHAM5 and MIROC 

3.2 

(referred individually as CCCMA 3.1 RCM, CSIRO-Mk3.0 

RCM, ECHAM5 RCM, MIROC 3.2 RCM and reanalysis, 

and collectively as RCM simulations) 
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3.3.2 Observed rainfall 

Observed rainfall data have been used for the validation of NARCliM RCM 

simulations: in particular, rain gauge data are used to assess the statistics of 

NARCliM simulations at single grid points within a site (see Sections 4.4 to 4.6). 

The daily rain gauge rainfall data were obtained from the Australian Bureau of 

Meteorology (BoM) (www.bom.gov.au) for all sites in this thesis. The rainfall data 

were selected using three criteria: length of record, continuity of record during the 

NARCliM data period, and location.  

In the analysis presented in Chapter 5 for the Merriwa site, three rain gauge stations 

representing mountainous and flat terrain conditions were chosen, all of which have 

been in operation for over 60 years and are mostly free of missing data during the 

years overlapping the NARCliM reanalyses. Details of these stations along with the 

NARCliM grid points which cover these rainfall stations are shown in Figure 3.7 and 

Table 3.3.  

 

 

Figure 3.7 Goulburn River catchment and Merriwa site location.  
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Table 3.3 Statistics of BoM raingauges 

Station 

Number 

Station 

Name 

Data 

availability 

Annual 

Minim-

um 

(mm) 

Annual 

Maxi-

mum 

(mm) 

Annual 

Mean 

(mm) 

Terrai-

n 

Condi-

tion 

Elevation 

of station 

(m) 

Corres-

ponding 

NARCl-

iM grid 

point 

with 

elevatio

n (m) 

61002 
 

Blackville 
 

100 457 1,787 911 Moun-
tainous 610 P1, 

619.9 

61075 Merriwa 98.3 286 1,332 611 rolling 
hills 380 P2, 

308.7 

62032 Wollar 98.3 233 1,205 629 flat 366 P3, 
546.6 

   
  Data availability = % of total days in the 1950-2009 period 

 

Similarly, rain gauges used for the Williams River, Richmond River, Sydney and 

Bega River sites are shown in Figures 3.8 to 3.11 respectively. The lists of rain 

gauges used at each site are shown in Tables 3.4 to 3.7 respectively.  

As for the Merriwa site, rain gauges which cover the time period of NARCliM data 

subset were selected at all sites. Additionally, every gauge has an overlap of more 

than 98% of the duration of the corresponding NARCliM dataset. The missing data 

were filled with zero rainfall for all sites.  
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Figure 3.8 Map of the rain gauges at the Williams River site. 

 

Table 3.4 List of BOM raingauges: Williams River site 

Station ID 
(as shown in 
Figure 3.8) 

Station ID Station name Elevation 
(m) 

W1 61012 Cooranbong (Avondale) 10 
W2 61031 Raymond Terrace (Kinross) 10 
W3 61014 Branxton (Dalwood Vineyard) 40 
W4 61010 Clarence Town (Prince St) 24 
W5 61086 Jerrys Plains Post Office 87 
W6 61050 Sedgefield (Bundajon) 73 
W7 61024 Gresford Post Office 85 
W8 61071 Stroud Post Office 44 
W9 61151 Chichester Dam 194 

W10 61095 Rouchel Brook (Albano) 305 
W11 61065 Aberdeen (Rossgole) 543 
W12 61089 Scone SCS 216 
W13 60021 Krambach (Firefly Rd) 65 
W14 60036 Wingham (Lanark Close) 66 
W15 61051 Murrurundi Post Office 466 
W16 55066 Wallabadah (Woodton) 640 
W17 55041 Nundle Post Office 595 
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Figure 3.9 Map of the rain gauges at the Richmond River site.  
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Table 3.5 List of BOM raingauges: Richmond River site 

Station ID 

(as shown in  

Figure 3.9) 

Station ID Station name Elevation (m) 

P1 58045 Nymboida (Armidale Road) 200 
P2 58138 Kangaroo Creek (Hayfield) 45 
P3 56011 Glen Innes Post Office 1,062 
P4 58059 Ulmarra (Newsagency) 5 
P5 58014 Copmanhurst Post Office 25 
P6 58006 Brushgrove (Clarence St) 8 
P7 57014 Glen Elgin (Glenbrook) 895 
P8 58012 Yamba Pilot Station 27 
P9 58027 Harwood Island (Harwood Sugar Mill) 2 

P10 56052 Tenterfield (Mole Station) 440 
P11 58061 Woodburn (Cedar St) 5 
P12 56032 Tenterfield (Federation Park) 838 
P13 56050 Tenterfield (Aberfeldie) 680 
P14 58015 Coraki (Union St) 6 
P15 57005 Drake (Village Resource Centre) 490 
P16 41116 Wallangarra Post Office 875 
P17 57018 Tabulam Post Office 130 
P18 58063 Casino Airport 26 
P19 58004 Mummulgum (Bingeebeebra) 195 
P20 41033 Carawatha 938 
P21 57003 Bonalbo Post Office 170 
P22 58007 Byron Bay (Jacaranda Drive) 3 
P23 58032 Kyogle Post Office 80 
P24 58044 Nimbin Post Office 70 
P25 58040 Mullumbimby (Fairview Farm) 15 
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Figure 3.10 Map of the rain gauges at the Sydney site. 

 

 

Figure 3.11 Map of the rain gauges at the Bega River site. 
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Table 3.6 List of BOM raingauges: Sydney site 

Station ID (as 
shown in 

Figure 3.10) 
Station ID Station name Elevation 

(m) 

S1 69018 Moruya Heads Pilot Station  17 
S2 70057 Braidwood (Krawarree) 730 
S3 69052 Batemans Bay - Buckenbowra  30 
S4 69010 Braidwood (Wallace Street) 643 
S5 70035 Bungendore (Gidleigh)  725 
S6 69041 Charleyong (Nerriga Road)  570 
S7 70060 Lower Boro (Calderwood)  610 
S8 68048 Nowra Treatment Works  10 
S9 70071 Goulburn (Pomeroy)  685 

S10 70119 Big Hill (Glen Dusk)  648 
S11 70069 Crookwell (Gundowringa)  838 
S12 68108 Woonona (Popes Rd) 45 
S13 63032 Golspie (Ayrston)  855 
S14 68016 Cataract Dam 340 
S15 68007 Camden (Brownlow Hill)  61 
S16 66158 Turramurra (Kissing Point Road)  160 
S17 63077 Springwood (Valley Heights)  320 
S18 63009 Blackheath (Lawrence St)  1,060 
S19 63064 O'Connell (Stratford)  699 
S20 63118 Bilpin (Fern Grove)  610 
S21 63005 Bathurst Agricultural Station  713 
S22 63079 Sunny Corner (Snow Line)  1,225 
S23 61012 Cooranbong (Avondale) 10 
S24 63076 Sofala Old Post Office 579 
S25 62029 Ilford (Tara)  780 
S26 62017 Kandos Cement Works 660 
S27 61031 Raymond Terrace (Kinross) 10 
S28 61014 Branxton (Dalwood Vineyard) 40 
S29 61010 Clarence Town (Prince St) 24 
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Table 3.7 List of BOM raingauges: Bega River site 

Station ID 
(as shown in 
Figure 3.11) 

Station ID Station name 
Elevation 

(m) 

Q1 70326 Craigie (Bondi Forest Lodge) 790 
Q2 70107 Delegate Station 765 
Q3 69024 Pambula Post Office 10 
Q4 69066 Wyndham Post Office 300 
Q5 70005 Bombala (Therry Street) 705 

Q6 69019 Cathcart (Mount Darragh) 872 
Q7 70009 Bukalong Station 78 
Q8 69107 Kameruka (Kameruka Estate) 125 
Q9 69002 Bega (Newtown Road) 50 

Q10 69003 Bemboka Post Office 215 
Q11 69032 Wapengo Lake Road 15 
Q12 70067 Nimmitabel Wastewater Treatment Facility 1,075 
Q13 71005 Dalgety (Hamilton St) 775 
Q14 71021 Jindabyne (Glochinbah) 990 
Q15 69005 Bermagui South (Young Street) 15 
Q16 69014 Cobargo Post Office 85 
Q17 69054 Tuross 970 
Q18 82060 Towong Upper 280 
Q19 70073 Chakola (Riversdale) 716 
Q20 71000 Adaminaby Alpine Tourist Park 1015 
Q21 69018 Moruya Heads Pilot Station 17 
Q22 70057 Braidwood (Krawarree) 730 
Q23 72043 Tumbarumba Post Office 645 
Q24 69052 Batemans Bay - Buckenbowra 30 
Q25 70064 Michelago (Soglio) 758 

 

3.3.3 AWAP 

The Bureau of Meteorology's Australian Water Availability Project (AWAP) 5 km 

resolution gridded daily dataset was also used for the validation of NARCliM 

rainfall. The AWAP rainfall grids were interpolated from the observed daily rainfall 

from gauges within the BOM gauging network (up to approximately 7,500 gauges, 

both open and closed) (Jones et al., 2009). 

In the derivation of AWAP, the observed daily/monthly gauge rainfall was 

decomposed into a monthly average and associated daily/monthly anomaly series, 

where the anomalies were weakly related to topography. The average and anomaly 
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series were interpolated onto a grid. The averages were gridded using three‐

dimensional smoothing splines, and the Barnes successive correction method was 

used for analysis of the anomalies. The AWAP rainfall grids were then produced by 

multiplying the climate average and anomaly grids and incorporate an unexplained 

microscale variance term to allow for observational or measurement error, and hence 

exact reproduction of gauged rainfall values at each gauge location is not expected 

(Jones et al.,2009; Tozer et al., 2012).  

This 5 km AWAP dataset is used to address the differences in the spatial resolutions 

of the point scale rainfall stations and the gridded NARCliM datasets. The raw 5 km 

resolution AWAP gridded data was aggregated up to 10 km to be consistent with the 

10 km NARCliM grid, and it is this 10 km data that is used in the comparison in this 

thesis. 

3.3.4 Elevation data 

The elevations used are the 10 km resolution elevation data used by the NARCliM 

project. If the analysis is performed with respect to a rain gauge, the elevation was 

taken from metadata files provided by BoM. This method removes the discrepancy 

between scales (point and gridded) of datasets. 

3.3.5 ECL data  

The average daily rainfall calculated for all Easterly Trough Lows (ETL) ECL 

events occurring from 1979-2001 is shown in Figure 3.12. This 5 km resolution 

raster dataset was taken from Kiem et al. (2016) and used in Chapter 8 to identify the 

ECL impact distance from the east coast. (see Section 8.3). 
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 Figure 3.12 Average rainfall associated with Easterly Trough Low-ECL 
events occurring from 1979-2001 at the Williams River site. 
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Methodology 

4.1 Introduction 

As noted in the literature in Chapter 2, there are different approaches for RCM 

evaluation and selection. The evaluation approach is critical to understand the 

performance of individual RCM and often depends on the end application. For 

example; analyses in this thesis assesses the usefullness of NARCliM RCMs in 

hydrology models by evaluating how they differ from the observed rainfall. In this 

chapter, the statistical methods used to evaluate the NARCliM RCM rainfall are 

presented. The motivation for selecting these methods was previously discussed in 

Section 2.6.5. The evaluation of the NARCliM rainfall is achieved by comparing the 

chosen statistical analyses results from NARCliM against those from AWAP and/or 

rain gauge data. The statistical methods used are divided into two types; (1) temporal 

and (2) spatial. The temporal statistics are typically calculated at individual grid 

points while spatial statistics are calculated for all grid points of a site. 

The following statistics are calculated for the NARCliM rainfall and compared to the 

AWAP and/or rain gauge statistics:  

1. probability distribution,  

2. spatial variability of the rainfall statistics : mean, coefficient of variation and 

lag-1 correlation, 

3. temporal autocorrelation (i.e. correlation at a specific location between two 

different times), 

4. spatial correlation (i.e. correlation at a specific time between two different 

locations), and 

5. cross correlation (i.e. correlation at a specific time between two different 

properties) 

The probability distributions, temporal autocorrelation and cross correlation are 

calculated at selected grid points only. The selected grid points which are used for 

these three types of analysis are first presented for each site. The methods of 

calculating each of these statistics are presented in the following sections. 
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The grid points selected at the contrasting terrain (low and high elevations) and their 

corresponding rain gauges for the Merriwa site were previously shown in Figure 3.7 

and Table 3.2. The grid points selected for the Williams River, Richmond River, 

Bega River and Sydney sites are shown in Figures 4.1 to 4.4. A summary of all grid 

points used is shown in Table 4.1. The grid points are chosen to assess how 

NARCliM data perform at different elevations. The analyses (probability 

distribution, temporal autocorrelation and cross correlation) are performed at four 

selected grid points (two grid points at a high elevation and two grid points at a low 

elevation) for each site.  

 

 

Figure 4.1 Map of the Williams River site with topography. The NARCliM data 
subset outlined is 20 x 20 grid points (10 km resolution). The grid points A - D are 

the NARCliM grid points used for comparison. 
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Figure 4.2 Map of the Richmond River site with topography. The NARCliM data 
subset outlined is 20 x 20 grid points (10 km resolution). The grid points E - H are 

the NARCliM grid points used for comparison. 

 

Figure 4.3 Map of the Bega River site with topography. The NARCliM data subset 
outlined is 20 x 20 grid points (10 km resolution). The grid points J - M are the 

NARCliM grid points used for comparison.   
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Figure 4.4 Map of the Sydney site with topography. The NARCliM data subset 
outlined is 41 x 25 grid points (10 km resolution). The grid points P - S are the 

NARCliM grid points used for comparison.  
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Table 4.1 Summary of grid points used at each site 

Site name 
grid point 

ID 

Elevation of 

the grid 

point (m) 

Elevation 

range 

NARCliM 

grid point 

location 

(i,j) 

NARCliM 

coordinates (lat, 

lon) 

Williams 

River 

A 

B 

C 

D 

35.5 

86.7 

959.8 

615.2 

low 

low 

high 

high 

172, 90 

172, 91 

170, 97 

171, 96 

-32.60, 151.70 

-32.51, 151.70 

-31.99, 151.47 

-32.08, 151.57 

Richmond 

River 

E 

F 

G 

H 

30.8 

85.6 

1097.6 

1003.7 

low 

low 

high 

high 

189, 125 

185, 123 

174, 119 

174, 118 

-29.46, 153.29 

-29.65, 152.89 

-30.05, 151.80 

-30.13, 151.80 

Bega River 

J 

K 

L 

M 

122.5 

108.6 

1298.1 

1506.0 

low 

low 

high 

high 

153, 44 

155, 50 

142, 55 

140, 48 

-36.70, 149.81 

-36.16, 150.01 

-35.74, 148.60 

-36.36, 148.39 

Sydney 

P 

Q 

R 

S 

 

7.0 

35.6 

1162.6 

1024.3 

 

low 

low 

high 

high 

 

165, 76 

160, 62 

150, 54 

154, 76 

-33.85, 151.01 

-35.09, 150.52 

-35.82, 149.46 

-33.88, 149.85 
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4.2 Probability distribution of the rainfall 

Perkins et al. (2007) evaluated the PDF of the daily rainfall of CMIP4-AR4 climate 

models. Similarly, the ability of NARCliM RCM data to reproduce the observed 

daily rainfall probability distribution is assessed as it is important to know how 

NARCliM RCMs replicate the observed rainfall distribution before these datasets are 

used in reservoir modelling. The daily probability distribution of rainfall at grid 

points A to D at the Williams River site, E to H at the Richmond River site, J to M at 

the Bega River site and P to Q at the Sydney site (shown in Figures 4.1 to 4.4 

respectively) are calculated and compared with AWAP. However, in contrast to 

Perkins et al. (2007), the results here are presented as cumulative probability 

distributions. Since data aggregation of rainfall can hide biases and systematic errors 

that can be identified at the daily scale, the main focus is on the daily resolution and 

therefore, the other aggregated time resolutions (fortnight, month and annual) are not 

used in this analysis. 

A spatial analysis of the mean annual rainfall (averaged across 60 (1950-2009) years 

for the reanalysis and 20 (1990-2009) years for the GCMs) is performed by 

constructing a single cumulative probability distribution for each study site using 

mean annual rainfall values at all grid points in that site. The resulting cumulative 

probability distributions of the mean annual rainfall of NARCliM RCMs are 

compared with that of AWAP calculated using the mean annual rainfall of AWAP 

for each site.   

4.3 Spatial variability of the rainfall statistics  

One of the major motivations of the ESCCI-ECL project is that the relatively narrow 

eastern coastal strip of NSW is poorly resolved in current generation GCMs (grid 

resolution of ~250 km x 250 km). The NARCliM project was performed to address 

this issue. So, it is important to evaluate the capability of NARCliM RCMs which 

have a resolution finer than GCMs to capture the rainfall variability that exists in this 

region. Accordingly, the spatial variability of the rainfall for each site is calculated 

and the results are compared with the 10 km aggregated AWAP dataset.  
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The spatial variability of rainfall is assessed using three different measures. The 

mean, coefficient of variation (Cv, the ratio of standard deviation to mean), the lag-1 

autocorrelation and the Box-Cox transformation λ (Equation 4.1) of the NARCliM 

RCMs and AWAP are computed for each grid cell of each site and the statistical 

values are mapped spatially. The analysis is similar to McMahon et al. (2008) who 

investigated the spatial variability of rainfall using the coefficient of variation and 

lag-1 autocorrelation. The spatial pattern and magnitudes of both NARCliM RCMs 

and AWAP are compared side by side at the Merriwa site.  

According to the preliminary results of the spatial variability of the rainfall statistics 

at Merriwa site, NARCliM RCMs are significantly different from AWAP. However, 

the extent of the difference in rainfall magnitudes between the datasets (NARCliM 

and AWAP) is unknown. This suggests that there is a need to understand how much 

overestimation or underestimation of the rainfall statistics are being produced by the 

NARCliM data, particularly along the east coast of Australia.  With this argument, 

spatial variability in the ratio of each statistical measure of the NARCliM RCMs and 

5 km resolution AWAP are also calculated for the four main east coast sites as they 

are the key for the ESCCI project.   

4.4 Temporal autocorrelation of the rainfall  

The temporal evaluation of the rainfall generated by the NARCliM RCMs is focused 

on the autoregressive characteristics of the time series, specifically the 

autocorrelation values at different lags. Autocorrelation is also termed “lagged 

correlation” or “serial correlation”, and is the correlation between members of a 

series of numbers arranged in time. A statistically significant non-zero value 

indicates that the values in the time series are not independent with time while zero 

value indicates that the time series is uncorrelated (i.e. white noise). The focus is on 

autocorrelations of rainfall as the reservoir filling water volume is affected by the 

persistence in runoff caused by the rainfall. 

The autocorrelations at the selected NARCliM grid points are evaluated for each site 

against the ground based gauge measurements and AWAP data. However at 

Williams River, Richmond River, Bega River and Sydney sites, only AWAP data 

was used.  
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The analysis is performed as follows.  

Step 1: 

The daily rainfall series of each selected grid point of each RCM is aggregated to 

three different resolutions: fortnightly, monthly and annual. Similarly, the AWAP 

and daily rainfall series at the selected raingauges are aggregated into the fortnightly, 

monthly and annual resolutions. Daily autocorrelations are not used due to the large 

number of days with zero rainfall.  

Step 2: 

Before comparing the autocorrelations (which requires that the data be 

approximately Gaussian distributed), each time series is transformed to have a zero 

skewness (i.e. so that the data are approximately Gaussian distributed) using the 

Box-Cox power transformation (Box and Cox, 1964; Siriwardena et al., 2006; Chiew 

et al., 2014). As the Box-Cox power transformation requires that all data be greater 

than zero, the zero rainfall values of the aggregated datasets are replaced with a 

value of 0.2 mm prior to the power transformation. A value of 0.2 mm is chosen 

because Parkinson (1986), referring to the data records of the Australian Bureau of 

Meteorology, indicated that rainfall values below 0.2 mm d-1 are considered to be 

zero rainfall. This means that rainfall values which are considered as zeros might lie 

in the range of 0 to 0.2 mm. The Box-Cox power transformation is  

 

    …………. (4.1) 

 

where y is the transformed variate, x is the original data variate, and λ is the Box-Cox 

power parameter. By selecting a value of λ that results in the skewness of y being 

close to zero, the distribution of y can be made approximately Gaussian. 

Autocorrelations at different lags were then calculated for all RCMs, AWAP and 

gauge data at each grid point for all three time resolutions.    

 𝑦 = (𝑥𝜆 − 1) 𝜆⁄   
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Step 3: 

The autocorrelation of the raw datasets exhibits a seasonal signal. To see if there is 

any persistence in the seasonal anomalies, the fortnightly and monthly rainfall time 

series are seasonally detrended, using the mean and standard deviation  

……………(4.2) 

where Zn is the detrended rainfall, the subscript n refers to the individual data points 

(monthly or fortnightly series), Yn is the raw rainfall, μ is the mean rainfall (of each 

month or fortnight) and σ is the standard deviation (of each month or fortnight).  

Step 4: 

The autocorrelation analysis is repeated on the detrended rainfall time series. The 

detrending is only performed for the rainfall at grid points of the Merriwa site in 

Chapter 5. Since the detrended correlograms at Merriwa site do not show any 

significant improvement in the results compared with the results generated for the 

raw data (i.e. there is no consistency in the results that explain the differences 

between autocorrelations of RCM and observed rainfall) this step was not repeated 

for the other four sites. 

The analysis explained in steps 1-3 is repeated for both uncorrected and bias 

corrected RCM simulations at all sites because this is an important test which 

determines whether the raw and bias corrected data exhibits similar or different 

autocorrelations, where bias correction only adjusts the daily rainfall and not how 

one day is related to another.  

4.5 Spatial correlation of the rainfall 

The spatial correlation function (scatter plot of correlation vs distance between two 

points) at a catchment can be generated between one rain gauge/grid point and all 

other gauges/grid points. If the catchment properties such as rainfall distribution or 

topography are not known, the selection of this reference gauge/grid point (out of all 

the available gauges/grid points) can be arbitary. However, with the knowledge of 

the terrain and hydrological properties gained in previous chapters, two grid points, 

 𝑍𝑛 = (𝑌𝑛 − 𝜇) 𝜎⁄   
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one located at a low and one at a high elevation, were selected as the references at 

each site (i.e. 8 grid points for all four sites). The selected reference grid points/rain 

gauges and all other grid points/rain gauges used in the analysis are shown in Table 

4.2 and Figures 4.5 to 4.8. Note that the grid points selected for this analysis were 

different to what was used in the previous analysis (section 4.4). Because the spatial 

correlation of NARCliM rainfall was evaluated against both rain gauge and AWAP 

data in this analysis, grid points were selected at rain gauges with continuous data 

records. In contrast to the analysis in Section 4.4 which only used AWAP data as the 

observed rainfall, the selection process of grid points in this analysis was based on 

the rain gauges, therefore, rain gauges were first selected and then corresponding 

grid points were used for the comparison.  

To minimize the confusion between grid point IDs of two gridded datasets 

(NARCliM RCMs and AWAP) and rain gauges’, the rain gauge ID which is located 

inside the corresponding grid point are used for naming the NARCliM and AWAP 

grid points. For example, if the rain gauge ID is W1, the corresponding NARCliM 

grid point is called the ‘W1 NARCliM grid point’ while AWAP grid point is referred 

to as ‘W1 AWAP grid point’. 

Table 4.2 Reference grid points selected at each site 

Site name 
Total rain 

gauges used 

Reference grid 

point/rain gauge  

ID 

Elevation of 

the reference 

grid point (m) 

Elevation 

range 

Williams River 

site 
17 

W17 

W4 

595 

24 

high 

low 

Richmond River 

site 
25 

P20 

P9 

938 

2 

high 

low 

Bega River site 25 
Q12 

Q3 

1,075 

10 

high 

low 

Sydney site 29 
S22 

S8 

1,225 

10 

high 

low 

 

The analysis was in two parts:  
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(1) Assessment of the spatial correlation of the NARCliM daily rainfall and its 

variability at the catchment scale between the reference grid point and all other grid 

points. This part compared the NARCliM against AWAP only.  

(2) Testing the NARCliM daily rainfall against the 10 km resolution AWAP and rain 

gauge data for selected grid points that encompassed the location of the rain gauges. 

Note that, the Pearson’s correlation coefficient (r) (Pearson, 1895) was used for the 

calculation of daily rainfall correlations between the reference grid point and all 

other grid points.  

The analysis was performed as follows.  

 Step 1: The correlation between the daily rainfall of NARCliM grid points 

(between reference and other grid points) were first evaluated using the 

Pearson’s correlation coefficient. The correlation between all other grid 

points was calculated with reference to two grid points located at high and 

low elevations of each site. Then, results were compared with the spatial 

correlation of AWAP which were calculated using the same method.  

The correlations are presented as spatial plots and scatter plots. In scatter 

plots, elevation difference (Equation 4.3) between the reference and all other 

grid points is also shown as a third variable. This elevation difference 

provides more information on the variability of the correlation in a 

contrasting terrain. 

Elevation difference= |H2-H1|                                 ………. (4.3) 

Where H1= Elevation of the reference and H2 = Elevation of the destination 

grid point.  

 Step 2: The spatial correlation of both NARCliM and AWAP gridded data 

are compared with the observed spatial correlations, calculated for the 

selected rain gauges within each site. Only grid points (NARCliM/AWAP) 

which encompassed the location of the rain gauges were used for the 

comparison. The purpose of this second analysis is to assess the ability of 

both NARCliM and AWAP to replicate the spatial correlation of rain gauges. 
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Figure 4.5 Map of the rain gauges and NARCliM/AWAP grid points selected - 
Williams River site. 
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Figure 4.6 Map of the rain gauges and NARCliM/AWAP grid points selected - 
Richmond River site. 
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Figure 4.7 Map of the rain gauges and NARCliM/AWAP grid points selected - Bega 
River site. 
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Figure 4.8 Map of the rain gauges and NARCliM/AWAP grid points selected - 
Sydney site. 
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4.6 Cross correlation of the rainfall 

In order to assess whether the magnitude of NARCliM RCM rainfall is significantly 

different from observed rainfall, correlations between NARCliM RCM, and gauge 

and AWAP are calculated for daily, fortnightly, monthly and annual resolutions 

using Pearson’s Correlation Coefficient. The results for the cross correlations are 

presented as scatter plots. However, the NARCliM RCMs and AWAP rainfall are 

10 km gridded datasets while the gauge is a point value, selected to lie inside the 

corresponding grid box so ignore the averaging over the 10 km pixel 

Additionally, to study the relationship between orography and rainfall, a cross 

correlation analysis between rainfall and elevation is also performed at two sites; 

Merriwa and Williams River which are located in the Hunter valley region where 

previous studies (McMahon, 1964) have shown evidence for an orographic effect on 

rainfall.  
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Section 1  

Assessment of rainfall statistics of NARCliM reanalysis 

projections (1950-2009) 
 

Section 1 (Chapters 5-8) is an assessment of the ability of the three NARCliM 

reanalysis datasets to generate the correct statistical properties of current day rainfall. 

As was explained in Section 2.6.3, three different RCMs (R1, R2 and R3) have been 

used to downscale the NCEP/NCAR reanalysis (Kalnay et al., 1996) from 1950 to 

2009 in the first phase of the NARCliM project, and these three reanalysis datasets 

are referred to here as R1, R2 and R3 reanalysis. As stated by Evans et al. (2014), 

these 60 year period reanalysis-driven simulations provide a strong test of the RCMs 

ability to simulate the strong decadal variability in precipitation which was 

experienced in Southeast Australia over the second half of the 20th century with 

particularly wet decades in the 1950s and 1970s. However, it is worth noting that 

reanalysis do not attempt to deterministically recreate the day to day climate since 

NCEP/NCAR is only used to specify the climate of the edge of RCM computational 

domain, and the upper atmosphere lid. Day to day variability at 10 km resolution is 

largely a result of the internal dynamics of the RCMs, and the topography. 

Four statistical methods are used to assess the NARCliM reanalysis: (1) probability 

distribution of the rainfall (2) spatial variability of the rainfall statistics, (3) temporal 

autocorrelation of the rainfall, and (4) spatial correlation of the rainfall.  

The key focus of this section is to determine the performance of NARCliM 

reanalyses in capturing the observed rainfall statistics. As three different RCMs have 

been used to downscale the 60 year reanalysis, evaluation of the performance of each 

simulation is important to identify the RCMs that best reproduce the observed 

statistics of the rainfall.  

Additionally, there are two types of NARCliM rainfall data: uncorrected and bias 

corrected. First the statistical testing results for the uncorrected data are presented, 

and then these results are compared with the results for the bias corrected 
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simulations. The assessment of uncorrected data allows us to identify the intrinsic 

characteristics of the RCM simulations, while the comparison between bias corrected 

and uncorrected data provides insights into how the data have been improved after 

the bias correction. 

 

 



 

87 
 

  
Statistical Testing of NARCliM reanalysis rainfall 
data (1950-2009) for the Upper Hunter Region, New 
South Wales, Australia 
 

 

5.1 Introduction 

As identified in the literature (see Section 2.6.2), few studies involving high spatial-

resolution (finer than 30 km) regional climate simulations over Australia have been 

published. Among these few publications, most of the studies have simply assessed 

the basic statistics of the dynamically downscaled rainfall such as mean, standard 

deviation, change of the minimum/maximum, bias and root mean square error 

against the observed rainfall. However, important time series statistics such as 

autocorrelation have received less attention from the research community. The 

autocorrelations between rainfall events are important since reservoir performance 

can be sensitive to the persistence of runoff. Therefore, in this chapter the ability of 

NARCliM RCM data to reproduce the autocorrelations of observed rainfall is 

assessed at the Merriwa site which encompasses the Goulburn River catchment (see 

Section 3.2.1 for more details). The NARCliM outputs are evaluated against data 

from BoM raingauges and AWAP.  

Additionally, a cross correlation analysis was performed at three grid points located 

in the contrasting terrain of the Merriwa site. This cross-correlation analysis assesses 

the performance of the NARCliM rainfall data at capturing observed rainfall depths. 

Further, it is important to evaluate the capability of NARCliM RCMs which have a 

resolution finer than GCMs to capture the rainfall variability that exists in this 

This chapter is published as Parana Manage, N., Lockart, N., Willgoose, G., 
Kuczera, G., Kiem, A. S., Chowdhury, A.F.M.K., Zhang, L. and Twomey, C. 
2016. Statistical Testing of Dynamically Downscaled Data for the Upper Hunter 
Region, New South Wales, Australia, Journal of Southern Hemisphere Earth 
System Science, 66, 203-227. It has been slightly modified to maintain the 
consistency with the rest of the thesis. 
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region. Therefore the spatial variability of the rainfall across the Merriwa site was 

calculated and the results were compared with the 5 km AWAP dataset.  

The analyses presented in this chapter are different from previous studies in a 

number of ways. Most previous studies which assess RCM precipitation use 

aggregated monthly, seasonal or annual rainfall. In addition to monthly and annual 

resolutions, daily and fortnightly resolutions of precipitation were also used for the 

validation. The major motivation to use these different time resolutions is that 

reservoirs of different capacities respond to rainfall differently; small reservoirs 

respond to daily variations in rainfall while large reservoirs respond to rainfall 

variations over weeks to years. 

5.1.1 NARCliM and observed rainfall 

Only the three downscaled NARCLIM reanalyses (1950-2009) were used in the 

analyses. It should be noted that the study presented in this Chapter was carried out 

as a pilot study, different to the other four east coast sites explained in Chapter 3, 

therefore only the uncorrected 60 year reanalyses data was used. Further, bias 

corrected rainfall dataset was not available at the time of the analyses as the bias 

corrections were supplied during the second phase of the NARCliM project (Evans 

et al., 2014). A descriptive assessment of the bias corrected data is presented in 

Chapter 9. However, the assessment of uncorrected data allows us to identify the 

intrinsic characteristics of the RCMs. 

The time series of the NARCliM R1, R2 and R3 reanalyses, AWAP and ground 

based raingauge measurements were used for the analysis. As explained in Section 

3.3.2, rainfall data of P1, P2 and P3 rainfall stations and 5 km resolution AWAP data 

were used for the validation of rainfall. 

The analysis is in two parts; (1) autocorrelation and cross correlation analysis for 

single grid points, and (2) spatial variability at catchment scale (all grid points) (see 

Sections 4.3 to 4.6). 
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5.1.2 Single grid point analysis  

5.1.2.1 Autocorrelation analysis  

The initial testing of the three NARCliM reanalyses focuses on the autoregressive 

characteristics of the time series, specifically the autocorrelation values at different 

lags. The autocorrelations at the three NARCliM grid points P1, P2 and P3 were 

evaluated against the ground based gauge measurements and AWAP data at three 

different resolutions: fortnightly, monthly and annual (see Figure 3.7 and Table 3.3). 

The method explained in Section 4.4 was used to calculate the autocorrelations at 

each grid point. The results are shown by the correlograms generated for fortnightly, 

monthly and annual time resolutions. The correlograms for the R1, R2 and R3 

reanalyses and AWAP at grid point P1, and rainfall station 61002 are shown in 

Figure 5.1. The autocorrelations of NARCliM reanalyses at P2 and P3 were 

compared with the corresponding AWAP pixel and rainfall station (see Table 3.3) 

and are shown in Figures 5.2 and 5.3 respectively. 
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Figure 5.1 Correlograms of NARCliM reanalysis and observed data at grid point P1. 
The shaded regions are the 95% confidence limits of the null hypothesis (i.e. the 

correlations are not significantly different from 0). 
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Figure 5.2 Correlograms of NARCliM reanalysis and observed data at grid point P2. 
The shaded regions are the 95% confidence limits of the null hypothesis (i.e. the 

correlations are not significantly different from 0). 

For each of the three locations (Figures 5.1 to 5.3) the observed gauge and AWAP 

series have very similar autocorrelation values at all time resolutions. For the 

fortnight and month resolution, there is a weak seasonal signal, with significant 

autocorrelations at 1 and 2 years. At the annual resolution, there is no significant 

signal, with all values falling within the 95% confidence limits of the null hypothesis 

(i.e. the autocorrelations are not significantly different from 0).  
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Figure 5.3 Correlograms of NARCliM reanalysis and observed data at grid point P3. 
The shaded regions are the 95% confidence limits of the null hypothesis (i.e. the 

correlations are not significantly different from 0). 

For the three NARCliM reanalyses, the correlograms in Figures 5.1 to 5.3 show a 

clear seasonal signal for the fortnight and month resolutions. However, the seasonal 

signal is much stronger in the R1 and R2 reanalyses compared with the R3 

reanalysis.  
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Due to the strong seasonal cycle, the R1 and R2 reanalyses overestimate the 

autocorrelation values of the observed gauge and AWAP rainfall. The R3 reanalysis 

better reproduces the autocorrelations of the gauge and AWAP data than R1 and R2, 

especially at grid points P1 and P2. These differences in the autocorrelations of R1, 

R2 and R3, are unsurprising as Evans et al. (2014) selected three configurations of 

the WRF model that were as independent as possible. At grid point P3 all three 

NARCliM reanalyses overestimate the autocorrelations of observed gauge and 

AWAP rainfall. This overestimation of the autocorrelations at grid point P3 could be 

attributed to the NARCliM RCMs averaging the topography over each grid point. 

We speculate that a smoother lower resolution topography may result in a lower 

sensitivity to wind direction and thus any spatially random effects as a result of the 

orographic influence on rainfall. If the rainfall is a function of elevation (Hutchinson, 

1998a,b), this would suggest that NARCliM simulated rainfall series would have 

been affected by this averaging of topography. Further, elevations shown in Table 

3.3 show that elevation of the raingauge (62032) is different to that of the 

corresponding NARCliM reanalysis grid point. The averaging effect of the 

topography of NARCliM reanalysis is more pronounced at grid point P3; grid point 

P3 is located in a flat area surrounded by the nearby steep cliffs and high elevation 

plateaus while the terrain around grid points P1 and P2 is rolling hills and distant 

mountains.  

The autocorrelation of the raw datasets exhibits a seasonal signal. Therefore, rainfall 

time series were seasonally detrended using the method explained in Section 4.4. 

The correlograms generated for the detrended time series of each reanalysis dataset 

at P1, P2 and P3 grid points are shown in Figures 5.4 to 5.6 respectively. All 

correlograms show a statistically significant lag-1 correlation, and the value of this 

correlation in the gauge and AWAP data is well matched by NARCliM. For lags 

greater than five there are few statistically significant results in either gauge and 

AWAP, or NARCliM. However, for lags between one and five the results are more 

varied with some time series showing significant correlations.  
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Figure 5.4 Correlograms of detrended NARCliM reanalysis and observed data at 
grid point P1. The shaded regions are the 95% confidence limits of the null 

hypothesis (i.e. the correlations are not significantly different from 0). 

For monthly data there are generally significant correlations in gauge and AWAP to 

lag-5 that are sometimes replicated in NARCliM. For the fortnightly data there is no 

consistent trend either in the gauge and AWAP data, or in NARCliM. The reduction 

in the number of significant autocorrelations for lags greater than one in the 

correlograms for the original and detrended data is consistent with a strong seasonal 

signal. The overly strong seasonal signal of NARCliM reanalyses in Figures 5.1 to 

5.3 might be changed by bias correction. The results suggest that, even though the 

resolution disagreement of using a gridded observed dataset (i.e. AWAP instead of 
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point raingauges) is eliminated, the results remain the same showing discrepancies 

between the NARCliM reanalyses and observed data. 

 

 
 

Figure 5.5 Correlograms of detrended NARCliM reanalysis and observed data at 
grid point P2. The shaded regions are the 95% confidence limits of the null 

hypothesis (i.e. the correlations are not significantly different from 0). 
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Figure 5.6 Correlograms of detrended NARCliM reanalysis and observed data at 
grid point P3. The shaded regions are the 95% confidence limits of the null 

hypothesis (i.e. the correlations are not significantly different from 0). 

 

5.1.2.2 Cross correlation analysis 

In order to assess whether the NARCliM reanalyses rainfall are deterministically 

different from observed rainfall, cross-correlations between reanalysis, and gauge 

and AWAP were calculated for daily, fortnightly, monthly and annual resolutions 

using Pearson’s Correlation Coefficient (r) (Pearson, 1895). The results for the cross 

correlations are presented as scatter plots. However, it should be noted that the 
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reanalyses and AWAP rainfall are 10 km gridded datasets while the gauge is a point 

value, selected to lie inside the corresponding grid box. 

Figures 5.7 and 5.8 show the scatter plots of the NARCliM reanalyses at grid point 

P1 versus gauge and AWAP rainfall at daily, fortnightly, monthly and annual time 

resolutions.  

 

Figure 5.7 Scatter plots of NARCliM reanalysis vs raingauge (61002) in log scale at 
grid point P1: (a) day, (b) fortnight, (c) month, and (d) annual. Note that only non-

zero rainfall values are plotted. 
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Visual inspection of the scatter plots shows that the rainfall is systematically 

overestimated by all NARCliM reanalyses for the fortnightly, monthly and annual 

resolutions. This will likely be corrected in the bias corrected rainfall. The daily 

rainfall of the NARCliM reanalyses shows a poor agreement to the gauge and 

AWAP data. The results for P2 and P3 are also similar to those for P1 and are not 

shown. 

 

Figure 5.8 Scatter plots of NARCliM reanalysis vs AWAP in log scale at grid point 
P1: (a) day, (b) fortnight, (c) month, and (d) annual. Note that only non-zero rainfall 

values are plotted. 
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To summarise the results, cross correlations (r values) computed for the NARCliM 

reanalyses versus gauge rainfall and AWAP at grid point P1, P2 and P3 are shown in 

Figures 5.9a to 5.9c respectively. Correlations ranging from 0.12 to 0.51 show a poor 

agreement between the reanalyses, and gauge and AWAP data. The highest 

correlation values are 0.49 (grid point P2 for R1 reanalysis versus AWAP) and 0.51 

(grid point P1 for R2 reanalysis versus gauge) for the annual resolution while for the 

fortnightly resolution R3 reanalysis shows the highest cross correlation of 0.36 at 

two grid points (grid point P1 for R3 reanalysis versus gauge and grid point P3 for 

R3 reanalysis versus AWAP). Grid point P1, which represents the mountainous area, 

shows a better correlation with gauge data compared to the other two grid points 

located in the flat area, though the improvement is small. Comparing the correlations 

between the reanalyses, and gauge and AWAP data, the NARCliM reanalyses tend 

to be slightly more correlated to the AWAP than gauge rainfall for all time 

resolutions at all grid points.  

 

Figure 5.9 Pearson’s correlation coefficients (r) at three grid points: (a) P1, (b) P2, 
and (c) P3. 
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Correlations between the three NARCliM reanalyses (i.e. R1 versus R2, etc.) were 

also calculated at grid point P1 (Figure 5.10). The low correlations ranging from 0.3 

to 0.6 are similar to the correlations between NARCliM reanalysis, gauge and 

AWAP (Figures 5.7 and 5.8), and confirm that the RCMs are not highly correlated 

and thus are conditionally independent from each other. This is consistent with the 

design of the NARCliM project where Evans et al. (2014) chose 3 RCM 

configurations that were as independent as possible from each other. 

 

Figure 5.10 Scatter plots between NARCliM reanalyses individual runs in log scale 
at grid point P1: (a) day, (b) fortnight, (c) month, and (d) annual. Note that only non-

zero rainfall values are plotted. 
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Overall, low correlations (ranging from 0.12 to 0.51) between the NARCliM 

reanalyses and observed rainfall depths characterise the limited ability of the 

reanalyses to deterministically reproduce the observed runoff series. Given that the 

reanalyses were driven at the ~250 km resolution by NCEP/NCAR reanalysis (see 

Evans et al., 2014 for more details on the design) then at least part of the correlation 

reflects the ability of NARCLIM to reproduce the rainfall, while part of the 

correlation reflects the internal dynamics of the RCMs that are used to downscale. 

No data assimilation of rainfall (gauge rainfall or AWAP) was done during the 

downscaling, so it is an open question as to how much deterministic fit should be 

expected from the RCMs, over and above that of NCEP/NCAR, but both the 

distance from the coast and the topography (which are both better represented in the 

higher resolution RCM) are likely to condition the spatial patterns of rainfall 

predicted, though it is unclear how much impact these would have on the temporal 

characteristics of the rainfall. Figure 5.10 provides some preliminary insight into this 

question because the difference in the correlations between the reanalyses reflects 

these internal dynamics. For annual rainfall, the minimum correlation is about 0.3 

and the maximum 0.5, so at a minimum NCEP/NCAR accounts for 10% of the 

variance (r2=0.32).  

5.1.3 Spatial variability of statistics at catchment scale 

The spatial variability of rainfall can be assessed by several measures. In this section 

the mean, coefficient of variation (Cv) and the lag-1 autocorrelation of the NARCliM 

reanalyses and AWAP were computed for each grid cell of the entire study area and 

the statistical values were mapped spatially. The analysis is similar to McMahon et 

al. (2008) who investigated the spatial variability of rainfall using the coefficient of 

variation and lag-1 autocorrelation.  

The mean, Cv and the lag-1 autocorrelation plots were created at different time 

resolutions to examine the temporal variability of the rainfall across the study area. 

Figure 5.11 shows the spatial distribution of mean annual rainfall. Low annual 

rainfalls (less than 1,200 mm/year) are simulated across much of the centre, east and 

west of the study area, while the highest rainfalls (up to 2,000 mm/year) generally 
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are simulated in the northern and southern regions. The mean annual rainfall is 

noticeably higher in R1 and R3 compared to R2. This is consistent with the relative 

trends at P1, P2 and P3 in Figure 5.7. Comparing the mean annual rainfall of the 

reanalyses with AWAP data, all three uncorrected reanalyses overestimate the mean 

annual rainfall for almost all grid points. However, R2 reanalysis has rainfall depths 

most similar to AWAP.   

 

 

Figure 5.11 Spatial distribution of mean annual rainfall (mm) of NARCliM 
reanalysis data and AWAP. 

The elevations of the study area are shown in Figure 5.12. The highest annual 

rainfall occurs in the south and north of the study area where the Blue Mountains 

and Liverpool Ranges are (see Figure 5.12b). McMahon (1964) found that there is a 

direct influence of topography on rainfall in the Hunter Valley. Hutchinson 

(1998a,b) also analysed this dependence of the rainfall with elevation using five 

spline models (which have different dependence with elevation) examined by 

Hutchinson (1995) and found that rainfall is highly correlated with elevation. A 

detailed analysis on this correlation will be presented in Chapter 8. However, as a 

preliminary result the relationship between NARCliM rainfall and elevation is 

shown in Figure 5.13.  The positive trends shown in the scatter plots generated for 

the three reanalyses confirm that the high rainfall values are mostly associated with 

higher elevations. R2 shows the highest correlation (r=0.53) between rainfall and 

elevation.  
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Figure 5.12 Merriwa field site: (a) Topography map of the area (as defined and used 

in NARCliM), (b) Google Earth aerial photo for the same region. 

 

 

Figure 5.13 Scatter plots of annual rainfall vs elevation for each grid point in Figure 
5.12a. 

Figure 5.14 shows the spatial variation of the coefficient of variation (Cv) at daily, 

fortnightly, monthly and annual resolution.  
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Figure 5.14 Spatial distribution of coefficient of variation Cv of rainfall for 
NARCliM reanalysis data and AWAP: (a) day, (b) fortnight, (c) month, and (d) 

annual. 

Overall, the Cv ranging from 2 to 3.25 at the daily resolution shows high rainfall 

variability across the site for all reanalyses. Compared with the spatial variability of 

the mean (Figure 5.11), the spatial variation in Cv is relatively small and appears to 

be related to the spatial variation of the mean rainfall. The higher Cv values for the 

reanalyses and AWAP in the centre of Figure 5.14a show that rainfall is more 

variable in the centre, than the northern and southern regions where there are higher 
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elevations. For the longer resolutions, R1 and R2 reanalyses show a north-west to 

south-east band of high Cv through the centre of the study area which has a strong 

similarity with AWAP. However, for the annual resolution there seems to be no 

similarity in the spatial pattern of the reanalyses and AWAP. For R1 and R2 

reanalysis, it appears that the rainfall variability is influenced by the topography of 

the study area, with lower Cv in the higher elevation regions. 

The R3 reanalysis has higher daily rainfall variability than R1 and R2, but R2 has 

higher variability for other time resolutions. R3 also shows a different spatial pattern 

to R1 and R2 with a north-east to south-west banding that appears to be unrelated to 

the topography. Compared with AWAP, all reanalyses underestimated the Cv for all 

grid points of the site. R2 has the most similar Cv to AWAP, both the values and 

spatial pattern. 

The spatial patterns of the lag-1 autocorrelation coefficient for the NARCliM and 

AWAP gridded data are shown by Figure 5.15. The general spatial patterns of R1, 

R2 and R3 are similar, with R3 being different at the annual resolution. R3 has 

significantly weaker autocorrelations than R1 and R2. When compared with AWAP 

R3 has similar magnitude autocorrelations, but has significantly higher 

autocorrelations at the annual resolution. While the spatial patterns of all the 

reanalyses are similar to each other (though the average values vary significantly 

between reanalyses) their patterns are completely different from the pattern of 

AWAP. Comparing the three reanalyses, at fortnightly and monthly resolutions, the 

lag-1 autocorrelations of R1 and R2 are overestimated to a greater extent than R3, 

with both R3 and AWAP having autocorrelations very close to zero. This result is 

consistent with the lag-1 autocorrelations shown in Figures 5.1 to 5.3. For the annual 

resolution, all three reanalyses overestimated the lag-1 autocorrelation of AWAP. In 

what is perhaps the most intriguing result the annual AWAP data shows a large area 

of negative lag-1 autocorrelations, which is not shown in any of the reanalyses. This 

result is probably marginally statistically significant because the 95% confidence 

limits for lag-1 annual analyses are about 0.25 to -0.25 (see the lag-1 95% 

confidence limits for the annual analyses in Figures 5.1 to 5.3), very similar to the 

observed result of -0.3.  
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Figure 5.15 Spatial distribution of lag-1 correlation of rainfall for NARCliM 
reanalysis data and AWAP:  (a) fortnight, (b) month, and (c) annual. 

Overall, the spatial variation of mean rainfall for all NARCliM reanalyses’ grid 

points in the site reveals that the mean annual rainfall is higher in the hilly areas in 

all three reanalyses and R1 and R3 produce higher rainfall than R2. The spatial 

variation in the coefficient of variation shows similar results for all three reanalyses. 

The spatial pattern of the coefficient of variation is similar for all reanalyses but is 

significantly different from that of AWAP. The pattern of the coefficient of variation 

for the reanalyses was similar to that for mean rainfall, which has a link with 

elevation. The relationship was that rainfall was less variable in hilly areas while flat 

areas show high rainfall variability. However, the rainfall variability is strongly 

influenced by the topography of the study area.  
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The spatially plotted lag-1 autocorrelation results show that for the fortnightly, 

monthly and annual time resolutions, the autocorrelation values are quite low. R1 

and R2 reanalysis produce higher lag-1 autocorrelations compared to the R3 

reanalysis. In summary, statistics calculated at the catchment scale show that the 

NARCliM reanalyses are not capable of reproducing the observed spatial pattern 

shown by AWAP. They also tend to overestimate both mean rainfall and lag-1 

correlations while underestimating the coefficient of variation relative to AWAP. 

The ability of NARCliM reanalyses to reproduce the spatial pattern of observed 

rainfall statistics is a necessary but not sufficient requirement for hydrological 

studies, particularly catchment hydrology modelling.  

5.2 Conclusions 

The results show that the NARCliM reanalyses datasets do not reliably reproduce the 

correct spatial and temporal correlations for the Merriwa site. Cross correlating the 

NARCliM reanalyses against gauge and AWAP shows that the agreement between 

NARCliM reanalysis and observed rainfall is poor and suggests that the Regional 

Climate Model (RCM) reanalysis datasets do not produce the spatial distribution of 

rainfall correctly. The failure to reproduce the spatial distribution of rainfall may 

lead to biased and incorrect reservoir dynamics if these datasets are used as inputs to 

rainfall-runoff models. However, it should be noted that the data used in this chapter 

is uncorrected raw RCM simulations and an appropriate bias correction may improve 

the performance, though bias correction can also introduce other uncertainties and 

limitations (e.g. Parry et al., 2007; Randall et al., 2007; Stainforth et al., 2007; 

Koutsoyiannis et al., 2008; Kiem and Verdon-Kidd, 2011; Stephens et al., 2012). It 

should be noted that a comprehensive assessment of the bias corrected RCM data is 

presented in Chapter 9. A possible link between the statistics and topography at the 

catchment scale was found during this pilot study and this will be further discussed 

in following chapters to better understand the statistical characteristics of the 

orographic effect. Unlike previous work on orography, the rainfall effect does not 

appear to be simply a function of elevation. 
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Testing the rainfall statistics of NARCliM 
uncorrected and bias-corrected reanalyses using 
AWAP data for the broader East Coast of Australia 

6.1 Introduction 

Chapter 5 presented a case study performed for a single site in the Upper Hunter 

region of NSW. However, knowing that the current GCMs poorly resolve the 

climate of the eastern coastal strip, there is a need to assess the performance of this 

finer resolution NARCliM dynamically downscaled data along the entire east coast. 

Chapter 5 also found that the NARCliM RCMs poorly simulate the rainfall at high 

elevation regions compared with low elevations. Therefore it is worthwhile assessing 

the rainfall simulated by NARCliM RCMs at various sites with different orography. 

Combining these objectives, this chapter aims to fulfil the second major objective of 

this thesis: Validation of the NARCliM data along the broader east coast at various 

sites with different orography.  The analysis presented in this chapter extends that of 

Chapter 5, and was performed at four sites located along the NSW east coast: 

Williams River site, Richmond River site, Bega River site and the site of Sydney 

water supply system, referred as Sydney site in this thesis (see Chapter 3: Sites and 

Data for more details). The three NARCliM NCEP/NCAR uncorrected and bias 

corrected reanalysis (R1, R2 and R3 reanalyses) driven datasets (1950-2009) were 

used for the analyses.   

Using the method explained in Section 4.2, the ability of reanalysis data to reproduce 

the observed rainfall probability distribution is first evaluated. Both the spatial and 

temporal distribution of the reanalysis rainfall were calculated and compared with 

AWAP at four grid points of each site. The selected grid points and elevations of 

each site are shown in Figures 6.1 to 6.4. 
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As in Chapter 5, the mean, coefficient of variation (Cv) and the lag-1 autocorrelation 

computed at each grid point of the reanalyses datasets were used to assess the spatial 

variability of the rainfall. The statistics of all three reanalyses datasets were 

calculated and then compared with AWAP data. There are several reasons for 

choosing AWAP as the primary observed dataset in this chapter; (1) The distribution 

of the rain gauge network is sparse in each site, so that it was impossible to find a 

rain gauge at each grid point, (2) As explained in the literature review, downscaled 

rainfall data can be validated against point scale and pixel scale observations. 

However, the validation of NARCliM gridded data against another gridded dataset 

eliminates the scale discrepancy between the datasets.  

Later in this chapter, the ability of reanalyses to reproduce the rainfall 

autocorrelation was assessed by following the methodology explained in Section 4.4. 

The analysis was performed at the same grid points used for the probability 

distribution analysis. 

 

Figure 6.1 Map of the Williams River site with topography. The NARCliM data 
subset outlined is 20 x 20 pixels (10 km resolution). The grid points A - D are the 

NARCliM pixels used for comparison. 
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Figure 6.2 Map of the Richmond River site with topography. The NARCliM data 
subset outlined is 20 x 20 pixels (10 km resolution). The grid points E - H are the 

NARCliM pixels used for comparison.  

 

Figure 6.3 Map of the Bega River site with topography. The NARCliM data subset 
outlined is 20 x 20 pixels (10 km resolution). The grid points J - M are the 

NARCliM pixels used for comparison. 
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Figure 6.4 Map of the Sydney site with topography. The NARCliM data subset 
outlined is 41 x 25 pixels (10 km resolution). The grid points P - S are the NARCliM 

pixels used for comparison. 

6.2 Probability distribution of the daily rainfall 

This section assesses the ability of uncorrected and bias corrected NARCliM 

reanalyses data to reproduce the observed rainfall probability distributions. The 

cumulative probability distributions of the mean annual rainfall of uncorrected 

reanalyses and AWAP for all grid points of all four sites are shown in Figures 6.5a 

to 6.8a respectively. There is a general trend of uncorrected reanalyses to 

underestimate the mean annual rainfall probabilities of AWAP at each site, 

particularly the occurrence of greatest rainfall values. Further, the underestimation is 

higher in R1 and R3 than R2.  

The cumulative probability distribution of the daily uncorrected and bias corrected 

NARCliM and AWAP rainfall data was calculated at the grid points chosen within 

all four sites. The elevations of grid points are listed in Table 6.1. The focus was on 

high and low elevation points in order to assess the performance of NARCliM data 

for different terrain conditions.  
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Table 6.1 Elevation of grid points 

 

The CDFs are for the uncorrected reanalyses and AWAP at grid points A to D at the 

Williams River site, E to H at the Richmond River site, J to M at the Bega River site 

and P to Q at the Sydney site are shown in Figures 6.5b to 6.8b respectively.  

At low elevation grid points of the Williams River site all three uncorrected 

reanalyses tend to underestimate the daily probability distribution, particularly the 

small rainfall events (0.2 to 7 mm). R2 is able to capture the probabilities of AWAP 

midsized to large events (rainfall greater than 7 mm) while R1 and R3 underestimate 

the CDF. These results are typical of all other low elevation grid points except for 

the grid points E, K and Q; At grid point E of the Richmond River site, midsized and 

large rainfall events of AWAP are captured by both R1 and R3 uncorrected 

reanalyses while R2 overestimating those probabilities slightly. At grid point K of 

Bega River site, R2 reanalysis is able to produce the entire rainfall distribution of 

AWAP with all the probabilities approximately correct. At grid point Q of Sydney 

site, R2 closely reproduces the entire rainfall distribution with a slight 

Study site Grid point Elevation (m) 
Elevation Category 

low high 

Williams River site 

A 35.5    

B 86.7    

C 959.8    

D 615.2    

Richmond River site 

E 30.8    

F 85.6    

G 1097.6    

H 1003.7    

Bega River site 

J 122.5    

K 108.6    

L 1298.1    

M 1506.0    

Sydney site 

P 7.0    

Q 35.6    

R 1162.6    

S 1024.25    
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underestimation. However, it is worth noting that all these three points are located 

very close to the eastern coast line where there is a high rainfall band in the mean 

annual rainfall plots of AWAP (see Figures 6.13a, 6.15a, 6.17a and 6.19a).  

 

 

Figure 6.5 Cumulative probability distributions of (a) mean annual rainfall of 
uncorrected reanalyses and AWAP across the Williams River site and (b) daily 

rainfall at grid points A, B, C and D. Note that daily rainfall are in log scale and only 
values greater than 0.2 mm are plotted. 
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Figure 6.6 Cumulative probability distributions of (a) mean annual rainfall of 
uncorrected reanalyses and AWAP across the Richmond River site and (b) daily 

rainfall at grid points E, F, G and H. Note that daily rainfall are in log scale and only 
values greater than 0.2 mm are plotted. 

 

At the high elevation grid points of all sites, all three uncorrected reanalyses 

underestimate the daily rainfall probabilities of AWAP for all rainfall events. 

Compared with R1 and R2, R3 reanalysis appears to better simulate AWAP rainfall 

probabilities, but cannot be considered as good as what was seen with R2 reanalysis 

at low elevation pixels. These results indicate that uncorrected NARCliM reanalyses 

are poor simulating the rainfall probability distributions at high elevation regions 

than low elevations. This can be attributed to the intrinsic difficulty of NARCliM 

RCMs to model the observed precipitation processes in topographically complex 

areas. 
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Figure 6.7 Cumulative probability distributions of (a) mean annual rainfall of 
uncorrected reanalyses and AWAP across the Bega River site and (b) daily rainfall at 

grid points J, K, L and M. Note that daily rainfall are in log scale and only values 
greater than 0.2 mm are plotted.  

 

Figure 6.8 Cumulative probability distributions of (a) mean annual rainfall of 
uncorrected reanalyses and AWAP across the Sydney site and (b) daily rainfall at 
grid points P, Q, R and S. Note that daily rainfall are in log scale and only values 

greater than 0.2 mm are plotted.  



 

Chapter 6 - Testing the rainfall statistics of NARCliM reanalyses using AWAP data 

117 
 

The cumulative probability distributions of the mean annual rainfall of the bias 

corrected reanalyses and AWAP for all grid points of all four sites are shown in 

Figures 6.9a to 6.12a respectively. After the bias correction, all reanalyses tend to 

reproduce the CDF of AWAP while sharing almost 98% of AWAP’s CDF. This is a 

good example, which shows the extent of improvement in the mean statistics of 

reanalyses after the bias correction. The bias corrected R2 reanalysis better captures 

the CDF of AWAP than R1 and R3. However, at Bega River and Sydney sites, R1 

reanalysis also captures the CDF of AWAP as closely as R2 reanalysis.     

The cumulative probability distributions of the daily rainfall of bias corrected 

reanalyses and AWAP at grid points A to D at the Williams River site, E to H at the 

Richmond River site, J to M at the Bega River site and P to Q at the Sydney site are 

shown in Figures 6.9b to 6.12b respectively. Note that these comparisons are for the 

daily rainfall but are typical of results for fortnightly to yearly averaged data as well. 

An analysis these longer timescale was done for the Williams River site and can be 

found in Appendix A.1 – Figures A.1 and A.2. 

 

 

Figure 6.9 Cumulative probability distributions of (a) mean annual rainfall of bias 
corrected reanalyses and AWAP across the Williams River site and (b) daily rainfall 
at grid points A, B, C and D. Note that daily rainfall are in log scale and only values 

greater than 0.2 mm are plotted. 
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In general, there is a significant improvement of reanalyses after the bias correction, 

but it is clear that only a part of the CDF has been improved. The CDF of bias 

corrected rainfall at grid points A-D show that none of the NARCliM simulations 

capture the probabilities of light rainfall events (rainfall less than 1.5 mm) of 

AWAP, hence the bias correction method (i.e. a method which fit cumulative 

distribution function (CDF) of simulated data and observed data to gamma 

distributions, see Evans and Argüeso, 2014; Argüeso et al., 2013; Piani et al., 

2010a,b) appears to be reliable only for rainfall events with rainfall greater than 1.5 

to 2 mm. For these low-to-high rainfall events (rainfall greater than 1.5 mm), bias 

corrected R2 reanalyses tend to reproduce the rainfall probabilities of all four grid 

points at the Williams River site. R1 and R3 bias corrected reanalyses are also 

capable to reproduce the CDF of AWAP at high elevation grid points (C and D), but 

tend to slightly under or overestimate the CDF at low elevation grid points. Note that 

the sudden rise seen at 1.5 mm rainfall value (Figure 6.9b) in daily NARCliM CDF 

is an artefact which may have caused by the bias correction process, and is 

consistently seen for all the sites studied. 

 

Figure 6.10 Cumulative probability distributions of (a) mean annual rainfall of bias 
corrected reanalyses and AWAP across the Richmond River site and (b) daily 

rainfall at grid points E, F, G and H. Note that daily rainfall are in log scale and only 
values greater than 0.2 mm are plotted. 
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Figure 6.11 Cumulative probability distributions of (a) mean annual rainfall of bias 
corrected reanalyses and AWAP across the Bega River site and (b) daily rainfall at 
grid points J, K, L and M. Note that daily rainfall are in log scale and only values 

greater than 0.2 mm are plotted.  

Comparing all sites, R2 bias corrected reanalysis best reproduces the probability 

distribution of low-to-high rainfall events of AWAP. As was seen at the Williams 

River site, R1 and R3 reanalyses tend to either under or overestimate the CDF of 

AWAP at low elevation grid points of Richmond and Bega River sites (grid points E 

and F at the Bega River site and J and K at the Bega River site).  This suggests that 

the results are typical for other sites.  
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Figure 6.12 Cumulative probability distributions of (a) mean annual rainfall of bias 
corrected reanalyses and AWAP across the Sydney site and (b) daily rainfall at grid 
points P, Q, R and S. Note that daily rainfall are in log scale and only values greater 

than 0.2 mm are plotted.  

Overall, the results suggest that bias corrected reanalyses are only reliable in 

reproducing the daily rainfall probabilities of rainfall events with rainfall greater than 

1.5 mm. Within this range (rainfall greater than 1.5), bias corrected reanalyses are 

more capable to closely reproduce the CDF of AWAP at high elevation grid points 

than the uncorrected reanalyses.   
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6.3 Spatial Variability of the rainfall  

6.3.1 Mean rainfall 

The spatial distribution of the mean annual rainfall of uncorrected reanalyses and 

AWAP, the ratio of the mean of the uncorrected reanalyses and AWAP and the 

elevation of all grid points for the Williams River site is shown in Figure 6.13.  

 

 

Figure 6.13 Spatial distribution of the mean annual rainfall – Williams River site (a) 
mean annual rainfall of uncorrected reanalyses and AWAP, (b) ratio of the mean 

annual rainfall of uncorrected reanalyses to AWAP and (c) topography map of the 
site (as defined and used by NARCliM). 

The mean annual rainfall of AWAP at the Williams River site varies from 626-1,516 

mm whereas the mean simulated by the uncorrected reanalyses lies in the range of 

616-3,942 mm. This clearly shows that reanalyses simulations tend to overestimate 

the rainfall of AWAP, particularly the higher rainfall regions. This effect is more 

pronounced in R3 compared with R1 and R2. In general, the mean annual rainfall is 
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higher at high elevations than low elevations of Figure 6.13c in each dataset. As was 

seen at the Goulburn River site, the general spatial pattern of the mean rainfall of 

reanalyses is qualitatively similar for that of AWAP data.  

Figure 6.13b shows the mean rainfall of NARCliM uncorrected reanalyses divided 

by AWAP. The ratio ranging from 0.5 to 3.5 for the Williams River site indicates 

that the mean rainfall of the NARCiM reanalyses tends to be greater than the mean 

of the AWAP rainfall. While there are slight discrepancies between the spatial 

patterns of AWAP and reanalysis datasets, all reanalyses, except R2, overestimate 

the mean annual rainfall of the AWAP across the site. As was found earlier, the 

overestimation of uncorrected R3 reanalysis is greater than R1 and R2. Compared 

with R1 and R3, uncorrected R2 reanalysis simulates the mean rainfall of AWAP 

well, with a ratio varying from 1 to 1.5 for more than 75% of the total grid points of 

the site.   

The spatial distribution of the mean annual rainfall of bias corrected reanalyses and 

AWAP and the ratio of the mean of the bias corrected reanalyses and AWAP for the 

Williams River site is shown in Figure 6.14. 

 

Figure 6.14 Spatial distribution of the mean rainfall – Williams River site (a) mean 
annual rainfall of bias corrected reanalyses and AWAP and (b) ratio of the mean 

annual rainfall of bias corrected reanalyses to AWAP.  

Compared with Figure 6.13a, Figure 6.14a indicates that bias correction has 

improved the individual performance of each reanalysis dataset by reducing most of 
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the biases present in the mean of the uncorrected data. In particular, both the 

magnitude and spatial pattern of the mean annual rainfall of AWAP are better 

reproduced by the bias corrected reanalyses than uncorrected at each grid point 

across the site. This improvement in the rainfall magnitudes can clearly be seen in 

the plots of bias corrected reanalyses rainfall divided by AWAP shown in Figure 

6.14b. Most of the ratios ranging from 0.5 to 1.5 suggest that all three reanalyses are 

able to closely reproduce the rainfall of AWAP with slightly over or underestimating 

the values. Of all three reanalyses, R1 tends to overestimate the AWAP rainfall more 

than R2 and R3, which have underestimated rainfall values mostly away from the 

coastline. 

The spatial distribution of the mean annual rainfall of uncorrected reanalyses and 

AWAP, the ratio of the mean of the uncorrected reanalyses and AWAP and the 

elevation of all grid points for the Richmond River site is shown in Figure 6.15. In 

contrast to the Williams River site, reanalyses datasets for the Richmond River site 

have a spatial pattern which is different to AWAP while having a north-east south-

west band of high rainfall through the centre of the site, particularly along the rain 

shadow of the Great Dividing Range where the elevation varies from medium to 

high.  

The results in Figure 6.13a of the Williams River site showed that there is a positive 

relationship between the rainfall and elevation. In contrast, this positive relationship 

between the rainfall and elevation does not appear to be true for all the grid points of 

AWAP across the Richmond River site which is located in the north coast of NSW.  

Rainfall of NARCliM uncorrected reanalyses divided by AWAP for the Richmond 

River site is shown in Figure 6.15b. The ratio ranging from 0.5 to 3.5 shows that 

there is a consistency in results between sites, with all the reanalyses are 

overestimating the rainfall of AWAP. As was seen at the Williams River site, R2 

reanalysis appear to reproduce AWAP rainfall closely with ratios ranging from 1 to 

1.5 for most of the low elevation grid points. It is also worthwhile to note that there 

is a slight underestimation of the rainfall along the coast which was also seen at the 

Williams River site. 
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Figure 6.15 Spatial distribution of the mean rainfall – Richmond River site (a) mean 
annual rainfall of uncorrected reanalyses and AWAP, (b) ratio of the mean annual 
rainfall of uncorrected reanalyses to AWAP and (c) topography map of the site (as 

defined and used by NARCliM). 

 

The spatial distribution of the mean annual rainfall of bias corrected reanalyses and 

AWAP and the ratio of the mean of the bias corrected reanalyses and AWAP for the 

Richmond River site is shown in Figure 6.16. 
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Figure 6.16 Spatial distribution of the mean rainfall – Richmond River site (a) mean 
annual rainfall of bias corrected reanalyses and AWAP and (b) ratio of the mean 

annual rainfall of bias corrected reanalyses to AWAP.  

As was seen at the Williams River site, there is a significant improvement in the 

performance of reanalyses by reducing most of the biases present in the uncorrected 

data at the Richmond River site. Most significantly, the north-east south-west band 

of enormously high rainfall which was previously seen in the uncorrected reanalysis 

in Figure 6.15a has been removed after the bias correction. Therefore, this suggests 

that some of the significant biases which have being introduced in the initial design 

of NARCliM are most likely to be removed with the applied bias correction at some 

sites. Additionally, the ratio plots shown in Figure 6.16b suggest that R1 and R3 

reanalyses tend to overestimate the rainfall more than R2. However, R1 appear to 

overestimate the mean rainfall of AWAP at three grid points located at medium to 

high elevations (400 to 300 m) in the north of the site even after the bias correction. 

Therefore, in contrast this suggests that NARCliM’s bias correction method does not 

completely remove all the biases at a site, particularly some biases which are being 

introduced by the topography. 

 Similarly, the spatial distribution of the mean annual rainfall of uncorrected and bias 

corrected reanalyses, and AWAP, the ratio of the mean of the uncorrected and bias 

corrected reanalyses, and AWAP for the Bega River and Sydney sites are shown in 

Figures 6.17 to 6.20. 



 

Chapter 6 - Testing the rainfall statistics of NARCliM reanalyses using AWAP data 

126 
 

It should be noted that the sky blue grid points within the sites in Figures 6.18 and 

6.20 are the large water bodies with undefined rainfalls. Because in the bias-

correction process, grid points containing large water bodies at Bega River and 

Sydney sites were not calculated (i.e. the rainfall was undefined). There are three 

grid points at the Bega River sites and four grid points for the Sydney sites with 

undefined rainfall. This is in contrast to the uncorrected simulation where the rainfall 

for these pixels was simulated (Figures 6.17 and 6.19).  

 

 

Figure 6.17 Spatial distribution of the mean rainfall – Bega River site (a) mean 
annual rainfall of uncorrected reanalyses and AWAP, (b) ratio of the mean annual 
rainfall of uncorrected reanalyses to AWAP and (c) topography map of the site (as 

defined and used by NARCliM). 
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Figure 6.18 Spatial distribution of the mean rainfall – Bega River site (a) mean 
annual rainfall of bias corrected reanalyses and AWAP and (b) ratio of the mean 

annual rainfall of bias corrected reanalyses to AWAP.  
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Figure 6.19 Spatial distribution of the mean rainfall – Sydney site (a) mean annual 
rainfall of uncorrected reanalyses and AWAP, (b) ratio of the mean annual rainfall of 
uncorrected reanalyses to AWAP and (c) topography map of the site (as defined and 

used by NARCliM). 
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Figure 6.20 Spatial distribution of the mean rainfall – Sydney site (a) mean annual 
rainfall of bias corrected reanalyses and AWAP and (b) ratio of the mean annual 

rainfall of bias corrected reanalyses to AWAP.  

As was seen at the Merriwa site in Chapter 5 and the Williams River site, there is a 

positive relationship between the AWAP rainfall and the elevation for all grid points 

of Bega River and Sydney sites. This suggests that the positive relationship between 

the rainfall and elevation is true for all sites, except for the Richmond River which is 

located at the northern part of the broader east coast. The ratio between the 

uncorrected reanalysis and AWAP rainfall ranging from 0.5 to 4.0 for Bega River 

and Sydney sites also shows similar trends of all reanalyses overestimating the 

AWAP rainfall, with uncorrected R2 reanalysis better simulating the rainfall of 

AWAP at all sites. 

Overall, uncorrected R2 reanalysis has rainfall most similar to AWAP showing a 

ratio varying from 0.5 to 1.5 for over 60% of the grid points of each site. At low 

elevations of the Williams River, Richmond River and Sydney sites, the ratio of the 

mean rainfall of R2 and AWAP is close to 1, but still overestimates the rainfall at 
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higher elevations. In contrast, this effect of having ratios lower than 1.5 at low 

elevations cannot be seen in the Bega River site. Further, R2 uncorrected reanalysis 

tends to underestimate the AWAP rainfall for all sites mostly along the coast and at 

few other grid points inland.    

Figures 6.18 and 6.20 generated using the bias corrected reanalyses indicate that 

there is a consistency between the performances of the bias corrected datasets 

between the sites. As was seen earlier, all bias corrected reanalyses are able to 

reproduce both the magnitude and the spatial pattern of AWAP of Bega River and 

Sydney sites. In particular, at the Bega River site, all reanalyses mirror the spatial 

pattern in AWAP mean rainfall. This is likely due to the use of AWAP data for the 

bias correction process (see Section 2.6.3 for more details on NARCliM bias 

correction). The ratio between bias corrected reanalyses and AWAP mean rainfall at 

Bega River and Sydney site also varies from 0.5 to 1.5, and suggests that reanalyses 

slightly under or overestimate the mean rainfall of AWAP at all sites.  R1 and R3 

reanalyses tends to overestimate the AWAP mean rainfall slightly more than R2 at 

all sites, except at Bega River where all three reanalyses have approximately equal 

tendency of either under or overestimating the means at grid points. 

For all four sites, AWAP and reanalyses data show a band of high rainfall values 

along the coast to the coastal side of the escarpment which seems to be unrelated to 

the topography and appears to be consistent for each dataset. Further, this band can 

also be seen in the bias corrected reanalyses, particularly in R2 and R3 reanalyses 

along the coast of the Sydney site (Figure 6.20). This indicates how ocean 

interactions have influenced the mean rainfall distribution along the coastline of 

NSW. The extent of these influences on rainfall caused by the ocean will be further 

discussed in Chapter 8. 
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6.3.2 Coefficient of variation of the rainfall 

The coefficient of variation (Cv, the ratio of standard deviation to mean) was also 

calculated for each grid point of all four sites at daily, fortnightly, monthly and 

annual time resolutions. The spatial distribution of the Cv of uncorrected reanalyses 

and AWAP for the Williams River site is shown by Figure 6.21.   

 

Figure 6.21 Spatial distribution of Cv of uncorrected rainfall - Williams River site: 
(a) day, (b) fortnight, (c) month and (d) annual. 

The high Cv values ranging from 1.8 to 4 shown in Figure 6.21a indicate that the 

rainfall is highly variable at daily resolution compared with other longer time 

resolutions. As was seen at the Merriwa site in Section 5.1.3 the rainfall is less 

variable in high elevation areas while low elevations often have a high rainfall 

variability. Further, as for the mean annual rainfall, this variability measured by Cv 
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suggests that the rainfall variability is also influenced by the topography. However, 

the relationship between Cv of the rainfall and topography is negative, whereas the 

mean rainfall had a positive relationship with elevations. The Cv of reanalyses also 

follow a spatial pattern similar to AWAP, but tend to underestimate across the site.  

Given that there is a tendency for NARCliM uncorrected reanalyses to underestimate 

the Cv of the AWAP rainfall, a quantitative assessment of the under or 

overestimation is needed. Therefore, the ratios of Cv of uncorrected reanalyses and 

AWAP was also calculated and shown by Figure 6.22. 

 

Figure 6.22 Ratio of Cv of uncorrected reanalyses to AWAP rainfall - Williams 
River site: (a) day, (b) fortnight, (c) month and (d) annual. 

 

The ratios of Cv range from 0.6 to 1.1 across the site. This is a significant 

improvement in comparison with the mean annual rainfall, which had ratios varying 
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from 0.5 to 3.5 for the uncorrected reanalyses.  The ratio of Cv ranging from 1 to 1.1 

shows that the reanalyses tend to slightly overestimate the magnitudes. Compared 

with R1 and R3, R2 has closely simulated the Cv of the AWAP rainfall at the 

Williams River site. 

The spatial distribution of the Cv of bias corrected reanalyses and AWAP for the 

Williams River site is shown by Figure 6.23.   

 

Figure 6.23 Spatial distribution of Cv of bias corrected reanalyses and AWAP 
rainfall - Williams River site: (a) day, (b) fortnight, (c) month and (d) annual. 

 

Figure 6.23 indicates that most of the underestimated Cv values at individual grid 

points across the site have been corrected after the bias correction. The bias 

corrected R1 and R2 reanalyses tend to better produce both magnitude and the 
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spatial pattern in AWAP for all time resolutions than they did for uncorrected. In 

contrast, R3 reanalysis has the least improvement in capturing the Cv of AWAP.    

The ratios for the Cv of bias corrected reanalyses and AWAP are shown by Figure 

6.24. With bias correction, most of the underestimated Cv values of reanalyses have 

been corrected. In particular, this is clearly seen in R1 and R2 reanalyses which have 

ratios ranging from 0.8 to 1.1. Comparing number of grid points which have 

magnitudes of Cv close to AWAP (0.9 to 1.1), the bias corrected R2 appears to better 

reproduce the Cv of AWAP than R3 for all time resolutions.  

 

Figure 6.24 Ratio of Cv of bias corrected reanalyses to AWAP rainfall - Williams 
River site: (a) day, (b) fortnight, (c) month and (d) annual. 

The spatial distribution of the Cv and the ratio of Cv of uncorrected reanalyses and 

AWAP for the Richmond River site are shown in Figures 6.25 and 6.26. The results 

are consistent with the Williams River site, all reanalyses tending to underestimate 

the Cv of AWAP at the Richmond River site for all time resolutions. Of all the 
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reanalyses, R3, particularly at the daily time resolution appears to most closely 

reproduce the Cv of AWAP.  

 

Figure 6.25 Spatial distribution of Cv of uncorrected reanalysis and AWAP rainfall - 
Richmond River site: (a) day, (b) fortnight, (c) month and (d) annual. 
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Figure 6.26 Ratio of Cv of uncorrected reanalyses to AWAP rainfall - Richmond 
River site: (a) day, (b) fortnight, (c) month and (d) annual. 

The spatial distribution of the Cv and the ratio of Cv of bias corrected reanalyses to 

AWAP for the Richmond River site are shown in Figures 6.27 and 6.28. With the 

bias correction, R1 and R2 are improved. However, the improvement in capturing 

the Cv of AWAP is relatively less at the Richmond River site for all time resolutions 

relative to Williams River site. In particular, R1 reanalysis has a Cv close to AWAP 

at the low elevation grid points for all time resolutions, yet the overall spatial pattern 

in the Cv does not match with that of the AWAP. In contrast, R2 reanalysis appears 

to better capture the Cv of AWAP, particularly for high elevations, yet 

underestimates the Cv values at low elevations. This effect can clearly be seen for 

both fortnight and monthly time resolutions (Figures 6.28b and 6.28c).  
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Figure 6.27 Spatial distribution of Cv of bias corrected reanalysis and AWAP rainfall 
- Richmond River site: (a) day, (b) fortnight, (c) month and (d) annual. 
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Figure 6.28 Ratio of Cv of bias corrected reanalyses to AWAP rainfall - Richmond 
River site: (a) day, (b) fortnight, (c) month and (d) annual. 

 

The spatial distribution of the Cv and the ratio of Cv of uncorrected and bias 

corrected reanalyses, and AWAP for the Bega River and Sydney sites are shown by 

Figures 6.29 to 6.36 respectively. 
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Figure 6.29 Spatial distribution of Cv of uncorrected reanalysis and AWAP rainfall - 
Bega River site: (a) day, (b) fortnight, (c) month and (d) annual. 
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Figure 6.30 Ratio of Cv of uncorrected reanalyses to AWAP rainfall - Bega River 
site: (a) day, (b) fortnight, (c) month and (d) annual. 
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Figure 6.31 Spatial distribution of Cv of bias corrected reanalysis and AWAP rainfall 
- Bega River site: (a) day, (b) fortnight, (c) month and (d) annual. 
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Figure 6.32 Ratio of Cv of bias corrected reanalyses to AWAP rainfall - Bega River 
site: (a) day, (b) fortnight, (c) month and (d) annual. 
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 Figure 6.33 Spatial distribution of Cv of uncorrected reanalysis and AWAP rainfall - 
Sydney site: (a) day, (b) fortnight, (c) month and (d) annual. 
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Figure 6.34 Ratio of Cv of uncorrected reanalyses to AWAP rainfall - Sydney site: 
(a) day, (b) fortnight, (c) month and (d) annual. 
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Figure 6.35 Spatial distribution of Cv of bias corrected reanalysis and AWAP rainfall 
- Sydney site: (a) day, (b) fortnight, (c) month and (d) annual. 
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Figure 6.36 Ratio of Cv of bias corrected reanalyses to AWAP rainfall - Sydney site: 
(a) day, (b) fortnight, (c) month and (d) annual. 
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Comparing all sites, bias corrected rainfall fits AWAP rainfall better than 

uncorrected data for rainfall variability (i.e. coefficient of variation, Cv). However at 

the Richmond River site, R3 the uncorrected reanalysis simulates the Cv of AWAP 

better than the corrected while having some isolated overestimated values to the west 

along the Great Dividing Range. The R1 and R3 uncorrected reanalyses have spatial 

patterns most similar to each other for all sites. Compared with other two sites, Bega 

River site shows high rainfall variability for all datasets for all time resolutions.  

For the Bega River and Sydney sites, R2 has the Cv values most similar to AWAP, 

particularly for the monthly resolution with varying Cv ratio from 0.9 to 1.1. 

However, compared with monthly there is a significant underestimation of the Cv for 

other three time resolutions, particularly for annual showing some large regions of 

low Cv values (Cv <0.7). This will likely have implications for low estimates of long 

term variability of reservoir volumes in Sydney and Bega sites because they are 

driven by the variability of the long term resolution of the dataset. This can clearly 

be seen in Bega River and Sydney sites. Overall, comparing all three reanalyses, it 

appears that R2 uncorrected reanalysis better simulates the Cv of AWAP than 

uncorrected R1 and R3. 

With the bias correction, R1 and R2 reanalyses have more improved results than 

uncorrected reanalyses for all sites. The ratios between bias corrected reanalysis and 

AWAP ranging from 0.8 to 1.1 suggest that most of the underestimated Cv values of 

uncorrected reanalyses have been corrected with the applied bias correction for all 

sites. However, this improvement is most significant only for daily, fortnightly and 

monthly resolutions. 

Comparing the results for different time resolutions there is a general tendency for 

sub-annual uncorrected data to overestimate the Cv but for the annual results to 

underestimate it. This is consistent with results that will be shown in Section 6.4 

which show that the NARCliM reanalyses have a significantly higher annual 

autocorrelation than AWAP. 
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6.3.3 Lag-1 autocorrelation of the rainfall 

The spatial distribution of the lag-1 correlation of the rainfall of uncorrected 

NARCliM reanalyses and AWAP for the Williams River site is shown in Figure 

6.37. As in Chapter 5, daily autocorrelations were not used due to the large number 

of days with zero rainfall. 

 

Figure 6.37 Spatial distribution of lag-1 correlation of uncorrected reanalysis and 
AWAP rainfall – Williams River site: (a) fortnight, (b) month and (c) annual. 

 

The spatial patterns of lag-1 correlation of R1, R2 and R3 reanalyses are similar and 

mirror the mean annual rainfall pattern shown in Figure 6.13a for all time 

resolutions, except for the annual. In contrast to the lag-1 correlations of Merriwa 

site presented in Chapter 5, there is a similarity of the spatial pattern of reanalyses 

and AWAP at the monthly time resolution. As for the lag-1 autocorrelations shown 

in Figure 5.15 for the Merriwa site (in Chapter 5), the annual AWAP data again 

shows regions of negative lag-1 autocorrelations.  
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The magnitude of R3 appears to closely reproduce the lag-1 autocorrelations of 

monthly AWAP with some regions of under or overestimations. The overestimated 

regions are located at the high elevations while the underestimated regions are at low 

elevations. However, compared with R3, R1 and R2 had autocorrelations similar to 

each other for fortnightly and monthly resolutions across the site.  

Figure 6.38 shows the ratio of the lag-1 correlation to AWAP (uncorrected 

NARCliM reanalyses divided by AWAP) for the Williams River site. 

 

Figure 6.38 Ratio of the lag-1 correlation of uncorrected reanalyses and AWAP 
rainfall – Williams River site: (a) fortnight, (b) month and (c) annual. 

As was for the mean, the ratio plots for the fortnightly time resolution show that 

reanalyses tend to underestimate the lag-1 correlations of AWAP (underestimated 

regions are shown in steel blue regions) at low elevations, while overestimating at 

high elevations with R1 and R2 overestimating more than R3. The annual ratio also 

does not reflect any close relationship with the elevation and show that reanalyses 

overestimate the lag-1 correlation of AWAP for most of the grid points. The 

negative lag-1 correlation region shown in annual AWAP data (shown in Figure 
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6.37) is clearly visible in the annual ratio plots. These negative regions have ratios 

ranging from 0 to -5.0 and are shown by a range of colours varying from white to 

light purple. Overall, compared with R1 and R2, R3 reanalysis closely reproduce the 

lag-1 correlations of fortnightly and monthly AWAP rainfall at the Williams River 

site, with most of the ratio values varying from 0 to 1.5. 

The spatial distribution of the lag-1 correlation and the ratio of lag-1 correlation of 

bias corrected reanalysis and AWAP for the Williams River site is shown in Figures 

6.39 and 6.40. 

 

Figure 6.39 Spatial distribution of lag-1 correlation of bias corrected reanalysis and 
AWAP rainfall – Williams River site: (a) fortnight, (b) month and (c) annual. 
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Figure 6.40 Ratio of the lag-1 correlation of bias corrected reanalyses and AWAP 
rainfall – Williams River site: (a) fortnight, (b) month and (c) annual. 

There is only a slight improvement in the lag-1 correlation of the reanalyses rainfall 

after the bias correction. This is inconsistent to the improvement observed for the 

mean and Cv of the rainfall. Apart from the slight improvements of the magnitudes at 

some grid points, overall the spatial pattern and magnitude of the lag-1 correlation of 

reanalysis are almost unchanged. The ratio of lag-1 correlation of bias corrected 

reanalysis and AWAP is similar to the uncorrected rainfall. This suggests that even 

though the bias correction method applied by NARCliM tends to improve the 

distribution statistics such as mean and Cv of the rainfall (since bias correction 

modifies the probability distribution function), it does not change the time series 

characteristics of the rainfall, particularly lag-1 autocorrelations. This is because bias 

correction does not modify the temporal autocorrelations. 
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The spatial distribution of the lag-1 correlation and the ratio of lag-1 correlation of 

reanalyses to AWAP for the Richmond River site are shown in Figures 6.41 and 6.42 

(uncorrected data) and Figures 6.43 and 6.44 (bias corrected data). 

As was seen at the Williams River site, there is no significant improvement in the 

performance of the reanalysis in capturing the AWAP autocorrelations after the bias 

correction and the fit to AWAP is equally poor to that obtained for the Richmond 

River site. 

Similarly, the spatial distribution of the lag-1 correlation and the ratio of lag-1 

correlation of uncorrected and bias corrected reanalyses, to AWAP for the Bega 

River and Sydney sites are shown by Figures 6.45 to 6.52 respectively. 

 

 

Figure 6.41 Spatial distribution of lag-1 correlation of uncorrected reanalysis and 
AWAP rainfall – Richmond River site: (a) fortnight, (b) month and (c) annual. 
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Figure 6.42 Ratio of the lag-1 correlation of uncorrected reanalyses and AWAP 
rainfall – Richmond River site: (a) fortnight, (b) month and (c) annual. 

 

Figure 6.43 Spatial distribution of lag-1 correlation of bias corrected reanalysis and 
AWAP rainfall – Richmond River site: (a) fortnight, (b) month and (c) annual. 
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Figure 6.44 Ratio of the lag-1 correlation of bias corrected reanalyses and AWAP 
rainfall – Richmond River site: (a) fortnight, (b) month and (c) annual. 

 

Figure 6.45 Spatial distribution of lag-1 correlation of uncorrected reanalysis and 
AWAP rainfall – Bega River site: (a) fortnight, (b) month and (c) annual. 
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Figure 6.46 Ratio of the lag-1 correlation of uncorrected reanalyses and AWAP 
rainfall – Bega River site: (a) fortnight, (b) month and (c) annual. 

 

Figure 6.47 Spatial distribution of lag-1 correlation of bias corrected reanalysis and 
AWAP rainfall – Bega River site: (a) fortnight, (b) month and (c) annual. 
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Figure 6.48 Ratio of the lag-1 correlation of bias corrected reanalyses and AWAP 
rainfall – Bega River site: (a) fortnight, (b) month and (c) annual. 
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Figure 6.49 Spatial distribution of lag-1 correlation of uncorrected reanalysis and 
AWAP rainfall – Sydney site: (a) fortnight, (b) month and (c) annual. 
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Figure 6.50 Ratio of the lag-1 correlation of uncorrected reanalyses and AWAP 
rainfall – Sydney site: (a) fortnight, (b) month and (c) annual. 
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Figure 6.51 Spatial distribution of lag-1 correlation of bias corrected reanalysis and 
AWAP rainfall – Sydney site: (a) fortnight, (b) month and (c) annual. 
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Figure 6.52 Ratio of the lag-1 correlation of bias corrected reanalyses and AWAP 
rainfall – Sydney site: (a) fortnight, (b) month and (c) annual. 

 

As was seen for the coefficient of variation of the rainfall shown in Section 6.3.2, 

there is a consistency of the performance of three reanalyses datasets for all sites. 

The general spatial patterns of R1, R2 and R3 reanalyses are similar to each other for 

all sites except for Sydney. At Sydney the R3 reanalysis closely produces the lag-1 

correlation of AWAP, while R1 and R2 significantly overestimate the magnitudes 

for fortnightly and monthly resolutions. There is a slight similarity of the spatial 

pattern of reanalyses and AWAP at fortnightly and monthly time resolutions for all 

sites except for the Williams River which has only the monthly pattern similar to 

AWAP. At annual resolution, all reanalyses poorly simulate the lag-1 correlation of 

AWAP for all sites. For all sites, there are regions of negative lag-1 autocorrelations 

(typically as low as -0.3 which is close to confidence limits, see for example Figure 
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6.54) in annual AWAP rainfall. This suggests that AWAP data might also have some 

issues of producing the correct autocorrelations and this will be further discussed 

later in Section 6.4. 

The ratio plots show that all reanalyses (both uncorrected and corrected) tend to 

underestimate the lag-1 correlations of AWAP at low elevations of each site. At high 

elevation grid points, NARCliM reanalyses overestimated the lag-1 correlations of 

AWAP with R1 and R2 overestimating more than R3. This effect is more 

pronounced at the Bega River and Sydney sites showing the highest ratio ranging 

from 2.0 to 5.0. The general spatial pattern of the monthly ratio is similar to the 

pattern of fortnightly ratio for all sites, except for the Williams River and Sydney 

sites where there are no clear patterns related with elevation. 

The bias corrected reanalysis results are similar to the uncorrected for all time 

resolutions and sites. Bias correction does not change the time series characteristics 

of the rainfall, particularly the lag-1 autocorrelations.   
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6.4 Autocorrelation Functions of the rainfall 

The previous section examined only the lag-1 autocorrelation but was able to map 

the distribution in space for the sites. The results showed a poor fit irrespective of the 

site studied or the reanalyses used. In this section, the autocorrelation function for all 

lags is examined for a small number of locations (four grid points) in each site in an 

attempt to understand why this poor performance occurs. 

The autocorrelations of uncorrected and bias corrected NARCliM and AWAP 

rainfall data at different lags were calculated at the grid points chosen within all four 

sites. The grid points are listed in Table 6.1. As for the autocorrelations results 

presented in Chapter 5, it should be noted that all the rainfall time series were 

transformed to have a zero skewness (i.e. so that the data are approximately 

Gaussian distributed) using the Box-Cox power transformation (See Section 4.4). 

The correlograms generated at grid points A, B, C and D of Williams River sites are 

shown in Figure 6.54. The spatial distribution of the Lambda (λ) used in the Box-

Cox transformation (Equation 4.1) for the monthly rainfall is shown in Figure 6.53, 

and λ values for grid points A to D are shown in Table 6.2. The lambda plots show 

how close to Gaussian (λ=0) or log-Gaussian (λ=1) the rainfall probability 

distribution is. 

 

Figure 6.53 The spatial distribution of λ for the monthly rainfall at the Williams 
River site 

As for the mean, Cv and lag-1 correlation, the spatial distribution of λ for the 

uncorrected reanalyses also mirrors the topography map of the Williams River site.  

Compared with AWAP, R1 and R3 reanalyses tend to have underestimated λ (for A 

to C grid points), while R2 reanalysis overestimate λ of AWAP for A, B and D grid 

points. This suggests that there is no general trend in reanalysis to either over or 

underestimate λ of AWAP.  
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Table 6.2 Lambda for the grid points of Williams River site  

Grid point R1 reanalysis R2 reanalysis R3 reanalysis AWAP 

A 0.31 0.33 0.30 0.32 

B 0.28 0.33 0.30 0.31 

C 0.27 0.32 0.31 0.34 

D 0.38 0.41 0.40 0.30 

 

The strong seasonal signals in autocorrelations of AWAP data in Figure 6.54 reflect 

that the rainfall is more strongly correlated to the next period (fortnight or month) at 

high elevation grid points than low elevations. However as for the Merriwa site, the 

autocorrelations of AWAP, particularly at lags greater than 1 are not significantly 

different from 0 (with correlations falling inside the 95% confidence limit) and have 

a consistent trend for all grid points of the Williams River site.  

The correlograms of grid points A and B located in low elevations of Williams River 

site show that uncorrected NARCliM reanalyses data slightly overestimate the 

autocorrelations of AWAP for all three time resolutions with R3 producing some 

closer values than R1 and R2. The strength of autocorrelations of reanalyses is 

stronger than AWAP particularly at fortnightly and monthly resolutions showing 

some statistically significant autocorrelations. This effect of overestimation is more 

pronounced at grid points C and D which are located at the high elevations.  
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Figure 6.54 Correlograms of uncorrected reanalysis and AWAP at the Williams 
River site. Grid points A and B are low elevations, and C and D are high elevations. 

The shaded regions are the 95% confidence limits of the null hypothesis (i.e. 
correlations are not significantly different from 0). 
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The correlograms generated for the bias corrected reanalysis at grid points A, B, C 

and D of Williams River site are shown in Figure 6.55. In Section 6.3.3, it was found 

that the lag-1 correlation of reanalysis remained unchanged while generating similar 

magnitudes and seasonality as was with the uncorrected, after the bias correction. 

Likewise, Figure 6.54 (uncorrected rainfall) and Figure 6.55 (bias-corrected rainfall) 

are similar and indicate that bias correction does not significantly change the 

correlograms. This indicates that the reanalyses show no significant change in the 

autocorrelation at the Williams River site.  
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Figure 6.55 Correlograms of bias corrected reanalysis and AWAP at the Williams 
River site. Grid points A and B are low elevations, and C and D are high elevations. 

The shaded regions are the 95% confidence limits of the null hypothesis (i.e. 
correlations are not significantly different from 0). 
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The correlograms for the grid points of Richmond River site are shown in Figure 

6.56. At Richmond River, the AWAP rainfall also shows significant autocorrelations 

(lying outside the 95% confidence limit) for all the grid points. Due to this high 

autocorrelations of AWAP, reanalyses tend to underestimate the autocorrelation of 

AWAP, particularly at low elevation grid points (E and F) and overestimate them at 

high elevation grid points (G and H). This underestimation of the AWAP correlation 

is contrast with the behaviour of the Williams River site. 

The correlograms for the bias corrected reanalyses are shown in Figure 6.57. As 

before for the Williams River site, the correlograms are unchanged after the bias 

correction.  
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Figure 6.56 Correlograms of uncorrected reanalysis and AWAP at the Richmond 
River site. Grid points E and F are low elevations, and G and H are high elevations. 

The shaded regions are the 95% confidence limits of the null hypothesis (i.e. 
correlations are not significantly different from 0). 
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Figure 6.57 Correlograms of bias corrected reanalysis and AWAP at the Richmond 
River site. Grid points E and F are low elevations, and G and H are high elevations. 

The shaded regions are the 95% confidence limits of the null hypothesis (i.e. 
correlations are not significantly different from 0). 
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Figures 6.58 to 6.61 show correlograms of uncorrected and bias corrected reanalysis, 

and AWAP for the grid points of the Bega River and Sydney sites. For the Bega 

River site, NARCliM reanalysis data tend to overestimate the autocorrelations at low 

elevation grid points (J and K) and underestimate the autocorrelation of AWAP at 

the high elevation grid points (L and M).  

For the Sydney site, reanalyses tend to overestimate the autocorrelations of AWAP 

rainfall at P, Q and R grid points. In particular at grid point R, reanalyses greatly 

overestimate autocorrelations of AWAP. In contrast to P, Q and R grid points, 

fortnightly autocorrelations are closely produced by reanalyses at the grid point S 

while underestimating the monthly AWAP autocorrelations.  
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Figure 6.58 Correlograms of uncorrected reanalysis and AWAP at the Bega River 
site. Grid points J and K are low elevations, and L and M are high elevations. The 

shaded regions are the 95% confidence limits of the null hypothesis (i.e. the 
correlations are not significantly different from 0). 
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Figure 6.59 Correlograms of bias corrected reanalysis and AWAP at the Bega River 
site. Grid points J and K are low elevations, and L and M are high elevations. The 

shaded regions are the 95% confidence limits of the null hypothesis (i.e. the 
correlations are not significantly different from 0). 
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Figure 6.60 Correlograms of uncorrected reanalysis and AWAP at the Sydney site. 
Grid points P and Q are low elevations, and R and S are high elevations. The shaded 
regions are the 95% confidence limits of the null hypothesis (i.e. the correlations are 

not significantly different from 0). 
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Figure 6.61 Correlograms of bias corrected reanalysis and AWAP at the Sydney site. 
Grid points P and Q are low elevations, and R and S are high elevations. The shaded 
regions are the 95% confidence limits of the null hypothesis (i.e. the correlations are 

not significantly different from 0).  
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Overall, the results of autocorrelation analysis suggest that the ability of reanalyses 

data to reproduce the observed autocorrelations is consistently poor and there is no 

consistency of either under or overestimating the observed magnitudes. The varying 

results at different sites located along the broader east coast indicate that the ability 

of NARCliM reanalyses to reproduce the autocorrelations of rainfall is not consistent 

between the sites with no trend from north to south. It appears to most strongly 

depend on the elevation of the site. Further, as explained earlier in chapter 5, it is 

also possible that the spatial averaging of elevation within the NARCliM pixels is 

affecting the results, particularly where rainfall volume is closely related to 

topography.  

Furthermore, it should be noted that the method AWAP uses to interpolate data into 

the grid appears to neglect any autocorrelation in rainfall and therefore there may be 

artefacts in the generation of AWAP with respect to autocorrelations. The question 

raises here is whether this is an issue with AWAP, but not with the NARCliM data. 

In order to investigate the accuracy of autocorrelations of AWAP relative to rain 

gauges, autocorrelations analysis was again performed for two grid points with each 

have a rain gauge located within, and results are shown in Figure 6.62. Note that 

these two rain gauges, S1 and S2 (see Figure 3.10 and Table 3.6) were chosen as 

much as close to grid points R and S, while representing similar topographic 

conditions as of grid points R and S. The reason for using S1 and S22 is because 

there are no rain gauges in either R or S grid points.  

Figure 6.62 shows that AWAP is able to reproduce the autocorrelations well for all 

the lags at grid point S2, while underestimating the autocorrelations at the rain gauge 

S22, particularly for lags 1 to 50. Therefore, this suggests that there are discrepancies 

in the performance of AWAP in reproducing the autocorrelations of rain gauges, and 

this requires more investigations in future. However, consistent with the results in 

Section 5.1.2.1, what is clear is that reanalyses have autocorrelations different to 

both rain gauges and AWAP at the Sydney site.  

 

 



 

Chapter 6 - Testing the rainfall statistics of NARCliM reanalyses using AWAP data 

176 
 

 

 

Figure 6.62 Correlograms of uncorrected reanalysis, AWAP and rain gauges at grid 
points S2 and S22. 

However, all reanalyses data were able to reproduce the correct timing of the 

seasonal variability (i.e. the shape of the autocorrelation with time) present in the 

AWAP data for all sites even though the peaks of the seasonal cycles were under or 

overestimated. This result is consistent with the autocorrelations assessed at the 

Merriwa site in Chapter 5.   

The bias corrected reanalyses produce similar results as the uncorrected data for all 

grid points at each site. Bias correction does not change the performance of 

reanalyses. Bias correction does not improve the time series statistics of rainfall. 
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6.5 Some insights on the seasonality 

The autocorrelation analysis of both uncorrected and bias corrected datasets exhibits 

a seasonal signal. To see if there is any persistence in the seasonal anomalies, the 

fortnightly and monthly bias corrected rainfall time series were detrended, using the 

mean and standard deviation (see step 3 of Section 4.4), and then the autocorrelation 

analysis was repeated on the residual anomaly time series. Shown in Figure 6.63 are 

the correlograms of detrended rainfall of reanalyses and AWAP for the Williams 

River site.  
 

 

Figure 6.63 Correlograms of detrended NARCliM reanalysis and AWAP at 
Williams River site. Grid points A and B are low elevations, and C and D are high 
elevations. The shaded regions are the 95% confidence limits of the null hypothesis 

(i.e. the correlations are not significantly different from 0).  
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For the fortnight resolution, the bias corrected R1 reanalysis show some significant 

autocorrelations, particularly at lags 7 and 32 for all grid points except grid point C, 

and bias corrected R3 reanalysis also has significant correlations at lag 8 for high 

elevation grid points. None of these significant autocorrelations in reanalyses data 

have been replicated by AWAP. For the monthly resolution, AWAP show a 

statistically significant lag-1 correlation at all grid points, but this has only been 

reproduced by the bias corrected R3 reanalyses at low elevation grid points, and 

either R1 or R2 reanalysis at high elevation grid points. AWAP also shows three 

significant autocorrelations for 20 > lags > 50, yet none of them are replicated by the 

reanalyses. In contrast, there are significant autocorrelations either for R2 or R3 

reanalyses for 10 > lags > 50 which cannot be seen in the AWAP dataset. These 

results suggest that there are discrepancies between the bias corrected reanalyses and 

AWAP datasets even though the seasonal signal was removed from the datasets. 

However, the reduction in the number of significant autocorrelations in the 

correlograms for the original and detrended data is consistent with a strong seasonal 

signal. 

6.6 Summary and Conclusions 

The following dot points summarise the results in this chapter.  

 The uncorrected NARCliM reanalyses, particularly R1 and R3 do not 

reproduce the probability distribution of the observed rainfall correctly. The 

bias corrected reanalyses show improved reproduction, but it is clear that 

only a part of the daily probability distribution has been improved. Neither 

uncorrected nor bias corrected reanalyses data reproduce the light rainfall 

events.  

 The uncorrected NARCliM reanalyses rainfall, particularly R1 and R3 often 

overestimate the mean rainfall of AWAP for the broader east coast.  

 All uncorrected reanalyses underestimate the coefficient of variation of 

AWAP, in fact tend to underestimate the temporal variability of the rainfall. 

R2 reanalysis is most similar to the AWAP at lower elevations, but still 

overestimates the rainfall statistics at high elevations. In contrast, bias 

corrected reanalyses tends to reproduce the mean and Cv of rainfall better 
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than they did before when uncorrected. In particular, the improvement to 

capture the mean rainfall of AWAP is more significant than Cv of rainfall. 

The ability of uncorrected reanalyses data to reproduce the observed 

autocorrelations is consistently poor and there is no consistency of either 

under or overestimating the observed magnitudes. A preliminary analysis 

shows that AWAP tends to underestimate the autocorrelation of rain gauge 

rainfall at some grid points, yet the difference between autocorrelations of 

reanalyses and rain gauges is much higher than that between AWAP and rain 

gauges. All reanalyses are capable of reproducing the correct timing of the 

seasonal cycle of the observed data with R2 and R3 are closely producing the 

autocorrelations at some locations, yet this does not show a direct link with 

the terrain. The bias corrected reanalyses produce similar results as the 

uncorrected data for all grid points at each site. Therefore, the results show 

that bias correction does not improve the performance of reanalyses and is 

not designed to capture the autocorrelations of AWAP at all sites studied. 

The reduction in the number of significant autocorrelations in the 

correlograms for the original and detrended data is consistent with a strong 

seasonal signal. 

 There is no north to south trend in either AWAP or NARCliM rainfall 

statistics in the broader east coast. 

 The uncorrected NARCliM reanalyses are able to reproduce the spatial 

pattern of AWAP, but do not produce the magnitudes correctly. The ability 

of NARCliM reanalyses to reproduce the spatial pattern of observed rainfall 

statistics is necessary but not sufficient requirement for hydrological studies, 

particularly reservoir modelling. Since the NARCliM reanalyses data do not 

produce the long-term observed rainfall characteristics correctly, the 

reliability of the use of this data in rainfall-runoff models to generate 

estimates of runoff is uncertain. 

 There is a tendency of the statistics such as mean, coefficient variation and 

lag-1 correlations calculated for NARCliM reanalyses data to be correlated to 

the terrain and the distance to the coast.  
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 The strong seasonal signal and differences of temporal correlations seen in 

NARCliM from north to south of the east coast, is not replicated either by 

AWAP or rain gauge data.  

 Bias correction has no significant impact on the poor performance of 

NARCliM which does not correctly capture the temporal correlation of the 

AWAP rainfall.  
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Testing the uncorrected and bias-corrected 
NARCliM reanalyses data using spatial correlation 
of the rainfall 

7.1 Introduction 

The spatial correlation of the rainfall is important when estimating the rainfall in 

hydrological and water availability analysis. When the rainfall is not uniform over a 

catchment, the spatial correlation between the subcatchments can be used to estimate 

the whole catchment rainfall total. Additionally, if the distribution of a rain gauge 

network is sparse or the available data at a specific location is not highly reliable, an 

existing spatial correlation of the rainfall can be useful to predict the rainfall. For 

example, if there are two rainfall stations which are separated by a distance less than 

a few kilometres, with one station having long continuous records, records of this 

particular rainfall station can be used for estimating the rainfall of the other. The 

reason behind this is if one station has a high rainfall, it is usually observed that the 

other station also experiences a high rainfall at the same time. However, this is not 

always true for some locations. Therefore, understanding of the existing correlations 

between rainfall stations in a catchment is beneficial, particularly when predicting 

the runoff for the water availability analysis in reservoir modelling.  

This chapter focuses on testing the NARCliM gridded data based on the spatial 

correlation of the rainfall at the four sites along the east coast. As in the previous 

chapter, the analysis was performed at the Williams River, Richmond River, Bega 

River and Sydney sites, and 10 km resolution uncorrected and bias corrected 

NARCliM reanalyses data (1950-2010) were used. The analysis is in two parts: (1) 

Assessment of the spatial correlation of the daily rainfall and its variability at the site 

scale (for all grid points), and (2) Validation against the 10 km resolution AWAP 

and rain gauge data (for selected grid points where the rain gauges are).  

As explained in Section 4.5 about the methodology, the spatial correlations between 

the daily rainfall of NARCliM grid points were first evaluated using the Pearson’s 

correlation coefficient; correlation between all other grid points were calculated with 
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reference to two grid points located at high and and two grid points at low elevations 

for each site. The method is descriptively explained in Section 4.5. Then, results are 

compared with spatial correlation of AWAP which was calculated using the same 

method.  

Later, spatial correlation of both NARCliM and AWAP gridded data are compared 

with the observed spatial correlations, calculated for the selected rain gauges within 

each site. Only grid points (NARCliM/AWAP) which have rain gauges inside were 

used for the comparison.   The selected reference grid points/rain gauges and all 

other grid points/rain gauges used in the analysis are shown in Table 7.1 and Figures 

7.1 to 7.4. 

Table 7.1 Reference grid points selected at each site 

Site name 
Total rain 

gauges used 

Reference grid 

point/rain gauge  

ID 

Elevation of 

the reference 

grid point (m) 

Elevation 

range 

Williams River 

site 
17 

W17 

W4 

595 

24 

high 

low 

Richmond River 

site 
25 

P20 

P9 

938 

2 

high 

low 

Bega River site 25 
Q12 

Q3 

1075 

10 

high 

low 

Sydney site 29 
S22 

S8 

1225 

10 

high 

low 
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Figure 7.1 Map of the rain gauges and NARCliM/AWAP grid points selected at the 
Williams River site. 
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Figure 7.2 Map of the rain gauges and NARCliM/AWAP grid points selected at the 
Richmond River site. 
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Figure 7.3 Map of the rain gauges and NARCliM/AWAP grid points selected at the 
Bega River site. 



 

Chapter 7 - Testing the NARCliM reanalyses using spatial correlation of rainfall 

186 
 

 

 

Figure 7.4 Map of the rain gauges and NARCliM/AWAP grid points selected at the 
Sydney site. 
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7.2 Spatial correlation of NARCliM reanalyses and AWAP rainfall  

The spatial correlation of the rainfall between the high elevation grid point (W17) 

and all other grid points of the Williams River site are shown in Figure 7.5. All plots 

generated for the uncorrected reanalyses and AWAP data show that grid points 

which are close to the reference have higher correlations with the reference point 

than do farther away. However, as was seen with the other statistics (mean, Cv and 

lag-1 correlations in Section 6.3), the spatial correlations also appear to be related 

with the topography. The topography map of the Williams River site is shown in 

Figure 7.5b. High elevation grid points are more correlated to each other and appear 

to cluster together following the same spatial pattern of the elevation, suggesting that 

spatial correlation is not simply an effect of proximity, and is significantly 

influenced by both the topography and the distance between the points.   

The general spatial pattern in correlations of all uncorrected reanalyses is 

qualitatively similar to that of the AWAP data. Relative to the reanalyses data, there 

is a smoothing in the spatial pattern of the correlations of AWAP data which seems 

likely to be related with the inherent interpolation artefacts of AWAP data. Some of 

these artefacts were previously discussed in Section 6.3. However, the general 

spatial pattern in the correlations of all three reanalyses data is similar to each other.  
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Figure 7.5 Spatial correlations for all grid points of uncorrected reanalysis and 
AWAP at the Williams River site: (a) spatial distribution of correlations between the 
reference grid point and all other grid points and (b) topography map of the site (as 

defined and used by NARCliM). The reference is W17 high elevation grid point 
(shown in yellow boxes). 

 

The spatial correlation functions generated against the distance between the grid 

points (i.e. separation) are shown in Figure 7.6. As shown by Rodriguez-Iturbe and 

Mejia (1974), the spatial correlation function of each data set replicates an 

exponential decay function; the correlation gradually decreases with the increasing 

separation between the grid points. The different colour markers represent the 

elevation difference between the points (see Section 4.5, Methodology). The 

scatterplots indicate that all uncorrected reanalyses underestimate the spatial 

correlation function of AWAP, with R2 and R3 reanalyses underestimating the 

exponents of the fitted curve of AWAP more than R1. Compared with R1 and R2, 

the scatter in R3 reanalysis is very similar to AWAP for all separations. 
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Figure 7.6 Spatial correlations function of the uncorrected reanalysis and AWAP at 
the Williams River site. The reference is W17 high elevation grid point. 

The spatial correlation of the rainfall between the high elevation grid point (W17) 

and all other grid points of the Williams River site generated for the bias corrected 

reanalysis are shown in Figure 7.7. The corresponding spatial correlation functions 

are shown in Figure 7.8.  

 

Figure 7.7 Spatial correlations for all grid points of bias corrected reanalysis and 
AWAP at the Williams River site. The reference is W17 high elevation grid point 

(shown in yellow boxes). 
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Figure 7.8 Spatial correlations function of the bias corrected reanalysis and AWAP 
at the Williams River site. The reference is W17 high elevation grid point. 

The results indicate that the bias corrected reanalyses generate similar spatial 

patterns of correlations as the uncorrected data. Compared with AWAP, bias 

corrected R3 reanalyses appear to better reproduce the spatial pattern in the 

correlations of AWAP than R1 and R2 reanalyses. Figure 7.8 shows that all bias 

corrected reanalyses tend to underestimate the magnitudes of the spatial correlation 

of AWAP relative to the uncorrected. R1 and R2 reanalyses, have reduced exponents 

of -0.0064 and -0.0067 relative to the uncorrected data. Therefore, this suggests that 

bias correction has not improved the performance of reanalyses to reproduce the 

spatial correlation function of AWAP.  

The spatial correlations of the daily rainfall of uncorrected reanalyses and AWAP 

between the low elevation grid point (W4) and all other grid points of the Williams 

River site are shown in Figure 7.9. The results show that grid points which are close 

to W4 have high correlations of the rainfall compared to the points which are located 

at long separations. Again the spatial pattern of correlations for all reanalyses mirrors 
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the topography, with low elevation points highly correlated to the other low 

elevation grid points. As explained previously, the occurrence of these high 

correlated grid points follow the same spatial pattern of the elevation, and appear to 

not be an effect from the proximity. Apart from the general trend, this effect is less 

pronounced in the AWAP data as AWAP shows a smoother correlation pattern.  

 

 

 

Figure 7.9 Spatial correlations for all grid points of uncorrected reanalysis and 
AWAP at the Williams River site: (a) spatial distribution of correlations between the 
grid points and (b) topography map of the site (as defined and used by NARCliM). 

The reference is W4 low elevation grid point (shown in yellow boxes). 

 

The spatial correlation structure generated with reference to the low elevation grid 

point is shown in Figure 7.10. In contrast to the high elevation reference, all 

uncorrected reanalyses data simulate the spatial correlation function of AWAP well 

except for the few grid points separated by 100-150 km from the reference. However 

compared with Figure 7.6, there is less scatter in the correlation functions for all 

datasets for the low elevation point. It appears that there is a higher variability in the 

spatial correlation with reference to a high elevation point than to a low elevation 

reference. 
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Figure 7.10 Spatial correlations function of the uncorrected reanalysis and AWAP at 
the Williams River site. The reference is W4 low elevation grid point. 

 

The similar results generated for the bias corrected reanalysis and AWAP with 

reference to the low elevation grid point of the Williams River site is shown in 

Figures 7.11 and 7.12.  

 

Figure 7.11 Spatial correlations for all grid points of bias corrected reanalysis and 
AWAP at the Williams River site. The reference is W4 low elevation grid point 

(shown in yellow boxes). 
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Figure 7.12 Spatial correlations function of the bias corrected reanalysis and AWAP 
at the Williams River site. The reference is W4 low elevation grid point. 

Figures 7.11 and 7.12 are similar to Figures 7.9 and 7.10, suggesting that there is 

little difference in the performance of bias corrected reanalyses to capture the spatial 

correlation functions of AWAP for the low elevation reference. In contrast to the 

high elevation reference, all bias corrected reanalyses have a similar performance, 

with each underestimating AWAP autocorrelations by 10 to 12%.  

Similarly, the spatial correlation plots of uncorrected reanalysis and AWAP 

generated with reference to high and low elevation grid points of the Richmond 

River site are shown in Figures 7.13 and 7.14 respectively. These results are similar 

to that of the Williams River site and hence, reflect that there is a consistency of the 

performance of the reanalyses and AWAP data between the sites.  
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Figure 7.13 Spatial correlations for all grid points of uncorrected reanalysis and 
AWAP at the Richmond River site: (a) spatial distribution of correlations between 
the grid points, (b) spatial correlation vs separation and (c) topography map of the 
site (as defined and used by NARCliM). The reference is P20 high elevation grid 

point. 

 



 

Chapter 7 - Testing the NARCliM reanalyses using spatial correlation of rainfall 

195 
 

 

 

 

Figure 7.14 Spatial correlations for all grid points of uncorrected reanalysis and 
AWAP at the Richmond River site: (a) spatial distribution of correlations between 
the grid points, (b) spatial correlation vs separation and (c) topography map of the 

site (as defined and used by NARCliM). The reference is P9 low elevation grid 
point. 
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The spatial correlation plots generated for the bias corrected reanalysis and AWAP 

generated with reference to high and low elevation grid points of the Richmond 

River site are shown in Figures 7.15 and 7.16 respectively. At the high elevation 

reference of the Richmond River site, bias corrected R1 and R2 reanalyses tends to 

underestimate the AWAP spatial correlations 8 to 9% more than they did for the 

uncorrected. Comparing all three reanalyses, bias corrected R3 reanalysis better 

capture the spatial correlation functions of AWAP for both high and low elevation 

references.  

 

 

Figure 7.15 Spatial correlations for all grid points of bias corrected reanalysis and 
AWAP at the Richmond River site: (a) spatial distribution of correlations between 
the grid points and (b) spatial correlation vs separation. The reference is P20 high 

elevation grid point. 
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Figure 7.16 Spatial correlations for all grid points of bias corrected reanalysis and 
AWAP at the Richmond River site: (a) spatial distribution of correlations between 

the grid points and (b) spatial correlation vs separation. The reference is P9 low 
elevation grid point. 

Figures 7.17 and 7.18 show the spatial correlation plots generated for the 

uncorrected reanalysis and AWAP at the Bega River site. According to the 

topography map shown in Figure 7.17c, there is a significant variation of the 

elevations at this site. The Australian Alps located from south-west to north are the 

highest elevations in the regions. This mountain range is well resolved in the spatial 

pattern of the correlation plots for all three reanalyses (Figure 7.17a) while mirroring 

the general spatial pattern of the topography across the site. This effect can also be 

seen in the spatial pattern of the AWAP, though not as distinctly as in the reanalyses 
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datasets. This suggests that the averaging smoothing effect of the topography in 

AWAP data is higher than that of the reanalysis at high-to-very high elevations 

(greater than 1200 m). However in the plots of spatial correlation functions, the 

reanalyses grid points located along the Australian Alps (shown in the blue markers 

in Figure 7.17b) appear to be less correlated with the reference point than that of 

AWAP’s grid points, and have a significant downward shift from the fitted 

exponential curve, resulting up to 53% underestimation of the AWAP correlations. 

This might be attributed to the averaging of topography in AWAP data, and so with 

the daily rainfall time series.  
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Figure 7.17 Spatial correlations for all grid points of uncorrected reanalysis and 
AWAP at the Bega River site: (a) spatial distribution of correlations between the 

grid points, (b) spatial correlation vs separation and (c) topography map of the site 
(as defined and used by NARCliM). The reference is Q12 high elevation grid point. 
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Figure 7.18 Spatial correlations for all grid points of uncorrected reanalysis and 
AWAP at the Bega River site: (a) spatial distribution of correlations between the 

grid points, (b) spatial correlation vs separation and (c) topography map of the site 
(as defined and used by NARCliM). The reference is Q3 low elevation grid point. 
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The corresponding plots generated for the bias corrected reanalyses and AWAP at 

low and high elevation references at the Bega River site are shown in Figures 7.19 

and 7.20.  

 

  

 

Figure 7.19 Spatial correlations for all grid points of bias corrected reanalysis and 
AWAP at the Bega River site: (a) spatial distribution of correlations between the 
grid points and (b) spatial correlation vs separation. The reference is Q12 high 

elevation grid point. 
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Figure 7.20 Spatial correlations for all grid points of bias corrected reanalysis and 
AWAP at the Bega River site: (a) spatial distribution of correlations between the 

grid points and (b) spatial correlation vs separation. The reference is Q3 low 
elevation grid point. 

The spatial correlations calculated for the uncorrected reanalysis and AWAP with 

reference to the low and high elevation grid points (S8 and S22) at the Sydney site 

(Figures 7.21 and 7.22) also follow a similar spatial pattern to the topography map of 

the area. As was seen at the Richmond River site, all reanalyses datasets of Sydney 

site have a spatial correlation function similar to each other, but show some 

discrepancies compared with the spatial correlations of AWAP data, particularly for 

the correlations calculated with reference to the high elevation grid point. For 

example when the reference is a high elevation grid point, AWAP has more scatter 
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in the correlations than reanalyses for separations greater than 200 km. For the 

correlation functions generated at the low elevation point, all reanalyses data 

underestimate the correlations of AWAP for the large separations.  

The results for the bias corrected reanalysis shown in Figures 7.23 and 7.24 are 

similar to the uncorrected reanalyses. All bias corrected reanalyses tend to 

underestimate the spatial correlation function of AWAP. However, this effect is not 

as significant as in the Bega River site. As for the Bega River site, R1 and R3 

reanalyses has the highest underestimation of the spatial correlations of AWAP.  

In general for all four sites, both uncorrected and bias corrected reanalyses 

underestimate the spatial correlation function, and this underestimation is more 

significant at Bega River (up to 53%) and Sydney (up to 42%) sites, though more 

typically the underestimation is 10-20%. Bias corrected R1 reanalysis appears better 

capture the spatial correlation of AWAP at Williams River and Richmond site, while 

R2 reanalysis perform better for the Bega River and Sydney sites. All three 

reanalyses tend to underestimate the magnitudes of spatial correlations of AWAP 

even after bias correction.  
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Figure 7.21 Spatial correlations for all grid points of uncorrected reanalysis and 
AWAP at the Sydney site: (a) spatial distribution of correlations between the grid 
points, (b) spatial correlation vs separation and (c) topography map of the site (as 
defined and used by NARCliM). The reference is S22 high elevation grid point. 
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Figure 7.22 Spatial correlations for all grid points of uncorrected reanalysis and 
AWAP at the Sydney site: (a) spatial distribution of correlations between the grid 
points, (b) spatial correlation vs separation and (c) topography map of the site (as 

defined and used by NARCliM). The reference is S8 low elevation grid point. 
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Figure 7.23 Spatial correlations for all grid points of bias corrected reanalysis and 
AWAP at the Sydney site: (a) spatial distribution of correlations between the grid 

points and (b) spatial correlation vs separation. The reference is S22 high elevation 
grid point. 
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Figure 7.24 Spatial correlations for all grid points of bias corrected reanalysis and 
AWAP at the Sydney site: (a) spatial distribution of correlations between the grid 
points and (b) spatial correlation vs separation. The reference is S8 low elevation 

grid point. 

 

Additionally for all sites, grid points which are close to the reference have high 

correlations than points farther away. Further, rainfall at high elevation points are 

more highly correlated to the rainfall of close by high elevation points and rainfall at 

low elevation points are more correlated to the close by low elevation points. 

However, this is only true for the ‘close by’ grid points (separated approximately by 
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500-1000 km) which have similar elevations as for the reference. For example, at the 

Bega River site, grid points located along the Australian Alps which have even 

higher elevations are less correlated with the high elevation reference point. 

Therefore, this suggests that rainfall is more correlated to the distance between the 

points (separation) than to the difference of the elevation of the two points. Figures 

7.25 and 7.26 show the spatial correlation of the rainfall versus elevation difference 

for all grid points of the Bega River site with reference to the high, and low elevation 

grid point respectively. As for the figures, the rainfall of the nearby grid points are 

more correlated to the reference than the grid points further away, even if they have 

similar or different elevation differences. Therefore, this suggests that there is a 

relationship between the rainfall and the distance between the gauge locations or grid 

points, which appears to be is less synchronous with the elevation.  

 

 

Figure 7.25 Elevation vs spatial correlation for all grid points of uncorrected 
reanalysis and AWAP at the Bega River site: The reference is Q12 high elevation 

grid point. 
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Figure 7.26 Elevation vs spatial correlation for all grid points of uncorrected 
reanalysis and AWAP at the Bega River site: The reference is Q3 low elevation grid 

point. 
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7.3 Testing the spatial correlation of NARCliM reanalyses and AWAP 

against rain gauge data 

Spatial correlation functions between the rain gauges, uncorrected reanalyses grid 

points and AWAP grid points are shown in Figure 7.27. In this section, spatial 

correlations were calculated only for the grid points (reanalyses and AWAP) which 

included the rain gauges, while the spatial correlation functions shown in the 

previous section are for all grid points at a site. The left hand side subplots are the 

spatial correlation functions with reference to the high elevation grid points while the 

right hand side subplots are with reference to the low elevation points (Table 7.1) 

selected at each site. It should be noted that three rain gauges; rain gauge P15 of the 

Richmond River site and rain gauges S4 and S29 of the Sydney site were removed 

from the analyses since they have abnormally low correlations (between the 

reference and other gauges) compared with other surrounding rain gauges, thus 

available rainfall records of these gauges were judged as unreliable. No reasons for 

this abnormal result could be identified other than unusual topographic conditions.  

The spatial correlation functions in Figure 7.27 show that both reanalyses and 

AWAP gridded datasets have correlations higher than that of the rain gauges, with 

approximately 20 to 30% overestimation of correlations relative to the raingauges for 

all the grid points used. However, both reanalyses and AWAP showed the same 

general trend of the spatial correlation function of rain gauges for all low and high 

elevation references, except for the high elevation reference (P20) of the Richmond 

River site. For the correlation functions generated for the high elevation grid points, 

all reanalyses slightly underestimate the correlations of AWAP, as was found in the 

previous section.  

The results suggest that neither NARCliM reanalyses nor AWAP data correctly 

reproduce the spatial correlation function of the rain gauges for any of the sites. All 

reanalyses are able to reproduce the spatial correlations of AWAP rainfall with a 

slight underestimation. This suggest that the 10 km resolution reanalyses data are 

nearly equally capable of reproducing the spatial correlations of 5 km AWAP data, 

even though both datasets overestimate the observed spatial correlations of the 

raingauges. The discrepancies between the reanalyses are insignificant compared 

with differences between AWAP and rain gauge data. 
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Figure 7.27 Spatial correlation between rain gauges (left: high elevation rain gauges 
as the reference and right: low elevation rain gauge as the reference). Note that 

reanalyses rainfalls are uncorrected. 

 



 

Chapter 7 - Testing the NARCliM reanalyses using spatial correlation of rainfall 

212 
 

 

Figure 7.28 Spatial correlation between rain gauges (left: high elevation rain gauges 
as the reference and right: low elevation rain gauge as the reference). Note that 

reanalyses rainfalls are bias corrected. 

The spatial correlation functions generated using the bias corrected reanalyses, 

AWAP and rain gauge data are shown in Figure 7.28. As found in the previous 

section, the differences between the uncorrected and bias corrected results are small. 
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Therefore, results suggest that bias correction does not change the performance of 

reanalyses to capture the spatial correlation of either AWAP or rain gauges. 

7.4 Conclusions 

The ability of NARCliM reanalyses data to reproduce the spatial variation of the 

autocorrelation of the AWAP and raingauge rainfall was assessed in this chapter. 

The analysis of the spatial variability of correlation showed that the spatial pattern of 

the correlation of the reanalyses rainfall is qualitatively similar to that of the AWAP 

data and is driven by the spatial pattern of the topography in combination with the 

distance between the rain gauges. Grid points (both reanalyses and AWAP) which 

are close to the reference have higher correlations than the far points, but this 

appears to be primarily because nearer grid points are at similar elevations. Rainfall 

at high elevation points are more correlated to the rainfall of the close by high 

elevation points and rainfall at low elevation points are more correlated to the close 

by low elevation points.  

The spatial correlation trend of the rainfall for all datasets (gridded and point) 

approximately follow a single exponential function with distance. This exponential 

correlation function tends to have more scatter when a high elevation grid point is 

used as the reference. All reanalyses reproduce the overall spatial correlation trend of 

AWAP. This means that the decrease in correlation with distance is similar between 

the reanalyses and AWAP. The main discrepancy is that R1 and R3 tend to 

underestimate AWAP for large separations between the grid points for some site 

locations with correlations about 10 to 20% lower. Both reanalyses and AWAP 

gridded datasets have correlations higher than that of the rain gauges, with 

approximately 20 to 30% overestimation for all the grid points used.  

The bias corrected reanalyses tend to underestimate AWAP more than the 

uncorrected data for all sites, with the performance of R1, R2 and R3 varying 

between sites. Therefore, bias correction slightly degrades the fit of the reanalyses to 

the AWAP spatial correlations. Finally, neither NARCliM nor AWAP reproduce the 

spatial correlations of the daily rainfall of rain gauges. 
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East Coast Low impacts on the relationship between 
rainfall and elevation 

8.1 Introduction 

The spatial patterns of the rainfall, particularly at daily time resolution, are mostly 

related to the topography and some other factors, such as prevailing wind directions 

(Hutchinson, 1998a). As discussed in Section 5.1.3, Hutchinson (1998a,b) analysed 

this dependence of the rainfall with elevation using five spline models and found that 

the rainfall is highly correlated with the elevation.  

The statistical testing results, particularly the mean annual rainfall patterns presented 

in Chapters 5 and 6 showed that there is a possible link between the rainfall and 

topography. This link was consistently seen in both NARCliM reanalyses and 

AWAP data for all sites except for the Richmond River site which had a negative 

relationship between the mean annual rainfall of AWAP and the topography. The 

analysis in this chapter does investigate the elevation dependency in AWAP, because 

Hutchinson’s elevation dependent spline model was used for interpolation in 

generating AWAP. However, the elevation dependency in the NARCliM is 

investigated. Further both AWAP and reanalyses data showed a band of high rainfall 

values along the coast which seems to be unrelated to the topography and appears in 

all datasets. This indicates that the rainfall is not only related with the topography, 

but that there are also possible ocean interactions influencing the mean rainfall 

distribution along the coastline of NSW.  

As explained earlier in Chapter 1, the research work presented in this thesis was 

carried out under the ESCCI- East Coast Lows (ECL) Project 5. Linking with the 

objectives of ECL Project 5, this chapter aims to fulfil the third major objective of 

this thesis: Study the existing relationship between the rainfall and topography, and 

assess the impacts of ECLs on this relationship.  

Some preliminary results on the relationship between NARCliM rainfall and 

elevation were discussed for the Merriwa site in Chapter 5 and the other sites in 

Chapter 7.  The positive trends shown in the scatter plots (Figure 5.13) generated for 
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the three reanalyses showed that the high rainfall values are mostly associated with 

high elevations. McMahon (1964) also found that there is a direct influence of 

topography on rainfall in the Hunter Valley. Incorporating findings of McMahon 

(1964) and the results in Chapters 5 and 7, the relationship between the rainfall and 

elevation is further investigated in this chapter, while trying to link whether there are 

any impacts from ECLs. The Williams River site located in the Hunter Region was 

selected for the analysis in this chapter. The three 10 km resolution NARCliM 

reanalyses datasets, 5 km resolution AWAP data and rain gauge data (see Table 3.4) 

available for the period of 1950-2009 at the Williams River site were used for the 

analysis.  

8.2 Mean annual rainfall vs Elevation 

Scatter plots of NARCliM mean annual rainfall vs elevation for all grid points of the 

Williams River site are shown in Figure 8.1. The 10 km resolution elevation data 

used by the NARCliM project was used as the elevation in this plot for both the 

NARCliM and AWAP data. 

A summary of the linear regression analysis for the three reanalyses and AWAP data 

is shown in Table 8.1. The low correlations (r) reflect that there is a weak 

relationship between the rainfall and elevation for all datasets. The highest r2 value 

of 0.20 for R2 reanalysis, indicates that only 20% of the total variation of the rainfall 

is explained by the linear relationship with elevation, while 80% of the variation 

remains unexplained. For AWAP, the correlation is negative and only 1% of the 

variation of the rainfall is explained by the linear relationship between the rainfall 

and elevation. Therefore, these results suggest that there is only a weak linear 

relationship between rainfall and elevation. However, statistically significant p-

values (less0.05) for all three reanalyses indicate that results are different from the 

null hypothesis (i.e. no relationship of rainfall with elevation), so the relationship 

between rainfall and elevation, while weak, is statistically significant.   
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Figure 8.1 Scatter plots of NARCliM mean annual rainfall vs elevation for 
reanalyses and AWAP data. Zone 1 and Zone 2 are regions with two different trends. 

Table 8.1 Summary of the regression analysis for all gridded datasets 

 

However by visually inspecting the linear trends in Figure 8.1, there are two 

different trends in rainfall; one for the grid points which have elevations less 125 m 

and the other is for the grid points where the elevation is greater than 125 m (shown 

as Zone 1 and 2 in Figure 8.1). Therefore, dividing the rainfall into two separate 

samples and assessing each separately may improve the understanding of the 

relationship between rainfall and elevation. The relationship between the elevation 

and gridded rainfall, and rain gauge data is compared in Figure 8.2. The same rain 

Data Regression equation Correlation (r) R-squared (r2) p-value 

R1 reanalysis Y=0.56X+1270.21 0.32 0.11 0.001 

R2 reanalysis Y=0.67X+949.01 0.45 0.20 7.99e-19 

R3 reanalysis Y=0.54X+1463.90 0.22 0.05 2.29e-05 

AWAP Y=-0.07X+967.38 -0.09 0.01 0.1 
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gauges used in Section 7.2 (Table 3.4) were used in this plot. There are two 

differences between Figure 8.1 and Figure 8.2: (1) only grid points which included 

rain gauges were used for the comparison, and (2) elevation values were taken from 

the metadata file provided by BoM (i.e. NARCliM 10 km resolution elevation were 

replaced by the BoM gauge elevations). The results for the regression analysis are 

shown in Table 8.2. 

 

 

Figure 8.2 Scatter plots of mean annual rainfall vs elevation for reanalyses, AWAP 
and rain gauge data. Zone 1 and Zone 2 are the regions with two different trends. 

Note that Zones 1 and 2 are defined on a different distance threshold than in Figure 
8.1. 

Compared with Figure 8.1, all rainfall datasets show a weak (negative) relationship 

with elevation for all the rain gauges studied. In contrast, rainfall for all datasets is 

negatively correlated with elevation whereas in Figure 8.1, only AWAP has a 

negative correlation. However, as for Figure 8.1, rainfall trends in Figure 8.2 also 

indicate that there might be a possible relationship between rainfall and elevation, 

but it appears to exist differently as two regions on the actual ground; regions with 

elevations less 200 m and regions with elevation greater than 200 m (shown as Zone 

1 and 2 in Figure 8.2). The two elevation regions and the rain gauges are shown in 
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Figure 8.3. In general, low elevation regions of the Williams River site are located 

along the coast while high elevation regions are generally located inland. This 

suggests that the elevation relationship may be influenced by the distance to the 

coast and subsequent exposure to ECLs. 

Table 8.2 Summary of the regression analysis for rain gauges and corresponding 
reanalyses and AWAP grid points 

 

 

Figure 8.3 Topography map of the Williams River site. The elevation is classified 
into two groups: elevations less 200 m and elevations greater than 200.  

Data Regression equation Correlation (r) R-squared (r2) p-value 

R1 reanalysis Y=-0.63X+1512.17 -0.41 0.17 0.10 

R2 reanalysis Y=-0.40X+1182.74 -0.37 0.14 0.14 

R3 reanalysis Y=-1.24X+1795.86 -0.52 0.27 0.03 

AWAP Y=-0.41X+1015.67 -0.48 0.23 0.05 

Rain gauges Y=-0.36X+1012.70 -0.41 0.17 0.11 
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8.3 Impacts from the East Coast Lows (ECL) 

The rainfall statistics, particularly the mean annual rainfall, were identified as being 

related to the distance from the ocean in Chapter 6. This influence of distance 

(denoted ‘impact distance’) is often dependant on how far ocean interactions such as 

ECLs, are felt in a catchment. This section focuses on the influence and 

characterization of this impact distance from an ECL event.  

The average daily rainfall calculated for all ECL events occurring from 1979-2001 is 

shown in Figure 8.4. The 5 km resolution raster dataset of ECL average rainfall was 

taken from Kiem et al. (2016) and only Easterly Trough Lows (ETL) averages are 

shown in this map. The reason for selecting ETLs is because these events are 

identified as to evolve mostly east of the Great Dividing Range and in a southerly 

direction (Browning and Goodwin, 2013) and have high impact on the east coast of 

the NSW.   

 

 

Figure 8.4 Average daily rainfall associated with ETL-ECLs at the Williams River 
site 

Medium to high rainfall values ranging from 9 to 25 mm in Figure 8.4 indicate that 

the past ECL events have had the greatest influence on the coastal area, within 115 

km from the coastline. Therefore compared with low ECL impact regions (the 
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yellow regions with average rainfall less than 9 mm), there is a significant increase 

of the mean annual rainfall, which is dominated by ECL events which occurred 

throughout the year in these regions. This may possibly explain the band of high 

rainfall values in AWAP data along the coast for all sites studied in Section 6.3.1. 

However, since there is a clear impact from ECLs on the rainfall, it is possible that at 

least a portion of the variation of the rainfall not explained by the relationship 

between rainfall and elevation could be explained by the ECL impacts. 

8.4 A combined approach: ECL impacts on the relationship between the 

rainfall and elevation  

The results in Section 8.2 suggested that studying the rainfall at the Williams River 

site as two elevation groups (taking two samples of rain gauges) might improve the 

understanding of the relationship between rainfall and elevation. The results in 

Section 8.3 showed that rainfall along the coastal area (the region with elevation less 

200 m as shown by Figure 8.3) has been significantly impacted by ECLs, hence 

ECLs also play a major role when explaining the rainfall variation in this region. 

By combining the results of Sections 8.2 and 8.3, the relationship between rainfall 

and elevation is assessed for two samples of rain gauges: (1) rain gauges inside the 

ECL impacted region (region with rainfall average greater than 9 mm), and (2) rain 

gauges outside the ECL impacted regions (region with rainfall average less 9 mm). 

The map of rain gauges divided by the ECL impacts is shown in Figure 8.5.  
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Figure 8.5 Map of rain gauges divided by the ECL impacts: (1) rain gauges inside 
the ECL impacted region, and (2) rain gauges outside the ECL impacted region. 

 

The moisture-bearing winds often tend to amplify precipitation on windward slopes, 

and decrease it on leeward slopes (Smith, 1979; Daly et al., 1994). This decreasing 

of the precipitation is the rain shadow effect, and is common to this region due to the 

coastal escarpment and closeness to the ocean. Therefore, rain gauges W5, W7 and 

W12 located in rain shadow locations (see Figure 8.3) and were excluded from the 

analysis. Since the analysis is based on the ECL impacts, rain gauge W3 located on 

the boundary of the high and low ECL impacted region was also removed in the 

analysis. Thus, 13 rain gauges (out of 17) were used for this analysis. 

8.5 Assessment of the rainfall in two regions 

Scatter plots of the mean annual rainfall vs elevation for the rain gauges inside and 

outside the ECL impact regions are shown in Figure 8.6. Results for the regression 

analysis are shown in Tables 8.3 and 8.4.  

Rain gauge data in the ECL impacted region show a very strong linear relationship 

with r2 value of 0.91. This means that 91% of the variation of the rainfall is 

explained by the linear relationship between the rainfall and elevation. This is a 
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strong statistically significant linear relationship (p-value < 0.05), compared with 

three reanalyses datasets and AWAP.   

 

 

Figure 8.6 Scatter plots of the mean annual rainfall vs elevation for the rain gauges, 
reanalyses and AWAP data: (a) gauges/grid points inside the ECL impact region, (b) 

gauges/grid points outside the ECL impact region. 

All three reanalyses and AWAP rainfall also produce a linear relationship with 

elevation, with R2 reanalyses being able to better reproduce the linear relationship 

shown in the gauge data, but the statistical significance of AWAP and R3 reanalysis 

has also been dropped (Table 8.3) due to the less data points. However, for R2 

reanalysis, only 72% of the variation of the rainfall is explained by the relationship 

between rainfall and elevation.  
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Table 8.3 Summary of the regression analysis for rain gauges and corresponding 
reanalyses and AWAP grid points located inside the ECL impact region 

 

Outside the ECL impact region, none of the rainfall datasets are able to produce a 

statistically significant relationship (all data have p-values greater than 0.05) 

between rainfall and elevation. This suggests that the relationship between the 

rainfall and elevation is less definitive for the regions which are away from the coast.  

Table 8.4 Summary of the regression analysis for rain gauges and corresponding 
reanalyses and AWAP grid points located outside the ECL impact region 

Data Regression equation Correlation 
(r) R-squared (r2) p-value 

R1 reanalysis Y=1.96X+(1614.14) 0.72 0.52 0.067 

R2 reanalysis Y=2.00X+(1210.31) 0.72 0.72 0.066 

R3 reanalysis Y=2.57X+(1951.50) 0.63 0.40 0.13 

AWAP Y=0.47X+(1101.93) 0.66 0.44 0.11 

Rain gauges Y=1.21X+(1071.32) 0.95 0.91 0.00093 

Data Regression equation Correlation (r) R-squared (r2) p-value 

R1 reanalysis Y=0.15X+(1090.67) 0.16 0.02 0.80 

R2 reanalysis Y=0.07X+(928.57) 0.11 0.01 0.86 

R3 reanalysis Y=-0.19X+(1226.28) -0.25 0.06 0.68 

AWAP Y=0.19X+(701.33) 0.45 0.20 0.45 

Rain gauges Y=-0.06X+(859.78) -0.17 0.03 0.79 
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Using the limited number of rain gauge data available for the time period 

investigated (1950-2009), there are two major findings:  

(1) There is a strong statistically significant linear relationship between the 

rainfall and the elevation at the Williams River site, but only for regions 

which are close to the ocean (up to an approximate distance of 100 km 

from the coast) and inside the ECL impacted region.  

(2) The relationship between the rainfall and elevation is less definitive for the 

regions which are away from the coast (greater than 115 km) and outside 

the ECL impact region. 

It should be noted that the statistical significance of the results may improve by 

increasing the number of rain gauges, though it was not possible at this particular 

site where rain gauges are sparsely distributed and there were only 17 gauges which 

had continuous rainfall records for the 60 year analysis period. 

8.6 Conclusions 

A combined approach of assessing the relationship between the rainfall and 

elevation, and impacts from ECLs on this relationship was investigated in this 

chapter. The results of the analysis suggest that there is a statistically significant 

positive linear relationship between the observed rainfall and the elevation at the 

regions which are close to the coastline of the Williams River site, where the ECL 

impacts are most dominant. When the distance from the coast increases, this 

relationship becomes weaker.  

In general, the relationship between the rainfall and elevation is not consistent across 

a site and may depend on other factors such as wind direction and ocean interactions. 

However, it should be noted that this combined approach of the assessment of the 

relationship between rain gauge and elevation was performed as a preliminary case 

study and further investigations are warranted. A different site with a larger number 

of rain gauges may improve the results.
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Section 2  

Assessment of rainfall statistics of NARCliM GCM projections 

(1990-2009) 
 

The results presented in Section 1 (Chapters 5-8) were for the downscaled 

NARCLIM reanalysis RCMs (1950-2009). The 60-year period reanalysis RCMs 

were produced during the first phase of the NARCliM project (Evans et al., 2014).  

However, as explained in Chapter 3: Sites and Data, there are twelve different RCM 

simulations (produced with three RCM configurations: each driven by four GCMs 

(1990-2009)) and three reanalyses (1950-2009) covering the current day, 20 year 

epoch (1990-2009). The next four chapters (Chapter 9-12) assess the ability of these 

RCMs to reproduce the rainfall statistics of the observed rainfall at the Williams 

River, Richmond River, Bega River and Sydney sites. Here in Section 2 the main 

focus is on the performance of the GCM driven simulations for the shorter 1990-

2009 period this is the period common to the GCM-RCM and reanalyses simulation 

data. To minimize the confusion between datasets, GCM driven simulations are 

referred by the name of the GCM, while reanalyses driven simulations are referred to 

as reanalysis. Further, to indicate which model configuration of WRF RCM is used, 

R1, R2 or R3 is used at the beginning of a name followed by a hyphen (for example, 

if an output RCM dataset is produced by downscaling the CCCMA3.1 GCM using 

the R1 configuration of WRF, the output RCM is called as R1-CCCMA3.1 or R1-

CCCMA3.1 RCM). Collectively, all datasets are referred as RCMs. 

The four statistical methods which were used to assess the 60 year reanalyses data 

are the same as was used in previous chapters. The statistical methods used were: (1) 

probability distribution of the rainfall, (2) spatial variability of the rainfall statistics, 

(3) temporal autocorrelation of the rainfall, and (4) spatial correlation of the rainfall.  

The key focus of this section is to determine the performance of NARCliM 

simulations in capturing the observed rainfall statistics, focussing on the GCM-RCM 

performance because it is these models that are used for the future climate 
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projections. Knowing that the four GCMs have been downscaled using three RCM 

configurations, evaluation of the performance of each simulation is important to 

identify which models (i.e. either RCM or GCM) are dominant in driving the 

characteristics of the rainfall outputs.  

As before, there are two types of rainfall data: uncorrected and bias corrected. First 

the statistical testing results for the uncorrected data are presented, and then these 

results are compared with the results for the bias corrected simulations. 
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Testing NARCliM GCM simulations using the 
probability distribution of the rainfall 

9.1 Introduction 

This chapter evaluates the rainfall properties and how they are modified by the bias 

correction. The probability distributions of the uncorrected and bias corrected current 

day GCM projections (1990-2009) are assessed and results are compared against 

10 km AWAP data. Additionally, a 20 year subset, 1990-2009, extracted from the 60 

year reanalyses is also compared with GCM projections. The methods explained in 

Section 4.2 were used to calculate the rainfall probability distribution.  

9.2 Probability distribution of the rainfall 

The ability of NARCliM RCMs to reproduce the AWAP rainfall distribution is 

assessed in this section. The cumulative probability distributions (CDF) of the mean 

annual rainfall for the uncorrected NARCliM RCMs and AWAP for all grid points 

of the Williams River site are shown in Figure 9.1.  

As shown in Figure 9.1, R1 and R3 configurations of CSIRO-Mk3.0, MIROC3.2 

and ECHAM5 underestimate the probabilities of the mean annual rainfall of AWAP. 

The underestimation is least for R2-CSIRO-Mk3.0 and R2-MIROC3.2, while R2-

ECHAM5 closely reproduced the CDF of AWAP, particularly for the mean rainfall 

less than 850 mm. In contrast, the CCCMA3.1 simulations overestimated the CDF of 

AWAP for all three RCMs. As was seen in Section 6.2, the reanalyses for 1950-2009 

also underestimated the rainfall and had the largest underestimation of all the GCM 

simulations.  

The CDFs generated for the bias corrected simulations, shown in Figure 9.2 indicate 

that most of the systematic biases in the mean annual rainfall in the uncorrected 

simulations are removed by the bias correction. All CSIRO-Mk3.0 RCM simulations 

reproduced approximately 95 to 98% of the CDF of AWAP after the bias correction, 

and were therefore the GCM-RCM combination most able to simulate the mean 
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rainfall probabilities of AWAP at the annual resolution. For R3, all GCM 

simulations satisfactorily reproduced the CDF of AWAP, with ECHAM5 slightly 

underestimating the probabilities of the greater rainfall values. In general for the 

rainfall greater than 850 mm, ECHAM5 underestimated the CDF of AWAP, and this 

can be seen for R1. Compared with GCM simulations, the reanalysis, in particular 

R1 and R3, tend to underestimate the CDF of AWAP significantly, showing that 

there are some biases still remaining in the datasets which are not corrected by the 

bias correction.      
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Figure 9.1 Cumulative probability distributions of mean annual rainfall of 
uncorrected NARCliM GCMs and AWAP across the Williams River site. R1, R2 

and R3 (columns) are the three RCM configurations. 

 



 

Chapter 9 - Testing NARCliM GCM projections using the probability distribution of 

the rainfall 

232 
 

 

Figure 9.2 Cumulative probability distributions of mean annual rainfall of bias 
corrected NARCliM GCMs and AWAP across the Williams River site. R1, R2 and 

R3 (columns) are the three RCM configurations. 
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The cumulative probability distributions of the daily rainfall of the uncorrected 

NARCliM RCMs and AWAP at grid points A to D for the Williams River site are 

shown in Figure 9.3. For the low elevation grid points (A and B), both MIROC3.2 

and ECHAM5 RCMs were able to reproduce the CDF of the daily rainfall of AWAP 

for all three configurations. R1 and R3 configuration reanalysis and CSIRO-Mk3.0 

tend to underestimate the CDF of AWAP, while CCCMA3.1 overestimated it. 

However, all GCM simulations reproduced the CDF of AWAP for R2. For the high 

elevation grid point C, all GCMs except CCCMA3.1 underestimated the CDF of 

AWAP. R1-CCCMA3.1 was able to reproduce approximately 98% of the CDF of 

AWAP though R3-CCCMA3.1 overestimated the probabilities of the midsized 

rainfall (0.2 to 7 mm) events of AWAP. In contrast, at grid point D all GCM 

simulations overestimate the CDF of AWAP with R1 providing the best fit. 

However, this behaviour of R1 reanalysis is not consistent with the 60 years 

reanalyses (Figure 6.29), where all reanalyses underestimate the rainfall probabilities 

of AWAP.  

The CDFs generated for the bias corrected simulations are shown in Figure 9.4. In 

general, there was a significant improvement for all simulations after the bias 

correction, but it is clear that only part of the CDF has been improved. The CDF of 

bias corrected rainfall at grid points A-D show that none of the NARCliM RCMs 

capture the probabilities of light rainfall events (rainfall less 1 mm) of AWAP, hence 

the bias correction method (see Section 2.6.3) appeared to be reliable only for 

moderate to high rainfall events with rainfall greater than 1.5-2 mm. For moderate 

rainfall events, R2 configuration bias corrected RCMs tended to reproduce the 

rainfall probabilities, but this can only be seen in the rainfall at low elevation points 

(A and B). For the high elevation grid points (C and D), all simulations have 

discrepancies, either under or overestimating the observed rainfall probabilities. Note 

that the sudden rises around the 1.5 mm rainfall value (Figure 9.4) in daily 

NARCliM CDFs are artefacts that seem to be a result of the bias correction process, 

and are consistently seen for all the sites studied. 
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Figure 9.3 Cumulative probability distributions of daily rainfall of uncorrected 
NARCliM GCMs and AWAP at Grid point A, B, C and D of Williams River site. 

Note that daily rainfall is in log scale and only values greater than 0.2 mm are 
plotted. R1, R2 and R3 (columns) are the three RCM configurations. Points A and B 

are low elevation, C and D high elevation. 
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Figure 9.4 Cumulative probability distributions of daily rainfall of bias corrected 
NARCliM GCMs and AWAP at Grid point A, B, C and D of Williams River site. 

Note that daily rainfall is in log scale and only values greater than 0.2 mm are 
plotted. R1, R2 and R3 (columns) are the three RCM configurations. Points A and B 

are low elevation, C and D high elevation. 

The cumulative probability distribution of the mean annual rainfall of uncorrected 

NARCliM simulations and AWAP for all grid points of Bega River site is shown in 

Figure 9.5. The Bega River site is an interesting example, because it has the highest 
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elevation of all the sites and most of the rainfall is controlled by the orography. Since 

GCM-RCMs often tend to underestimate the rainfall at mountainous regions, a 

significant underestimation of AWAP can be expected. This can clearly be seen in 

Figure 9.5, where the CDF of AWAP, particularly for the mean rainfall greater than 

800 mm is highly underestimated by the GCM-RCM simulations. For the rainfall 

less than 800 mm, all GCM-RCM combinations, except CCCMA3.1, systematically 

underestimate the rainfall probabilities of AWAP. The R1-CCCMA3.1 reproduced 

the CDF of AWAP for the mean rainfall less than 800 mm, yet underestimated the 

largest rainfall occurrences. The CDFs of all the bias corrected GCM-RCMs (Figure 

9.6) indicate that most of the biases have been removed after the bias correction and 

the improvements are consistent with the results of the Williams River site. These 

results are typical for the other two sites; Richmond River and Sydney and, are 

therefore not discussed under this section (see Appendix A.2 – Figures A.3 to A.10 

for full details).  
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Figure 9.5 Cumulative probability distributions of mean annual rainfall of 
uncorrected NARCliM GCMs and AWAP across the Bega River site. R1, R2 and R3 

(columns) are the three RCM configurations. 
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Figure 9.6 Cumulative probability distributions of mean annual rainfall of bias 
corrected NARCliM GCMs and AWAP across the Bega River site. R1, R2 and R3 

(columns) are the three RCM configurations. 
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The cumulative probability distributions of the daily rainfall of uncorrected 

NARCliM simulations and AWAP at grid points J to M at the Bega River site are 

shown in Figure 9.7. There is a general trend at the Bega River site that all GCM-

RCM combinations closely reproduce or slightly overestimate the daily rainfall 

probabilities of AWAP at low elevation grid points and, greatly underestimate all 

rainfall probabilities of AWAP at the high elevation points. All reanalyses 

simulations, except R2 at grid point K underestimate the daily rainfall probabilities 

of AWAP at all grid points for all rainfall intensities. The CDFs generated with bias 

corrected simulations (shown in Figure 9.8) also have similar trends to the Williams 

River sites. 
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 Figure 9.7 Cumulative probability distributions of daily rainfall of 
uncorrected NARCliM GCMs and AWAP at Grid point J, K, L and M of Bega River 

site. Note that daily rainfall is in log scale and only values greater than 0.2 mm are 
plotted. 
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Figure 9.8 Cumulative probability distributions of daily rainfall of bias corrected 
NARCliM GCMs and AWAP at Grid point J, K, L and M of Bega River site. Note 
that daily rainfall is in log scale and only values greater than 0.2 mm are plotted. 
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9.3 Conclusions 

The ability of NARCliM GCM-RCM combinations to reproduce the AWAP rainfall 

distribution for 1990-2009 was assessed in this chapter. CSIRO-Mk3.0, ECHAM5 

and MIROC3.2 RCMs underestimated the mean rainfall probabilities across the 

sites, while CCCMA3.1 overestimated all probabilities. Reanalysis and CSIRO-

Mk3.0 tended to underestimate the daily rainfall probabilities at almost all the grid 

points, while ECHAM5 and MIROC3.2 RCMs closely reproduced the daily rainfall 

probabilities at low elevations. At high elevations, CCCMA3.1 most closely 

reproduced the observed rainfall probabilities for all sites. Results for the bias 

corrected data suggest that most of the systematic biases in the mean annual rainfall 

of the uncorrected simulations had been removed by the bias correction. Compared 

with other GCM-RCMs, the improvement in the CSIRO-Mk3.0 was quite 

significant. There was a significant improvement in the daily rainfall time series of 

RCM simulations after bias correction, however, it should be noted that only that 

portion of the rainfall time series with rainfall on a day being greater than 1 mm had 

been improved.  
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Testing the spatial variability of the NARCliM 
downscaled GCM uncorrected and bias-corrected 
rainfall 

10.1 Introduction 

The spatial variability of the reanalyses rainfall for 1950-2009 was assessed in 

Sections 5.1.3 and 6.3. Similarly, the spatial variability of the mean, coefficient of 

variation, standard deviation and lag-1 autocorrelation of the uncorrected and bias 

corrected current day GCM-RCM data and reanalysis projections for 1990-2009 is 

assessed in this chapter. Extending the analysis in Chapter 9 these data are compared 

with observed statistics of the 10 km resolution AWAP data for 1990-2009. The 

methods explained in Section 4.3 were used to calculate the spatial variability of the 

statistics at each site.  

10.2 Spatial variability of the rainfall statistics 

10.2.1 Mean rainfall 

Mean annual uncorrected rainfall for all RCM simulations and AWAP for the 

Williams River site is shown in Figure 10.1. All simulations were able to reproduce 

the spatial pattern in the mean rainfall of AWAP. CCCMA3.1 was the best at 

reproducing both the magnitude and the spatial pattern of the mean rainfall of 

AWAP, though there is a slight underestimation of the rainfall at some grid points. 

All other GCM-RCM simulations overestimated the mean rainfall of AWAP for the 

Williams River site. CSIRO-Mk3.0 and reanalysis had the highest overestimation. In 

particular, this overestimation is most significant at higher elevations. 
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Figure 10.1 Spatial distribution of the mean annual rainfall (1990-2009) for the 
Williams River site. The plots are for the uncorrected simulations of (a) R1, (b) R2, 

and (c) R3, and AWAP. 

 

Overall, the ability of RCMs to reproduce the AWAP mean rainfall at the Williams 

River site can be summarized as follows. It should be noted that only the best WRF 

RCM model configuration is shown in brackets.  

 

CCCMA3.1 (R2) > ECHAM5 (R2) > MIROC3.2 (R2) > CSIRO-Mk3.0 (R2) > reanalysis 

(R2) 

Comparing the three configurations, R2 is better able to simulate the mean rainfall of 

AWAP than R1 and R3 for all RCMs. The overestimation of rainfall in R3 

reanalysis is greater than R1 and R2. This result is consistent with the mean rainfall 

results for the 60-year reanalysis simulations discussed in Chapters 5 and 6.  

A comparison between the mean annual rainfall of AWAP and the bias corrected 

RCMs for the Williams River site is shown in Figure 10.2. The figure indicates that 

bias correction has improved the models performance by reducing most of the biases 

present in the uncorrected data. For example, the mean annual rainfall is reduced to 

below 1900 mm for all RCMs, from what was previously 4,000 mm (Figure 10.1).  

(a) 

(b) 

(c) 

RCMs  Observed 
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Figure 10.2 Spatial distribution of the mean annual rainfall (1990-2009) of the 
Williams River site: The plots are for the bias corrected simulations of (a) R1, (b) 

R2, and (c) R3, and AWAP. Note the colour scale is different to Figure 10.1. 

Compared with all other models, CSIRO-Mk3.0 (all RCMs) show a larger 

improvement after the bias correction and appear to be the closest to simulating both 

the magnitude and the spatial pattern of the mean annual rainfall of AWAP. All three 

reanalyses, R2-MIROC3.2 and R1- and R2-ECHAM5 overestimate the mean 

rainfall, particularly along the coast. The ability of R1- and R3-CCCMA3.1 is also 

improved in simulating the mean rainfall of AWAP, as in the CSIRO-Mk3.0 after 

the bias correction. 

The relative performance of the bias corrected RCMs is: 

 

CSIRO-Mk3.0 (R1, R2 and R3)> CCCMA3.1 (R1 and R3)> ECHAM5 (R3)≈ MIROC3.2 

(R1 and R3)> reanalysis (R2) 

The spatial distribution of the mean rainfall of the uncorrected RCMs of Richmond 

River site is shown in Figure 10.3.  

 

(a) 

(b) 

(c) 

RCMs Observed 
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Figure 10.3 Spatial distribution of the mean annual rainfall (1990-2009) of the 
Richmond River site: The plots are for the uncorrected simulations of (a) R1, (b) R2, 

and (c) R3, and AWAP. 

Of all uncorrected simulations of Richmond River site, CCCMA3.1 RCM is better 

able to simulate the mean rainfall of AWAP than the others. As was found for the 

Williams River site, both reanalyses and CSIRO-Mk3.0 poorly match the mean 

rainfall of AWAP, overestimating the rainfall from north to south across the centre 

of the site. The relative performance of the uncorrected RCM simulations at the 

Richmond River site is: 

 

CCCMA3.1 (R2) > ECHAM5 (R2) > MIROC3.2 (R2) > CSIRO-Mk3.0 (R2) > reanalysis 

(R2) 

As discussed in Section 6.3.1 there is a north-south band of high rainfall values in all 

uncorrected reanalyses RCM simulations. This is due to the biases in the RCMs 

which overestimate the precipitation caused by orography, generating too much 

precipitation in the mountains (see Section 6.3.1). Argüeso et al. (2013) also studied 

this effect and suggested that NARCliM model outputs often amplify the orographic 

blocking of fronts coming from the ocean, leading to an underestimation of rainfall 

(a) 

(b) 

(c) 

RCMs Observed 
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inland. The bias corrected mean annual rainfall of all RCMs shown in Figure 10.4 

indicates that most of these systematic errors have been removed by the bias 

correction.   

 

 

 

 

 

Figure 10.4 Spatial distribution of the mean annual rainfall (1990-2009) of the 
Richmond River site: The plots are for the bias corrected simulations of (a) R1, (b) 

R2, and (c) R3, and AWAP. Note the colour scale is different to Figure 10.3. 

 

The relative performance of the bias corrected RCM simulations at the Richmond 

River site is: 

 

CSIRO-Mk3.0 (R2)> CCCMA3.1 (R2)> ECHAM5 (R2 and R3)≈ MIROC3.2 (R1)>  

reanalysis (R2) 

All uncorrected R2 RCMs better capture the mean rainfall of AWAP than R1 and 

R3. Therefore from this point onwards, only the uncorrected R2 RCMs are shown 

for the remaining two sites (Bega River and Sydney, see Appendix A.3 – Figures 

A.11 to A.12 for more details). In contrast, there is no consistency about which bias 

corrected simulation is best. Therefore, all fifteen simulations are shown. 

(a) 

(b) 

(c) 

RCMs Observed 
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The spatial distribution of the mean rainfall of the uncorrected R2 RCMs and bias 

corrected R1, R2 and R3 simulations for the Bega River site are shown in Figure 

10.5 and 10.6.  

 

 

 
Figure 10.5 Spatial distribution of the mean annual rainfall (1990-2009) of the Bega 

River site: The plots are for the uncorrected simulations of R2 and AWAP. 

The relative performance of the uncorrected RCMs at the Bega River site is:  

CCCMA3.1 (R2) > ECHAM5 (R2) > MIROC3.2 (R2) > reanalysis (R2) 

> CSIRO-Mk3.0 (R2)  

All RCMs, but particularly MIROC3.2, ECHAM5 and CSIRO-Mk3.0, tend to 

overestimate the mean annual rainfall at high elevations for Bega River.  These 

results suggest that uncorrected MIROC3.2, ECHAM5 and CSIRO-Mk3.0 RCMs 

have larger errors at high elevations, particularly along the Australian Alps for the 

Bega River site. This is consistent with Chubb et al. (2016) who suggested that 

AWAP provides poor estimates of rainfall on the Australian Alps. They suggested 

that AWAP rainfalls at high elevations were about 50% too low after comparing 

AWAP with raingauges. 

After bias correction, all RCMs shown in Figure 10.6 appear to perform equally 

well, capturing the mean rainfall of AWAP at the Bega River site with minor 

discrepancies between each other. All RCMs overestimate the rainfall slightly along 

the coast and the high elevations regions, particularly along the Australian Alps.  

This overestimation is greatest for the reanalysis.  

Note that the sky blue grid points are large water bodies with undefined rainfall. As 

mentioned in Section 6.3.1, these can only be seen in the bias corrected plots. 

R2 RCM Observed 
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Figure 10.6 Spatial distribution of the mean annual rainfall (1990-2009) of the Bega 
River site: The plots are for the bias corrected simulations of (a) R1, (b) R2, and (c) 

R3, and AWAP. Note the colour scale is different to Figure 10.5. 

The relative performance of the bias corrected RCMs at the Bega River site is:  

 

CCCMA3.1 (R3) ≈ ECHAM5 (R3) ≈ MIROC3.2 (R2) ≈ CSIRO-Mk3.0 (R2) > reanalysis 

(R2) 

The spatial distribution of the mean rainfall of the uncorrected R2 RCMs and bias 

corrected R1, R2 and R3 RCMs of Sydney River site are shown in Figures 10.7 and 

10.8 respectively. All uncorrected RCMs overestimate the rainfall at high elevations 

of the Bega River and Sydney sites.  

The relative performance of the uncorrected RCMs at the Sydney site is: 

CCCMA3.1 (R2) > ECHAM5 (R2) > MIROC3.2 (R2) > CSIRO-Mk3.0 (R2) > reanalysis 

(R2) 

 

 

 

(a) 

(b) 

(c) 

RCMs Observed 



 

Chapter 10 - Testing the spatial variability of the NARCliM GCM rainfall 

250 
 

 

 

 

Figure 10.7 Spatial distribution of the mean annual rainfall (1990-2009) of the 
Sydney site: The plots are for the uncorrected simulations of R2 and AWAP. 

As was seen at the Bega River site, all RCMs for the Sydney site (shown in Figure 

10.8), except reanalyses, appear to perform equally well after the bias correction, 

capturing the mean rainfall of AWAP at the Sydney site. Consistent with the mean 

annual rainfall at Williams River, Richmond River and Bega River sites, all of the 

bias corrected reanalyses for Sydney overestimate the rainfall along the coast.  

The relative performance of the bias corrected RCMs at Sydney site is:  

CCMA3.1 (R2) ≈ ECHAM5 (R3) ≈ MIROC3.2 (R2) ≈ CSIRO-Mk3.0 (R2) > reanalysis 

(R3) 

  

R2 RCM Observed 
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Figure 10.8 Spatial distribution of the mean annual rainfall (1990-2009) of the 
Sydney site: The plots are for the bias corrected simulations of (a) R1, (b) R2, and 

(c) R3, and AWAP. Note the colour scale is different to Figure 10.7. 

10.2.2 Standard deviation of the rainfall 

The results of the standard deviation of rainfall for all RCMs (uncorrected and bias 

corrected) are shown in this section. This section focuses on the changes in the 

standard deviation of the rainfall after the bias correction.  

While comparing the underlying RCM configurations, differences between RCM 

performance at different time resolutions (i.e. differences between the aggregated 

rainfalls; daily, fortnightly, monthly and annually) are assessed. The results of the 

Sydney site are only presented in this section. Since there is an overlap between the 

boundary of the Sydney site, and Williams River and Bega River sites, the Sydney 

site is used as a representative of all three sites together in this section. 

(a) 

(b) 

(c) 

RCMs Observed 
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The standard deviation of rainfall for the uncorrected RCMs compared with AWAP 

is shown in Figures 10.9 to 10.11.  
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Figure 10.9 Spatial distribution of the standard deviation of the rainfall (1990-2009) 
of the Sydney site: The plots are for the uncorrected simulations of R1 and AWAP. 

Time resolutions are; (a) daily, (b) fortnightly, (c) monthly, and (d) annual. 

 

 

 

  

R1 RCM Observed 
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Figure 10.10 Spatial distribution of the standard deviation of the rainfall (1990-2009) 
of the Sydney site: The plots are for the uncorrected simulations of R2 and AWAP. 

Time resolutions are; (a) daily, (b) fortnightly, (c) monthly, and (d) annual. 

 

 

 

  

R2 RCM Observed 
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Figure 10.11 Spatial distribution of the standard deviation of the rainfall (1990-2009) 
of the Sydney site: The plots are for the uncorrected simulations of R3 and AWAP. 

Time resolutions are; (a) daily, (b) fortnightly, (c) monthly, and (d) annual. 

 

R1- and R3-CCCMA3.1 most closely reproduce the standard deviation of AWAP 

while R2-CCCMA3.1 tends to underestimate the standard deviation. All other RCMs 

(GCM and reanalysis) simulations slightly overestimate. This overestimation is 

greatest at high elevations (at Blue Mountains) and along the coast. R3 reanalysis 

R3 RCM Observed 
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has the highest overestimation. The R2 RCMs best reproduces the spatial pattern in 

the standard deviation of AWAP. Simulations of R3 and R1 tend to overestimate the 

standard deviation, particularly R3, for the low elevation coastal regions.  

The relative performance for the standard deviation for the uncorrected RCMs at 

Sydney is (the best RCM configurations are shown in brackets): 

 

CCCMA3.1 (R1 and R3) > MIROC3.2 (R2) > ECHAM5 (R2) ≈ CSIRO-Mk3.0 (R2) > 

reanalysis (R2) 

The standard deviation of the bias corrected RCM simulations for R1, R2 and R3 

compared with AWAP are shown in Figures 10.12 to 10.14. Note that the sky blue 

grid points within the site are large water bodies with undefined rainfall (see Section 

6.3.1). As was seen with the mean, the ability of all RCMs to reproduce the standard 

deviation of AWAP has been improved by the bias correction. All R2 RCMs show 

the best results in reproducing the standard deviation of AWAP.   

The relative performance for the standard deviation for the bias corrected RCMs is:  

 

MIROC3.2 (R2) > CCCMA3.1 (R2) > CSIRO-Mk3.0 (R2) ≈ ECHAM5 (R2) > reanalysis 

(R2) 

While the overall performance of the standard deviation of the RCM simulated 

rainfall has been significantly improved by the bias correction, it is worth noting that 

there are some erroneous grid points (to the west of the site) with very low standard 

deviation values which may have caused by the bias correction process. These grid 

points have very low standard deviation values, even lower than the surrounding grid 

points.   
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Figure 10.12 Spatial distribution of the standard deviation of the rainfall (1990-2009) 
of the Sydney site: The plots are for the bias corrected simulations of R1 and 

AWAP. Time resolutions are; (a) daily, (b) fortnightly, (c) monthly, and (d) annual.  

  

R1 RCM Observed 
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Figure 10.13 Spatial distribution of the standard deviation of the rainfall (1990-2009) 
of the Sydney site: The plots are for the bias corrected simulations of R2 and 

AWAP. Time resolutions are; (a) daily, (b) fortnightly, (c) monthly, and (d) annual. 

 

 

  

R2 RCM Observed 
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Figure 10.14 Spatial distribution of the standard deviation of the rainfall (1990-2009) 
of the Sydney site: The plots are for the bias corrected simulations of R3 and 

AWAP. Time resolutions are; (a) daily, (b) fortnightly, (c) monthly, and (d) annual. 

Overall, the results presented for both uncorrected and bias corrected simulations at 

different time resolutions (daily, fortnightly, monthly and annual) suggest that the 

differences in the fits to AWAP between time resolutions are small, and the relative 

performance of all the models is similar across the time resolutions.  

R3 RCM Observed 
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10.2.3 Coefficient of variation of the rainfall 

The spatial variability of the coefficient of variation (the ratio of standard deviation 

to mean) for the uncorrected and bias corrected RCM simulated rainfall is assessed 

in this section. The results shown in Section 6.3.2 suggested that reanalyses 

simulations tend to underestimate the rainfall variability of AWAP.  This section 

compares the coefficient of variation (Cv) for all RCMs against AWAP. Since the 

relative performance of RCMs is consistent across the sites, only the results for the 

Richmond River and the Sydney sites are shown (see Appendix A.4 – Figures A.13 

to A.24 for the results of the Williams River and Bega River sites)  

The Cv of uncorrected RCMs for R1, R2 and R3 compared with AWAP for the 

Richmond River site is shown in Figures 10.15 to 10.17. As was seen in the mean 

and standard deviation of the rainfall in Sections 10.2.1 and 10.2.2, all GCM-RCM 

combinations, except CSIRO-Mk3.0, best simulate the Cv of AWAP using R2.  
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Figure 10.15 Spatial distribution of the coefficient variation of the rainfall (1990-
2009) of the Richmond River site: The plots are for the uncorrected simulations of 
R1 and AWAP. Time resolutions are; (a) daily, (b) fortnightly, (c) monthly, and (d) 

annual. 

 

 

 

 

  

R1 RCM Observed 
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Figure 10.16 Spatial distribution of the oefficient variation of the rainfall (1990-
2009) of the Richmond River site: The plots are for the uncorrected simulations of 
R2 and AWAP. Time resolutions are; (a) daily, (b) fortnightly, (c) monthly, and (d) 

annual. 

 

The uncorrected CCCMA3.1 and ECHAM5 RCMs overestimate the Cv of AWAP, 

with R3-CCCMA3.1 and R3-ECHAM5 overestimating more than R1 and R2. Due 

to this overestimation, the uncorrected CCCMA3.1 fails to reproduce the Cv of 

rainfall, even though it was identified as the best uncorrected model simulation for 

capturing the mean annual rainfall at all sites in the previous section. The R2-

MIROC3.2 best simulates the Cv of AWAP at fortnightly and monthly resolutions, 

but with slight underestimation at high elevation regions. R3-CSIRO-Mk3.0 closely 

simulates the Cv of AWAP at monthly and annual time resolutions. The reanalyses, 

R1- and R2-CSIRO-Mk3.0 underestimate the Cv of AWAP for most time 

resolutions.  

 

  

R2 RCM Observed 
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Figure 10.17 Spatial distribution of the coefficient variation of the rainfall (1990-
2009) of the Richmond River site: The plots are for the uncorrected simulations of 
R3 and AWAP. Time resolutions are; (a) daily, (b) fortnightly, (c) monthly, and (d) 

annual. 

The relative performance for the Cv for the uncorrected RCMs is (the best RCM 

configurations are shown in brackets): 

MIROC3.2 (R2) > ECHAM5 (R2) >CCCMA3.1 (R2) >CSIRO-Mk3.0 (R3) > reanalysis 

(R2) 

The Cv of the bias corrected RCM simulations for R1, R2 and R3 compared with 

AWAP is shown in Figures 10.18 to 10.20.   

 

  

R3 RCM Observed 
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Figure 10.18 Spatial distribution of the coefficient of variation of the rainfall (1990-
2009) of the Richmond River site: The plots are for the bias corrected simulations of 
R1 and AWAP. Time resolutions are; (a) daily, (b) fortnightly, (c) monthly, and (d) 

annual. 

 

With the bias correction, most of the errors of CCCMA3.1 and ECHAM5 have been 

corrected. Reanalyses data, particularly the R3 reanalysis also show some significant 

improvement in reproducing the Cv of AWAP. Similarly, the performance of R1 and 

R3-MIROC3.2 has been improved by the bias correction. An improvement in the 

simulation of the Cv using bias-correction is seen for almost all RCMs for all 

configurations. Overall, this suggests that bias correction has improved the 

performance of the simulations at the RCM configuration level (i.e. R1, R2 and R3) 

and in particular R1 and R3 have been significantly improved. The best 

improvements occur for the daily resolution (the resolution at which the bias 

correction is performed) with relatively poorer improvement at the longer time 

resolutions.  

R1 RCM Observed 
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The ability to capture the Cv of AWAP in the bias corrected RCMs is (the best model 

configurations are shown in brackets): 

MIROC3.2 (R1 and R3)> ECHAM5 (R3)> CCCMA3.1 (R1)> CSIRO-Mk3.0 (R3) > 

reanalysis (R3) 

 

 

Figure 10.19 Spatial distribution of the coefficient variation of the rainfall (1990-
2009) of the Richmond River site: The plots are for the bias corrected simulations of 
R2 and AWAP. Time resolutions are; (a) daily, (b) fortnightly, (c) monthly, and (d) 

annual. 

 

 

 

  

  

R2 RCM Observed 
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Figure 10.20 Spatial distribution of the coefficient variation of the rainfall (1990-
2009) of the Richmond River site: The plots are for the bias corrected simulations of 
R3 and AWAP. Time resolutions are; (a) daily, (b) fortnightly, (c) monthly, and (d) 

annual. 

 

The Cv of uncorrected RCMs compared with AWAP at the Sydney site is shown in 

Figures 10.21 to 10.23. As was seen at the Richmond River site, MIROC3.2 appears 

to closely simulate the Cv of AWAP at the Sydney site while slightly 

underestimating the Cv along the Great Dividing Range. Overall, all R2 RCMs, 

except reanalysis and ECHAM5 appear to closely reproduce the spatial pattern of the 

Cv but significantly underestimates the magnitude by as much as 30%. The overall 

performance of the individual models is consistent with Richmond River site and can 

be summarized as follows. 

MIROC3.2 (R2) > ECHAM5 (R3) > CCCMA3.1 (R2) >CSIRO-Mk3.0 (R3) >reanalysis 

(R2) 
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Figure 10.21 Spatial distribution of the coefficient variation of the rainfall (1990-
2009) of the Sydney site: The plots are for the uncorrected simulations of R1 and 

AWAP. Time resolutions are; (a) daily, (b) fortnightly, (c) monthly, and (d) annual. 

 

  

R1 RCM Observed 
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Figure 10.22 Spatial distribution of the coefficient variation of the rainfall (1990-
2009) of the Sydney site: The plots are for the uncorrected simulations of R2 and 

AWAP. Time resolutions are; (a) daily, (b) fortnightly, (c) monthly, and (d) annual. 

 

 

  

R2 RCM Observed 
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Figure 10.23 Spatial distribution of the coefficient variation of the rainfall (1990-
2009) of the Sydney site: The plots are for the uncorrected simulations of R3 and 

AWAP. Time resolutions are; (a) daily, (b) fortnightly, (c) monthly, and (d) annual. 

The Cv of the bias corrected RCMs compared with AWAP are shown in Figures 

10.24 to 10.26. The performance of reanalysis, CCCMA3.1 and ECHAM5 has been 

improved after the bias correction which is consistent with the results at the 

Richmond River site. Note that the sky blue grid points within the site are large 

water bodies with undefined rainfall (see Section 6.3.1). 

 

R3 RCM Observed 
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Figure 10.24 Spatial distribution of the coefficient variation of the rainfall (1990-
2009) of the Sydney site: The plots are for the bias corrected simulations of R1 and 
AWAP. Time resolutions are; (a) daily, (b) fortnightly, (c) monthly, and (d) annual. 
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Figure 10.25 Spatial distribution of the coefficient variation of the rainfall (1990-
2009) of the Sydney site: The plots are for the bias corrected simulations of R2 and 
AWAP. Time resolutions are; (a) daily, (b) fortnightly, (c) monthly, and (d) annual. 
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Figure 10.26 Spatial distribution of the coefficient variation of the rainfall (1990-
2009) of the Sydney site: The plots are for the bias corrected simulations of R3 and 
AWAP. Time resolutions are; (a) daily, (b) fortnightly, (c) monthly, and (d) annual. 

The relative performance for Cv for the bias corrected RCMs is (the best RCM 

configurations are shown in brackets): 

MIROC3.2 (R2)> ECHAM5 (R3)> CCCMA3.1 (R1)> CSIRO-Mk3.0 (R3) > reanalysis 

(R3) 

R3 RCM Observed 
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The results for the Sydney site also suggest that the performance of R1 and R3 

RCMs, which performed poorly for the uncorrected rainfall, have been improved the 

most by the bias correction. 

10.2.4 Lag-1 autocorrelation of the rainfall 

This section assesses the performance of RCMs to reproduce the lag-1 

autocorrelation of AWAP. As in Section 10.2.3, only results for the Richmond River 

and Sydney sites are shown (see Appendix A.5 – Figures A.25 to A.36 for the results 

of Williams River and Bega River sites). 

The spatial distribution of lag-1 autocorrelation of the uncorrected RCMs compared 

with AWAP at the Richmond River site is shown in Figures 10.27 to 10.29. Of all 

simulations, the uncorrected CCCMA3.1 closely reproduces the lag-1 correlation of 

AWAP for all three configurations. R3-CCCMA3.1 tends to better simulate the lag-1 

autocorrelation for all three time resolutions, yet the spatial pattern in the annual 

autocorrelation of AWAP is not well simulated; particularly the negative lag-1 

autocorrelations regions of AWAP are not well matched by CCCMA3.1.    
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Figure 10.27 Spatial distribution of the lag-1 correlation of the rainfall (1990-2009) 
of the Richmond River site: The plots are for the uncorrected simulations of R1 and 

AWAP. Time resolutions are; (a) fortnightly, (b) monthly, and (c) annual. 

 

The uncorrected R1 and R2 configuration CSIRO-Mk3.0, ECHAM5 and MIROC3.2 

largely overestimate the lag-1 correlation of AWAP, particularly at fortnightly and 

monthly resolutions, while having a minimum overestimation for the R3 

configuration. Only R3-CCCMA3.1 and R3-CSIRO-Mk3.0 appear to reproduce the 

lag-1 autocorrelation at the annual resolution. As was seen in Section 6.3.3 for 1950-

2009, R1 and R2 reanalyses do not reproduce the spatial pattern of AWAP and for 

most locations overestimate the lag-1 autocorrelation everywhere. 

  

R1 RCM Observed 
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Figure 10.28 Spatial distribution of the lag-1 correlation of the rainfall (1990-2009) 
of the Richmond River site: The plots are for the uncorrected simulations of R2 and 

AWAP. Time resolutions are; (a) fortnightly, (b) monthly, and (c) annual. 

 

 

 

Figure 10.29 Spatial distribution of the lag-1 correlation of the rainfall (1990-2009) 
of the Richmond River site: The plots are for the uncorrected simulations of R3 and 

AWAP. Time resolutions are; (a) fortnightly, (b) monthly, and (c) annual. 

  

R2 RCM Observed 

R3 RCM Observed 
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The relatiuve performance for the lag-1 correlation for the uncorrected RCMs is (the 

best model configurations are shown in brackets): 

CCCMA3.1 (R3) > ECHAM5 (R3) > reanalysis (R3) > MIROC3.2 (R3)  

> CSIRO-Mk3.0 (R3) 

Lag-1 correlations of the bias corrected RCMs compared with AWAP are shown in 

Figures 10.30 to 10.32. The spatial pattern in the lag-1 correlation of the bias 

corrected R3-CCCMA3.1 better match with AWAP, but only for the month and 

annual resolutions. The bias corrected CCCMA3.1 shows highly overestimated 

correlations compared with the uncorrected, particularly for the fortnightly 

resolution, but the reason for this drastic change in the autocorrelation is not known. 

Except for the slight improvement of R3-CCCMA3.1, all simulations remain 

unchanged after the bias correction. This suggests that the bias correction does not 

improve the time series characteristics of the rainfall, particularly lag-1 

autocorrelations. Therefore, the ability to reproduce the lag-1 correlation of AWAP 

in the bias corrected RCMs is unchanged by bias correction.   
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Figure 10.30 Spatial distribution of the lag-1 correlation of the rainfall (1990-2009) 
of the Richmond River site: The plots are for the bias corrected simulations of R1 

and AWAP. Time resolutions are; (a) fortnightly, (b) monthly, and (c) annual. 

 

 

 

Figure 10.31 Spatial distribution of the lag-1 correlation of the rainfall (1990-2009) 
of the Richmond River site: The plots are for the bias corrected simulations of R2 

and AWAP. Time resolutions are; (a) fortnightly, (b) monthly, and (c) annual. 

  

R1 RCM Observed 

R2 RCM Observed 
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Figure 10.32 Spatial distribution of the lag-1 correlation of the rainfall (1990-2009) 
of the Richmond River site: The plots are for the bias corrected simulations of R3 

and AWAP. Time resolutions are; (a) fortnightly, (b) monthly, and (c) annual. 

The spatial distribution of lag-1 autocorrelations of the uncorrected RCMs compared 

with AWAP for Sydney site are shown in Figures 10.33 to 10.35.  

At the fortnightly and monthly resolutions, reanalysis and CCCMA3.1 reproduce the 

lag-1 correlation of AWAP at the Sydney site. This improvement of the performance 

of reanalyses data, particularly R3 reanalysis is consistent with the results for 

Sydney site shown in Section 6.3.3. 

The relative performance for the lag-1 correlation for the uncorrected RCMs is (the 

best model configurations are shown in brackets): 

CCCMA3.1 (R3) > reanalysis (R3) > ECHAM5 (R3) > MIROC3.2 (R3)  

> CSIRO-Mk3.0 (R3) 

  

R3 RCM Observed 
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Figure 10.33 Spatial distribution of the lag-1 correlation of the rainfall (1990-2009) 
of the Sydney site: The plots are for the uncorrected simulations of R1 and AWAP. 

Time resolutions are; (a) fortnightly, (b) monthly, and (c) annual. 

 

  

R1 RCM Observed 
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Figure 10.34 Spatial distribution of the lag-1 correlation of the rainfall (1990-2009) 
of the Sydney site: The plots are for the uncorrected simulations of R2 and AWAP. 

Time resolutions are; (a) fortnightly, (b) monthly, and (c) annual. 

 

 

 

 

 

 

  

R2 RCM Observed 
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Figure 10.35 Spatial distribution of the lag-1 correlation of the rainfall (1990-2009) 
of the Sydney site: The plots are for the uncorrected simulations of R3 and AWAP. 

Time resolutions are; (a) fortnightly, (b) monthly, and (c) annual. 

 

The lag-1 correlation of the bias corrected RCMs compared with AWAP are shown 

in Figures 10.36 to 10.38. Compared with uncorrected simulations, there is no 

significant improvement of the ability of bias corrected simulations of capturing lag-

1 auto correlations of AWAP data. Model performance remains unchanged after bias 

correction. 

 

  

R3 RCM Observed 
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Figure 10.36 Spatial distribution of the lag-1 correlation of the rainfall (1990-2009) 
of the Sydney site: The plots are for the bias corrected simulations of R1 and 

AWAP. Time resolutions are; (a) fortnightly, (b) monthly, and (c) annual. 

 

 

 

 

 

  

R1 RCM Observed 
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Figure 10.37 Spatial distribution of the lag-1 correlation of the rainfall (1990-2009) 
of the Sydney site: The plots are for the bias corrected simulations of R2 and 

AWAP. Time resolutions are; (a) fortnightly, (b) monthly, and (c) annual. 

 

 

 

 

 

 

  

R2 RCM Observed 
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Figure 10.38 Spatial distribution of the lag-1 correlation of the rainfall (1990-2009) 
of the Sydney site: The plots are for the bias corrected simulations of R3 and 

AWAP. Time resolutions are; (a) fortnightly, (b) monthly, and (c) annual. 

  

R3 RCM Observed 
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10.3 Conclusions 

The uncorrected CCCMA3.1 RCMs appears to be the best at reproducing the mean, 

standard deviation and the lag-1 correlation of rainfall of AWAP, while all other 

simulations show discrepancies with AWAP for all sites. The overestimation of 

standard deviation in CSIRO-Mk3.0 and reanalysis RCMs is higher than others. 

MIROC3.2 better simulates the coefficient of variation of AWAP for all time 

resolutions. The uncorrected CCCMA3.1 is poor at reproducing the Cv of rainfall, 

even though it was the best at reproducing the mean, standard deviation and lag-1 

correlation at all sites. Comparing the three configurations of the WRF model, R2 

RCMs are best at reproducing the mean, standard deviation and coefficient of 

variation of AWAP rainfall. In contrast, the uncorrected R3 RCMs best reproduce 

the lag-1 correlations of AWAP. 

The bias correction has improved the GCM-RCM model performance, particularly 

for the mean and standard deviation of rainfall, by removing most of the biases 

present in the uncorrected data. This is expected as the bias correction adjusts the 

daily rainfall probability distribution, but it should be noted this doesn’t guarantee 

better performance for the weekly, monthly and yearly statistics. The performance of 

the CSIRO-Mk3.0 RCM has been significantly improved after the bias correction, 

particularly the bias corrected CSIRO-Mk3.0 RCM appears to be the best at 

reproducing the mean rainfall of AWAP. The overall the ability of the RCMs to 

reproduce the standard deviation of AWAP has been significantly improved by the 

bias correction. The differences between the performance of RCMs to reproduce the 

coefficient of variation and lag-1 correlation of AWAP remains almost unchanged 

after the bias correction, with slight improvements between outputs from different 

RCM model configurations. The performance of the R1 and R3 configurations has 

been the most improved by the bias correction but this is due to them being the worst 

performers for the uncorrected data.
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Testing NARCliM GCM simulations using temporal 
correlation of the rainfall 

11.1 Introduction 

The temporal correlation (i.e. autocorrelation) of NARCliM GCM projections (1990-

2009) is assessed in this chapter. The simulations used in Chapters 9 and 10 are used 

for the assessment and results are compared with autocorrelation of AWAP. The 

methods explained in Sections 4.4 were used to calculate the autocorrelations of each 

dataset.  

11.2 Autocorrelation of the rainfall 

The autocorrelation of reanalyses RCMs for 1950-2009 was assessed in Section 6.4. 

This section extends the analysis in Section 6.4 for all available NARCliM the GCM 

simulations and compares them with the 20 year reanalysis (1990-2009) done in 

Chapters 9 and 10. Hereafter all NARCliM GCMs and 20 year reanalysis 

simulations for 1990-2009 are collectively referred as NARCliM RCMs. The 

autocorrelation of NARCliM and AWAP rainfall for 1990-2009 for different lags 

were calculated at the grid points chosen at all four sites (see Table 6.1 and Figures 

6.1 to 6.4). As in Chapter 9, the difference in the performance of the uncorrected 

GCM simulations is first examined and then they are compared with the bias 

corrected simulations.  

The correlograms generated for uncorrected NARCliM projections and AWAP at 

grid points A, B, C and D in the Williams River site are shown in Figure 11.1. Since 

all RCMs have a similar trend with similar peaks from the annual seasonal cycle 

only the results for monthly resolution are shown.  
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Figure 11.1 Correlograms of monthly uncorrected NARCliM RCMs and AWAP 
(1990-2009) at the Williams River site. R1, R2 and R3 (columns) are three RCM 

configurations. Grid points A and B are low elevations, and C and D are high 
elevations. The shaded regions are the 95% confidence limits of the null hypothesis 

(i.e. the correlations are not significantly different from 0). 
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All RCMs, except CCCMA3.1 greatly overestimate the monthly autocorrelations 

and seasonality of the AWAP rainfall for all four grid points of the Williams River 

site. CSIROMk-3.0 has the highest overestimation compared with MIROC3.2 and 

ECHAM5 RCMs. As was discussed in Section 6.4, the autocorrelation of the 

monthly AWAP data does not have many 95% significant autocorrelation values for 

the Williams River site. However for all grid points, the timing of the minimum and 

maximum autocorrelations for the CSIRO-Mk3.0, MIROC3.2 and ECHAM5 models 

is similar to that of AWAP. In contrast, the CCCMA3.1 RCMs, particularly at low 

elevation grid points (A and B) appear to have similar magnitudes of 

autocorrelations of AWAP, but does not produce the correct timing of the seasonal 

signal with peaks at different lags compared with AWAP. The autocorrelations of 

the 20 year reanalysis data (1990-2009) produced similar results as for the full 1950-

2009 dataset. However, compared with CCCMA3.1, reanalysis appears to reproduce 

the timing of the seasonal cycle better than the other GCMs while slightly 

overestimating the magnitudes, particularly for high elevation points (C and D). 

Comparing the RCM configurations, there is no significant difference in the 

performance of the simulations, though ECHAM5 tends to overestimate the AWAP 

correlations more in the R2 configuration. 

The correlograms of bias corrected RCMs at the Williams River site are shown in 

Figure 11.2. Figure 11.1 (uncorrected rainfall) and Figure 11.2 (bias-corrected 

rainfall) are almost identical and there is no significant change in model 

performance. 
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Figure 11.2 Correlograms of monthly bias corrected NARCliM RCMs and AWAP 
(1990-2009) at the Williams River site. R1, R2 and R3 (columns) are three RCM 

configurations. Grid points A and B are low elevations, and C and D are high 
elevations. The shaded regions are the 95% confidence limits of the null hypothesis 

(i.e. the correlations are not significantly different from 0).  
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The correlograms generated for uncorrected NARCliM RCMs and AWAP at grid 

points E, F, G and H of Richmond River sites are shown in Figure 11.3. At all grid 

points, CSIRO-Mk3.0, MIROC3.2 and ECHAM5 RCMs overestimate the monthly 

autocorrelations of the AWAP rainfall, while reproducing the correct timing of the 

seasonal cycle. As was seen at the Williams River site, CCCMA3.1 tends to 

underestimate the autocorrelations of AWAP rainfall at all four grid points of 

Richmond River site. In contrast, reanalyses RCMs, particularly at E and F low 

elevation grid points slightly underestimate the autocorrelations of AWAP. 

However, the autocorrelations of AWAP appear to be significant (lying outside the 

95% confidence limit) for all grid points of the Richmond River site, therefore, this 

underestimation for the reanalysis is a result of this relative change in AWAP 

autocorrelations. A similar behaviour was noticed in Section 6.4 for both 60 year 

AWAP and reanalyses rainfall. This changed behaviour in AWAP (i.e. having 

significant autocorrelations) at the Richmond River site was previously attributed to 

the uncertainties of AWAP data in this region and the slightly stronger seasonality of 

the climate on the north coast due to the rtopical influence (see Section 6.4). Further, 

compared with Williams River site, the performance of the individual NARCliM 

RCMs is similar for the Richmond site and this suggests that the main difference is 

in AWAP rainfall rather than the GCM-RCM performance. At grid point E, all R3 

NARCliM RCMs, except reanalysis and CCCMA3.1 tend to have autocorrelations 

close to AWAP, while the magnitudes are overestimated slightly. This effect was not 

seen any other grid point of the site and therefore, appears to be simulation specific.  

The correlograms of bias corrected RCMs at the Richmond River site are shown in 

Figure 11.4. As was seen at the Williams River site, there is no change in the 

autocorrelations after the bias correction.  
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Figure 11.3 Correlograms of monthly uncorrected NARCliM RCMs and AWAP 
(1990-2009) at the Richmond River site. R1, R2 and R3 (columns) are three RCM 

configurations. Grid points E and F are low elevations, and G and H are high 
elevations. The shaded regions are the 95% confidence limits of the null hypothesis 

(i.e. the correlations are not significantly different from 0). 
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Figure 11.4 Correlograms of monthly bias corrected NARCliM RCMs and AWAP 
(1990-2009) at the Richmond River site. R1, R2 and R3 (columns) are three RCM 

configurations. Grid points E and F are low elevations, and G and H are high 
elevations. The shaded regions are the 95% confidence limits of the null hypothesis 

(i.e. the correlations are not significantly different from 0). 
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The correlograms for the uncorrected NARCliM RCMs and AWAP at grid points J, 

K, L and M of the Bega River site are shown in Figure 11.5. The figure indicates that 

all RCMs overestimate the autocorrelation of AWAP, while reproducing the timing 

of the minimum and maximum autocorrelations of AWAP at the low elevation 

points, but at high elevation points (L and M), located along the Australian Alps with 

elevation greater than 1298 m (See Figure 6.3 and Table 6.1), CCCMA3.1 tends to 

largely overestimate the AWAP autocorrelations for all three RCM configurations. 

This overestimation by CCCMA3.1 is in contrast to the other sites. A similar effect 

was also seen in the spatial variability of the lag-1 autocorrelations at the Bega River 

site (see Appendix A.5 – Figures A.31 to A.33).  

Further at these two high elevation grid points (L and M), all GCMs except 

CCCMA3.1 produce relatively lower autocorrelations compared with other study 

sites (particularly at Grid Point L).  This suggests that, given the effect is only seen 

for the high elevation points, the NARCliM RCMs also have some intrinsic 

difficulties in capturing autocorrelations, particularly when the site topography is 

complex with mountains. 

The correlograms of bias corrected RCMs for Bega River site are shown in Figure 

11.6. Again, bias correction makes only a small difference in the results.     
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Figure 11.5 Correlograms of monthly uncorrected NARCliM RCMs and AWAP 
(1990-2009) at the Bega River site. R1, R2 and R3 (columns) are three RCM 
configurations. Grid points J and K are low elevations, and L and M are high 

elevations. The shaded regions are the 95% confidence limits of the null hypothesis 
(i.e. the correlations are not significantly different from 0). 
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Figure 11.6 Correlograms of monthly bias corrected NARCliM RCMs and AWAP 
(1990-2009) at the Bega River site. R1, R2 and R3 (columns) are three RCM 
configurations. Grid points J and K are low elevations, and L and M are high 

elevations. The shaded regions are the 95% confidence limits of the null hypothesis 
(i.e. the correlations are not significantly different from 0). 
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 The correlograms generated for uncorrected NARCliM RCMs and AWAP at grid 

points P, Q, R and S of Sydney sites are shown in Figure 11.7. The performance of 

RCMs is similar for P, Q and R grid points at Sydney site. CSIRO-Mk3.0, 

MIROC3.2 and ECHAM5 RCMs overestimate the monthly autocorrelations of the 

AWAP rainfall, while reproducing the correct timing of the seasonal cycle.  

Grid point S, located at the Blue Mountains range (the highest mountain range in the 

site) is different to the other 3 grid points for the Sydney site, as all RCMs have 

small magnitudes for autocorrelations and are close to the monthly AWAP 

autocorrelations. Because these results appeared anomalous the analysis was 

repeated for few adjacent grid points also, and the results remain unchanged. A 

similar effect was also found at the L and M high elevation grid points of the Bega 

River site. Additionally, this result is consistent with Figure 6.59, which had a 

similar effect in correlograms at the same grid point (S) for the 60 year period 

reanalyses datasets. Therefore, this suggests that there are some uncertainties 

associated either with AWAP or NARCliM RCMs or perhaps both types of gridded 

datasets, and they poorly represent the actual rainfall at this location. 

The correlograms generated for the bias corrected simulations (shown in Figure 

11.8) also produce similar results, again showing that bias correction does not 

change the autocorrelation of the rainfall.   
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Figure 11.7 Correlograms of monthly uncorrected NARCliM RCMs and AWAP 
(1990-2009) at the Sydney site. R1, R2 and R3 (columns) are three RCM 

configurations. Grid points P and Q are low elevations, and R and S are high 
elevations. The shaded regions are the 95% confidence limits of the null hypothesis 

(i.e. the correlations are not significantly different from 0). 
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Figure 11.8 Correlograms of monthly bias corrected NARCliM RCMs and AWAP 
(1990-2009) at the Sydney site. R1, R2 and R3 (columns) are three RCM 

configurations. Grid points P and Q are low elevations, and R and S are high 
elevations. The shaded regions are the 95% confidence limits of the null hypothesis 

(i.e. the correlations are not significantly different from 0). 
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11.3 Conclusions 

The results for the autocorrelation analysis show that all GCM simulations, except 

CCCMA3.1 highly overestimate the monthly autocorrelations of the AWAP rainfall 

for all sites. The CSIROMk-3.0 model simulation has the highest overestimation 

compared with ECHAM5 and MIROC3.2. The CCCMA3.1 simulations, particularly 

for low elevation grid points appear to have similar magnitudes of autocorrelations 

of AWAP, yet can neither produce the correct timing nor the phase of the seasonal 

signal. Therefore, CCCMA3.1 is less able to reproduce the autocorrelations of 

AWAP. The correlograms of bias corrected simulations look very similar to the 

uncorrected correlograms so that there is no significant change in autocorrelation 

after bias correction.  
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Testing NARCliM GCM simulations using spatial 
correlation of the rainfall 

12.1 Introduction 

In this chapter, the spatial correlation (r) of the rainfall from the NARCliM GCM 

projections (1990-2009) is assessed against AWAP. Following the methodology 

explained in Section 4.5, the analysis was performed for the same NARCliM 

(uncorrected and bias corrected) and AWAP datasets used in Chapter 9-11. Similar 

to Chapter 9-11, NARCliM datasets (GCMs/reanalysis) are collectively referred as 

NARCliM RCMs. The grid points shown in Table 7.1 and Figures 7.1 to 7.4 were 

used as the references when calculating the spatial correlations. Additionally, spatial 

correlation of the daily rainfall of all the gridded datasets are tested against that of 

rain gauge data at selected grid points. The rain gauges selected for the analysis at 

different sites are listed in Tables 3.4 to 3.7.  

12.2 Spatial correlation of the daily rainfall 

12.2.1 Williams River site 

The spatial correlation of the uncorrected NARCliM RCMs between the high 

elevation grid point (W17) and all other grid points of the Williams River site are 

shown in Figure 12.1. In general, reanalysis (1990-2009) and CCCMA3.1 RCMs 

have spatial patterns of correlations most similar to each other and their spatial 

patterns look approximately similar to that of AWAP. The spatial pattern in 

correlations for AWAP follows the topography of the Williams River site and this 

effect is similar to the results shown in Figure 7.5 for 60 year 1950-2009 AWAP 

rainfall. CSIRO-Mk3.0, ECHAM5 and MIROC3.2 RCMs have similar spatial 

patterns, but have higher correlations than AWAP or the reanalyses, particularly at 

the west of the site. Since the spatial pattern tends to follow the general trend of 

topography, part of this similarity in the spatial pattern of CSIRO-Mk3.0, ECHAM5 

and MIROC3.2 RCMs is because, according to Evans et al. (2014), all RCMs use the 
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same elevation data. The said the R1 reanalysis, R2- and R3-CCCMA3.1 and R1- 

and R3-CSIRO-Mk3.0 are better able to reproduce the spatial pattern in AWAP than 

the other RCMs. In particular, this good performance of CCCMA3.1 is consistent 

with its performance for the other statistics discussed in Chapter 9-11. As previously 

discussed in Section 7.2, there is a smoother spatial pattern in AWAP data compared 

with the RCM simulations.  

 

 

 

 

 

Figure 12.1 Spatial correlations of daily rainfall between the reference grid point and 
all other grid points in the Williams River site. The plots are for the uncorrected 

simulations of (a) R1, (b) R2, and (c) R3 RCMs, and AWAP. The reference is W17, 
a high elevation grid point (shown in yellow boxes). 

The spatial correlation functions for the uncorrected R1 RCMs, corresponding to 

Figure 12.1a are shown in Figure 12.2. The trends shown in spatial variability plots 

can be more clearly seen in the spatial correlation functions. The figure indicates that 

R1-CCCMA3.1 and R1 reanalysis closely reproduce the exponential correlation 

structure of AWAP, with R1-CSIRO-Mk3.0, R1-ECHAM5 and R1-MIROC3.2 

overestimating the exponent of the fitted curve of AWAP (6%, 11% and 11% 

respectively) for large spatial separations. Similarly, spatial correlation functions for 

uncorrected R2 and R3 RCMs, corresponding to Figures 12.1b and 12.1c are shown 

in Figures 12.3 and 12.4 respectively. All R3 RCMs, with the exception of R3-

(a) 

(b) 

(c) 

RCM simulations Observed 
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ECHAM5, underestimate the correlations of AWAP for almost all separations. 

However, for high elevation grid points (i.e. points which have elevations higher 

than the reference, are shown in a range of purple to blue colours), all RCMs 

underestimate the correlations of AWAP. This may be due to the averaging of the 

topography in NARCliM elevation data. In particular, if this averaging effect is high 

at high peaks, the resulting lower, averaged, elevations at these grid points may lead 

to low spatial correlations as the spatial correlation follow the trends in topography. 
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Figure 12.2 Spatial correlations function (1990-2009) of the Williams River site. The 
reference is W17 high elevation grid point. The plots are for the uncorrected GCM 

simulations of R1 RCM and AWAP.  
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Figure 12.3 Spatial correlations function (1990-2009) of the Williams River site. The 
reference is W17 high elevation grid point. The plots are for the uncorrected GCM 

simulations of R2 RCM and AWAP.  
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Figure 12.4 Spatial correlations function (1990-2009) of the Williams River site. The 
reference is W17 high elevation grid point. The plots are for the uncorrected GCM 

simulations of R3 RCM and AWAP.    
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Figure 12.5 shows the spatial correlation calculated for the bias corrected NARCliM 

daily RCMs. Comparing Figure 12.1 and Figure 12.5, there is a consistency in the 

results for all RCMs, suggesting that the bias-correction has not changed the spatial 

variability of the correlations. The exception is CSIRO-Mk3.0. In the CSIRO-Mk3.0 

RCMs, most of the overestimated correlations which initially occurred in the west of 

the site have been corrected with the bias correction and therefore, the bias-corrected 

results appear to have a more similar spatial pattern to CCCMA3.1 and reanalysis.  

 

 

 

 

Figure 12.5 Spatial correlations of daily rainfall between the reference grid point and 
all other grid points in the Williams River site. The plots are for the bias corrected 

simulations of (a) R1, (b) R2, and (c) R3 RCMs, and AWAP. The reference is W17, 
a high elevation grid point (shown in yellow boxes). 

The spatial correlation functions for bias corrected R1, R2 and R3 RCMs 

corresponding to Figure 12.5 are shown in Figures 12.6 to 12.8. In general, the 

ability to reproduce the spatial correlation function of AWAP has only been 

improved in MIROC3.2 and CSIRO-Mk3.0 RCMs, by correcting most of the 

overestimated correlations. The reanalysis and CCMA3.1 RCMs appear to remain 

same as uncorrected, with R1 and R3 better capturing the correlations of AWAP. 

Similarly, spatial correlation function of ECHAM5 RCMs also remain almost 

unchanged after the bias correction with overestimating spatial correlations of 

AWAP as it did before for uncorrected.   

(a) 

(b) 

(c) 

RCM simulations Observed 
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Figure 12.6 Spatial correlations function (1990-2009) of the Williams River site. The 
reference is W17 high elevation grid point. The plots are for the bias corrected GCM 

simulations of R1 RCM and AWAP.  
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Figure 12.7 Spatial correlations function (1990-2009) of the Williams River site. The 
reference is W17 high elevation grid point. The plots are for the bias corrected GCM 

simulations of R2 RCM and AWAP. 
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Figure 12.8 Spatial correlations function (1990-2009) of the Williams River site. The 
reference is W17 high elevation grid point. The plots are for the bias corrected GCM 

simulations of R3 RCM and AWAP.  
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The spatial correlation of the uncorrected NARCliM GCM simulations between the 

low elevation grid point (W4) and all other grid points in the Williams River site are 

shown in Figure 12.9. The figure indicates that all RCM simulations have similar 

spatial patterns, but fail to replicate the smoother spatial pattern of AWAP. Of all 

simulations, MIROC3.2 and ECHAM5 overestimate the correlations of AWAP, 

particularly at grid points far from the reference. Reanalysis (1990-2009), 

particularly the R1, best reproduces the spatial pattern of AWAP. 

 

 

 

 

 

Figure 12.9 Spatial correlations of daily rainfall between the reference grid point and 
all other grid points in the Williams River site. The plots are for the uncorrected 

simulations of (a) R1, (b) R2, and (c) R3 RCMs, and AWAP. The reference is W4, a 
low elevation grid point (shown in yellow boxes). 

The spatial correlation functions for uncorrected R1, R2 and R3 RCMs 

corresponding to Figure 12.9 are shown in Figures 12.10 to 12.12. In contrast to the 

high elevation reference, only reanalysis and CCCMA3.1 RCMs closely reproduce 

the spatial correlation function of AWAP. All other RCMs have overestimated 

correlations for all grid points of the sites. However, compared with the high 

elevation reference, there is a less scatter around the mean trend of the correlations 

for all datasets including AWAP.  

(a) 

(b) 

(c) 

RCM simulations Observed 
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Further, the general trend of RCMs having a similar spatial correlation pattern as the 

topography (Figure 12.9) is consistent for both cases (i.e. studying spatial correlation 

with respect to low and high elevation references). Therefore, this suggests that 

RCM performance is independent from the elevation of the reference grid point (i.e. 

we cannot conclude that the observed spatial correlations are better captured for high 

elevation grid points and vice versa). The R3 RCMs are best able to capture the 

spatial correlations of AWAP. 

At the Williams River site, rainfall for the close by low elevation grid points are 

more correlated to the low elevation reference and high elevation points close by are 

more correlated to the high elevation reference. As explained in Section 7.2 for the 

60 year reanalyses, the spatial correlation of rainfall appear to be not simply an effect 

of proximity, and is significantly influenced by the combination distance between 

the points and differences in elevation. 
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Figure 12.10 Spatial correlations function (1990-2009) of the Williams River site. 
The reference is W4 low elevation grid point. The plots are for the uncorrected GCM 

simulations of R1 RCM and AWAP.  
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Figure 12.11 Spatial correlations function (1990-2009) of the Williams River site. 
The reference is W4 low elevation grid point. The plots are for the uncorrected GCM 

simulations of R2 RCM and AWAP.  

 

  



 

Chapter 12 – Testing NARCliM GCMs using spatial correlation of the rainfall 

 

315 
 

  

Figure 12.12 Spatial correlations function (1990-2009) of the Williams River site. 
The reference is W4 low elevation grid point. The plots are for the uncorrected GCM 

simulations of R3 RCM and AWAP.  
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Figure 12.13 shows the spatial correlation calculated for the bias corrected 

NARCliM daily RCMs using the low elevation point as the reference. There is a 

clear improvement in the CSIRO-Mk3.0 simulations after the bias correction as 

CSIRO-Mk3.0 has a similar spatial pattern to AWAP after the bias correction. Apart 

from this, results remain unchanged for the rest of the RCMs.  

 

 

 

 

 

Figure 12.13 Spatial correlations of daily rainfall between the reference grid point 
and all other grid points in the Williams River site. The plots are for the bias 
corrected simulations of (a) R1, (b) R2, and (c) R3 RCMs, and AWAP. The 

reference is W4, a low elevation grid point (shown in yellow boxes). 

The spatial correlation functions for bias corrected R1, R2 and R3 configuration 

simulations corresponding to Figure 12.13 are shown in Figures 12.14 to 12.16. As 

was seen in the results for the high elevation reference, the ability to reproduce the 

spatial correlation function of AWAP has been slightly improved in all RCMs, by 

correcting most of the overestimated correlations across the site. After the bias 

correction, CSIRO-Mk3.0 RCMs produce a similar spatial correlation function as for 

the reanalysis and this can clearly be seen in R1 and R3- CSIRO-Mk3.0 RCMs. 

However, all RCMs tend to perform well for the R3 configuration, but have a 

different pattern of improvement in the spatial correlations compared with the high 

elevation case.  

(a) 

(b) 

(c) 

RCM simulations Observed 
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Figure 12.14 Spatial correlations function (1990-2009) of the Williams River site. 
The reference is W4 low elevation grid point. The plots are for the bias corrected 

GCM simulations of R1 RCM and AWAP.  
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Figure 12.15 Spatial correlations function (1990-2009) of the Williams River site. 
The reference is W4 low elevation grid point. The plots are for the bias corrected 

GCM simulations of R2 RCM and AWAP.  

 

  



 

Chapter 12 – Testing NARCliM GCMs using spatial correlation of the rainfall 

 

319 
 

 

Figure 12.16 Spatial correlations function (1990-2009) of the Williams River site. 
The reference is W4 low elevation grid point. The plots are for the bias corrected 

GCM simulations of R3 RCM and AWAP.  
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12.2.2 Richmond River site 

The Richmond River site spatial correlation for the uncorrected NARCliM RCMs 

between the high elevation grid point (P20) and all other grid points of the site are 

shown in Figure 12.17. As was the case for the Williams River site, all RCM 

simulations reproduce the spatial pattern of spatial correlation of AWAP which itself 

approximately follows the topography of the Richmond River site (see Figure 

7.13c). However, in contrast to the Williams River site, all R3 configuration RCMs 

(including ECHAM5, MIROC3.2 and CSIRO-Mk3.0), closely reproduce both the 

spatial pattern and magnitudes of correlations of AWAP. This suggests that the 

ability of the NARCliM RCMs to capture the AWAP spatial correlation varies 

between sites. Compared with other simulations, MIROC3.2 tends to slightly 

overestimate (10%) the spatial correlation of AWAP and this overestimation is 

greatest at low elevations. 

 

 

 

 

 

Figure 12.17 Spatial correlations of daily rainfall between the reference grid point 
and all other grid points in the Richmond River site. The plots are for the 

uncorrected simulations of (a) R1, (b) R2, and (c) R3 RCMs, and AWAP. The 
reference is P20, a high elevation grid point (shown in yellow boxes). 

The spatial correlation functions for uncorrected R1, R2 and R3 configuration RCMs 

corresponding to Figure 12.17 are shown in Figures 12.18 to 12.20. The uncorrected 

(a) 

(b) 

(c) 

RCM simulations Observed 



 

Chapter 12 – Testing NARCliM GCMs using spatial correlation of the rainfall 

 

321 
 

R1-ECHAM5, R1- and R2-MIROC3.2 and R3-CSIRO-Mk3.0 RCMs reproduce the 

spatial correlation function of AWAP. In particular, the improvement in the 

performance of ECHAM5 and CSIRO-Mk3.0 is significant as they were found to be 

the poorest performer at the Williams site. The reanalysis and CCCMA 3.1 are also 

able to reproduce the spatial correlation function of AWAP, and tend to perform 

better for R1 for reanalysis, and R2 and R3 for CCCMA3.1. With the exception of 

MIROC3.2 and reanalysis, all uncorrected R3 configuration RCMs reproduce the 

spatial correlation of AWAP. 
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Figure 12.18 Spatial correlations function (1990-2009) of the Richmond River site. 
The reference is P20 high elevation grid point. The plots are for the uncorrected 

GCM simulations of R1 RCM and AWAP. 
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Figure 12.19 Spatial correlations function (1990-2009) of the Richmond River site. 
The reference is P20 high elevation grid point. The plots are for the uncorrected 

GCM simulations of R2 RCM and AWAP. 
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Figure 12.20 Spatial correlations function (1990-2009) of the Richmond River site. 
The reference is P20 high elevation grid point. The plots are for the uncorrected 

GCM simulations of R3 RCM and AWAP. 

 

  



 

Chapter 12 – Testing NARCliM GCMs using spatial correlation of the rainfall 

 

325 
 

Figures 12.21 to 12.24, show the spatial correlation and corresponding spatial 

correlation functions for the bias corrected NARCliM daily simulations calculated 

for the high elevation reference.  

 

 

 

 

 

Figure 12.21 Spatial correlations of daily rainfall between the reference grid point 
and all other grid points in the Richmond River site. The plots are for the bias 
corrected simulations of (a) R1, (b) R2, and (c) R3 RCMs, and AWAP. The 

reference is P20, a high elevation grid point (shown in yellow boxes). 

 

Compared with Figure 12.17, there is only a small change in the performance of the 

NARCliM RCMs after the bias correction; the underestimated correlations have 

been corrected at only a few points. Overall, after bias correction the model 

improvement is insignificant at the Richmond River site. However, after the bias 

correction R2 reanalysis and R2-CSIRO-Mk3.0 in Figure 12.22a tend to 

underestimate the spatial correlation function of AWAP for large spatial separations.  

(a) 

(b) 

(c) 

RCM simulations Observed 
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Figure 12.22 Spatial correlations function (1990-2009) of the Richmond River site. 
The reference is P20 high elevation grid point. The plots are for the bias corrected 

GCM simulations of R1 RCM and AWAP. 
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Figure 12.23 Spatial correlations function (1990-2009) of the Richmond River site. 
The reference is P20 high elevation grid point. The plots are for the bias corrected 

GCM simulations of R2 RCM and AWAP. 
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Figure 12.24 Spatial correlations function (1990-2009) of the Richmond River site. 
The reference is P20 high elevation grid point. The plots are for the bias corrected 

GCM simulations of R3 RCM and AWAP. 
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The spatial correlation of the uncorrected NARCliM RCMs for the low elevation 

grid point (P9) in the Richmond River site are shown in Figure 12.25. 

 

 

 

 

 

Figure 12.25 Spatial correlations of daily rainfall between the reference grid point 
and all other grid points in the Richmond River site. The plots are for the 

uncorrected simulations of (a) R1, (b) R2, and (c) R3 RCMs, and AWAP. The 
reference is P9, a low elevation grid point (shown in yellow boxes). 

Of all simulations, R1 reanalysis, R1-CSIRO-Mk3.0 and R1-ECHAM5 tend to better 

reproduce the spatial distribution of the AWAP at low elevation reference. All three 

configurations of MIROC3.2, and R1 and R3 configurations of CCCMA3.1 appear 

to overestimate the magnitude of the spatial correlations, particularly at low 

elevation grid points close to the reference point.  

Figures 12.26 to 12.28 show the spatial correlation functions corresponding to 

Figure 12.25. Comparing the spatial correlation functions of all RCMs reanalysis, 

CSIRO and ECHAM5 all produce similar spatial correlation functions and they all 

reproduce the spatial correlation function of AWAP. Compared to the results at the 

high elevation reference the R1 and R3 model configuration reanalysis, CSIRO-

Mk3.0 reproduce the overall spatial correlation function of AWAP better than R2, 

and again the mean trend of the spatial correlation functions for all datasets have  

less scatter around the fitted exponential function compared with high elevation case.  

(a) 

(b) 

(c) 

RCM simulations Observed 
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Figure 12.26 Spatial correlations function (1990-2009) of the Richmond River site. 
The reference is P9 low elevation grid point. The plots are for the uncorrected GCM 

simulations of R1 RCM and AWAP. 
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Figure 12.27 Spatial correlations function (1990-2009) of the Richmond River site. 
The reference is P9 low elevation grid point. The plots are for the uncorrected GCM 

simulations of R2 RCM and AWAP. 
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Figure 12.28 Spatial correlations function (1990-2009) of the Richmond River site. 
The reference is P9 low elevation grid point. The plots are for the uncorrected GCM 

simulations of R3 RCM and AWAP. 
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Figures 12.29 to 12.32, show spatial correlation plots and corresponding spatial 

correlation functions for the bias corrected NARCliM daily simulations calculated at 

the low elevation reference of the Richmond River site. After bias correction, 

reanalysis and CSIRO-Mk3.0 tend to slightly underestimate the AWAP spatial 

correlations, particularly along the boundary of the escarpment of the Richmond site 

(see Figure 7.13c). There is a slight improvement in results of MIROC3.2, 

CCCMA3.1 and ECHAM5 model simulations, particularly for R1 simulations. The 

R1 configuration simulations, with the exception of CSIRO-Mk3.0, appear to 

perform well after the bias correction. 

 

 

 

 

 

 

Figure 12.29 Spatial correlations of daily rainfall between the reference grid point 
and all other grid points in the Richmond River site. The plots are for the bias 
corrected simulations of (a) R1, (b) R2, and (c) R3 RCMs, and AWAP. The 

reference is P9, a low elevation grid point (shown in yellow boxes). 
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Figure 12.30 Spatial correlations function (1990-2009) of the Richmond River site. 
The reference is P9 low elevation grid point. The plots are for the bias corrected 

GCM simulations of R1 RCM and AWAP.  
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Figure 12.31 Spatial correlations function (1990-2009) of the Richmond River site. 
The reference is P9 low elevation grid point. The plots are for the bias corrected 

GCM simulations of R2 RCM and AWAP. 
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Figure 12.32 Spatial correlations function (1990-2009) of the Richmond River site. 
The reference is P9 low elevation grid point. The plots are for the bias corrected 

GCM simulations of R3 RCM and AWAP. 
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12.2.3 Summary of the spatial correlation analysis 

The results show that uncorrected reanalysis is best able to reproduce the spatial 

correlations of AWAP and tends to perform consistently well between the sites. R1 

reanalysis performs better than either R2 or R3. CSIRO-Mk3.0 appears to better 

reproduce the spatial correlation of AWAP than the other GCMs for all sites, but 

does not perform as well as the reanalysis. The R3 and R1 RCMs consistently 

perform better than R2 for both Williams and Richmond River sites, and this 

suggests that there are subtle and consistent differences between the outputs of the 

underlying RCM used in the downscaling. ECHAM5 and CCCMA3.1 RCMs better 

capture the AWAP spatial correlations than MIROC3.2. However, the performance 

of these models is dependent on the site rainfall and topography. Of all simulations, 

MIROC3.2 is less able to reproduce the spatial correlations of AWAP for all sites. 

However, the exception is the Bega River site (see Appendix A.6 – Figures A.37 to 

A.52). At the Bega River site, reanalysis, ECHAM5 and MIROC3.2 are able to 

reproduce the spatial correlation pattern and spatial correlation function of AWAP, 

while CSIRO-Mk3.0 and CCCMA3.1 underestimate the AWAP correlations across 

the site. However, apart from a few discrepancies, there is a consistency of relative 

model performance.  

Results of the Bega River and Sydney sites are not discussed under this section but 

brioadly follow the Williams and Richmond River trends (see Appendix A.6 - 

Figures A.37 to A.68). At the Sydney site, reanalysis, CCCMA3.1 and CSIRO-

Mk3.0 uncorrected RCMs are best able to reproduce the spatial correlation of 

AWAP than the other RCMs.  

The scatter of the spatial correlation functions around the fitted exponential functions 

to all NARCliM RCMs is higher than that of the AWAP for Williams, Richmond 

and Bega River sites. This suggests that there is high variability in the correlations of 

NARCliM simulations compared with AWAP. The reduced scatter in AWAP may 

be due to the smoothing seen in the spatial variability plots for all sites and it is 

reasonable to suggest that it is an interpolation artefact as discussed in Section 7.2.  

Overall, though the spatial correlation function of AWAP is correctly captured by all 

NARCliM RCMs for all the sites, there are some discrepancies of the trend of the 
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spatial correlation functions of individual NARCliM RCMs, particularly for the 

correlations calculated with reference to the high elevation grid points. Further this 

appears to depend on the individual site characteristics. For example when the 

reference is a high elevation grid point, AWAP has more scattered correlations than 

reanalyses for separations greater than 200 km at the Sydney site and this is different 

to other sites.  

The results generated for the bias corrected RCMs at Richmond River and Sydney 

sites also indicate that bias correction mostly improves the performance of each 

RCM, but the improvement is small. However, this is an expected result, because the 

spatial correlations presented in this chapter were calculated using the daily rainfall 

of RCM simulations and bias correction is not designed to adjust spatial correlations 

(see Section 9.2). Compared with all sites, the lowest spatial correlation of AWAP 

daily rainfall is for the Richmond River site. 

As for the 60 year reanalyses, rainfall for the 20 year RCMs is also more correlated 

to the distance between the points (separation) than to the difference of the elevation 

of the two points.   

12.3 Testing the spatial correlation of NARCliM GCM simulations rain 

gauge data 

Spatial correlation functions between the rain gauges, NARCliM RCM grid points 

and, AWAP grid points for Williams River, Richmond River, Bega River and 

Sydney sites are shown in Figures 12.33 to 12.36. The figures also compare the 

spatial correlations of uncorrected and bias corrected RCMs. Spatial correlations 

were calculated only for the grid points (reanalyses, GCMs and AWAP) where the 

rain gauges are, while the spatial correlation functions shown in the previous section 

are for all grid points at a site. Note that only the R3 configurations simulations are 

shown in the figures, as it was identified as the best performing RCM configuration 

in the previous section. The spatial correlation functions of the Williams River site 

shown in Figure 12.33 reflect that all NARCliM uncorrected RCMs and AWAP 

have correlations 20-30% higher than that of the rain gauges. This difference 

between rain gauge and gridded datasets (NARCliM RCMs and AWAP) is unlikely 

to be because of the spatial averaging of the rainfall within a pixel.  
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Figure 12.33 Spatial correlation between rain gauges at Williams River site. Left 
plots are for the uncorrected NARCliM simulations and right are for the bias 

corrected simulations.  
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Figure 12.34 Spatial correlation between rain gauges at Richmond River site. Left 
plots are for the uncorrected NARCliM simulations and right are for the bias 

corrected simulations.  

 

As was seen in the Section 7.3, the reanalyses have the lowest overestimation of the 

spatial correlation of rain gauges, while MIROC3.2 most overestimates the rain 

gauge correlation, except W17 high elevation reference at the Williams River site. 

Reanalysis and CSIRO-Mk3.0 RCMs have spatial correlations similar to AWAP for 

almost all references. This highlights that NARCliM RCMs, particularly reanalysis 

and CSIRO-Mk3.0 perform as well as AWAP for generating the spatial correlation 

of the rainfall.  However, while the spatial correlation functions of reanalysis and 

CSIRO-Mk3.0 and AWAP look similar to each other, they all fail to reproduce the 

spatial correlation function of the rain gauge network. While reanalysis and CSIRO-

Mk3.0 consistently perform as well as AWAP, ECHAM5 and CCCMA3.1 show 

varying ability to reproduce the spatial correlation of daily rainfall at different sites. 

For example, at the Williams and Bega River sites, the spatial correlation function of 

CCCMA3.1 is very similar to that of AWAP, but appear to overestimate the 
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correlation of AWAP at the Richmond River and Sydney sites. At the high elevation 

reference of the Sydney site, there is a slightly different trend in the spatial 

correlation of rain gauges compared with all other gridded datasets (RCMs and 

AWAP). The reason for this is not known but may be related with the lower 

variability in the topography in this particular site. Comparing the plots for 

uncorrected and bias corrected RCMs at each site, there is no significant difference 

between spatial correlation functions of all the simulations. Therefore, this suggests 

that the impact of bias correction is minimal.  

 

 

Figure 12.35 Spatial correlation between rain gauges at Bega River site. Left plots 
are for the uncorrected NARCliM simulations and right are for the bias corrected 

simulations.  
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Figure 12.36 Spatial correlation between rain gauges at Sydney River site. Left plots 
are for the uncorrected NARCliM simulations and right are for the bias corrected 

simulations.  

12.4 Conclusions 

The results suggest that reanalysis is best at reproducing the AWAP spatial 

correlations. Of the GCMs, the uncorrected CCCMA3.1 and CSIRO-Mk3.0 perform 

similarly to reanalysis at all sites. However, which model (either CCCMA or 

CSIRO-Mk3.0) performs better varies depending on the site topography and the 

general hydrology. Though the exponential structure of the spatial correlation 

function of AWAP is closely captured by NARCliM RCMs, there are some 

discrepancies in the scatter of the spatial correlation functions of individual 

NARCliM RCM simulations at some reference grid points.  

After the bias correction, the ability to capture the AWAP spatial correlation in all 

RCM simulations is only slightly changed. The difference in the performance 

between NARCliM RCMs, rain gauge and AWAP for the high elevation reference is 
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very similar to that for the low elevation reference at all sites, therefore, model 

performance appears to be independent of the elevation of the reference grid point.  

Of the three RCM model configurations, R3 configuration simulations better 

reproduce the spatial correlations of AWAP rainfall than R1 and R2. This suggests 

that apart from having possible discrepancies between the individual RCMs, there 

are differences between the outputs depending on the underlying RCM 

configurations which were used in the downscaling process. 

All NARCliM RCM and AWAP gridded datasets have correlations higher than that 

of rain gauges, with approximately 20-30% overestimation for all the grid points 

used. Subject to this consistent overestimation NARCliM RCMs and AWAP 

preserve the general trend of the spatial correlation function of rain gauge at all 

reference grid points of all sites. Reanalysis and CSIRO-Mk3.0 have spatial 

correlation functions similar to AWAP, but they all overestimate the magnitudes of 

the spatial correlation of gauge.
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NARCliM future climate projections for the East 
Coast of Australia 

13.1 Introduction 

Projections of climate change are essential for long term sustainable natural 

resources planning and urban water resources planning. In general, the rainfall 

change projections are available regionally and their reliability can be different from 

one region to another. In particular, there is a higher level of uncertainty associated 

with projections of rainfall change along the east coast of Australia than some other 

regions (Grose et al., 2015), due to the influence of a number of different weather 

phenomena including fronts, subtropical cyclones, ECLs and thunderstorms which 

drive the climate of this region.  

This chapter aims to assess the future change of rainfall along the broader east coast 

of Australia, using the 10 km resolution NARCliM regional projections. As 

explained in Section 2.6.3 in the Literature review, the four GCMs used by 

NARCliM are CCCMA3.1, MIROC3.2, ECHAM5 and CSIRO-Mk3.0 (Evans et al., 

2014).  

The results in Section 10.2 showed that bias corrected NARCliM GCMs were 

capable of reproducing the observed mean and coefficient of variation (Cv) of the 

rainfall better than uncorrected RCMs.  In contrast, both uncorrected and bias 

corrected NARCliM GCMs, particularly CSIRO-Mk3.0, ECHAM5 and MIROC3.2 

were not capable of reproducing the lag-1 autocorrelation and spatial correlations of 

the observed rainfall. Therefore, when assessing the future rainfall change, the mean 

and coefficient of variation (Cv) of the rainfall are the statistics that are more likely 

to be correctly represented in future projections of NARCliM. Using this argument, 

the future rainfall change was primarily assessed using two statistics; mean and Cv of 

the rainfall. 

The change in the mean annual rainfall and the Cv for mean monthly rainfall are 

presented. The NARCliM RCMs were best at reproducing the observed Cv (AWAP) 

at fortnightly and monthly time resolutions. Therefore, the aggregated monthly 
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rainfall time series were used in the analysis. The change of the rainfall was assessed 

from 2009 to 2079 using NARCliM’s current (1990-2009, referred to as 2000) and 

far future (2060-2079, referred to as 2070) bias corrected projections. The analysis 

was performed at the same four sites of the broader east coast: Williams River, 

Richmond River, Bega River and Sydney sites.   

Additionally, a preliminary analysis on the future change of autocorrelations and 

spatial correlation relative to the current climate was also evaluated. Note that this 

analysis was performed only at the Williams River site, and the GCM simulations 

used are bias corrected.  

13.2 Changes in mean annual rainfall 

Figure 13.1 shows the percentage change in the mean annual rainfall simulated by 

GCMs for 2070 relative to 2000 at the Williams River site. The mean annual rainfall 

of the Williams River site is predicted to change by -14% to 51% by 2070. The 

Williams River site is projected to have significant increases in rainfall using 

CCCMA3.1 and MIROC3.2 GCMs while using CSIRO-Mk3.0 a decrease is 

projected. In contrast, ECHAM5 projects a combination of increases and decreases.  
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Figure 13.1 Percent change in mean annual rainfall for 2070 relative to 2000 at the 
Williams River site. (a) R1, (b) R2, and (c) R3 RCM. 

There are slight differences between the results of the same GCM depending on its 

underlying RCM model configuration. For example, R1-ECHAM5 projects up to 

25% increase in the rainfall in the Williams River site while R2- and R3-ECHAM5 

show a change in rainfall from -15-10%. These discrepancies in the consistency of 

the individual GCMs can also be seen in the projections of CCCMA3.1 and 

MIROC3.2, though they tend to project increased rainfall; R2- CCCMA3.1 projects 

up to 5% decrease in the rainfall while R3-MIROC3.2 changes by -5 to 50%. 

However, CSIRO-Mk3.0 projects a decrease in the rainfall for all three model 

configurations for almost all grid points (except 5% increase in the rainfall shown for 

R3-CSIRO-Mk3.0 at few grid points located to the east) of the Williams River site.  

 

(a) 

(b) 

(c) 
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Figure 13.2 shows the percentage change in the mean annual rainfall simulated by 

GCMs for 2070 relative to 2000 at the Richmond River site. Compared with 

Williams River site, there is a similarity in the GCM projections with CCCMA3.1 

and MIROC3.2 GCMs projecting an increase of rainfall, with CSIRO-Mk3.0 

projecting a decrease. However, R3-MIROC3.2 projects significant increases in the 

rainfall mostly along the Great Dividing Range (up to 55%) and along the northern 

coast (up to 70% from Byron Bay to Coffs Harbour) of the Richmond River site. 

 

 

 

 

Figure 13.2 Percent change in mean annual rainfall for 2070 relative to 2000 at the 
Richmond River site. (a) R1, (b) R2, and (c) R3 RCM. 

The percentage change in the mean annual rainfall simulated by GCMs for 2070 

relative to 2000 at the Bega River site is shown in Figure 13.3. The Bega River site 

is projected to experience decreases of the rainfall by 2070 relative to 2000. R2-

CSIRO-Mk3.0, R3-CSIRO-Mk3.0 and R3-CCCMA3.1 all project decreases in the 

rainfall for most of the site, while all other GCMs, except R1-CCCMA3.1 and R2-

ECHAM projecting a decrease only in mountainous regions (Australian Alps) 

(a) 

(b) 

(c) 
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located from north to south-west across the centre of the site. The 30% decrease in 

the rainfall (shown in purple) projected by R3-MIROC3.2 along the Australian Alps 

is significantly different to the other projections. 

 

 

 

 

Figure 13.3 Percent change in mean annual rainfall for 2070 relative to 2000 at the 
Bega River site. (a) R1, (b) R2, and (c) R3 RCM. 

 

CCCMA3.1 (R1 and R2), ECHAM5 (all configurations) and MIROC3.2 (R1 and 

R3) all project an increase of the rainfall (up to a maximum of 40%) particularly 

along the coast. 

Figure 13.4 shows the mean rainfall projections for the Sydney site. Similar to the 

Williams River site, the rainfall of the Sydney site is also likely to vary from -14% to 

54% and tends to follow similar trends to the other sites in the change of the rainfall; 

CSIRO-Mk3.0 (all three RCM configurations) mostly projects decreases of the mean 

annual rainfall while CCCMA3.1 (R1 and R2) and MIROC3.2 (R1 and R3) project 

(a) 

(b) 

(c) 
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increases. All GCMs, except CSIRO-Mk3.0 project an increase of the rainfall along 

the south coast of NSW (from central coast to Narooma).   

Overall, the assessment performed at all four sites reveals that -19% to 54% 

(averages of maximums for all sites) projected change in the mean annual rainfall 

can be expected across the broader east coast by 2070. Particularly, the increase in 

mean annual rainfall along the coastline (Sydney, central coast and Illawarra) is 

consistent with Ji et al. (2013).  CSIRO-Mk3.0 generally projects decreases of the 

rainfall for all sites, while CCCMA3.1 and MIROC3.2 project increases. The 

ECHAM5 GCM also tends to project more decreases than increases.  
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Figure 13.4 Percent change in mean annual rainfall for 2070 relative to 2000 at the 
Sydney site. (a) R1, (b) R2, and (c) R3 RCM. 

13.3 Changes in the rainfall variability (Cv)  

Projected changes in the temporal rainfall variability at the monthly time resolution 

are investigated in this section. The change in the Cv of rainfall for 2070 relative to 

2000 at the Williams River site is shown in Figure 13.5. The figure indicates that the 

monthly rainfall Cv is likely to vary from -17% to 38% by 2070 in this region. 

According to the results of CSIRO-Mk3.0 and ECHAM5 GCMs, the Williams River 

(a) 

(b) 

(c) 
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site is projected to have an increased rainfall Cv across the entire site. The increase in 

the projected rainfall Cv (0 to 30%) is more significant in CSIRO-Mk3.0 than 

ECHAM5. The MIROC3.2 GCM (all RCM configurations) projects both decreases 

and increases in the rainfall variability, varying across the site, with more decreases 

at grid points which are located in the north-east of the site. The R2-CCCMA3.1 

projects decreased rainfall Cv across most of the site, while R1- CCCMA3.1 and R3- 

CCCMA3.1 project increased Cv across most of the site.  

Noticeably, the decreasing trend in rainfall shown in Figure 13.1 seems to be 

accompanied with an increase in rainfall Cv and the decreases in Cv (the purple 

regions in Figure 13.5) only occur in areas of increasing rainfall.  

 

 

 

 

 

Figure 13.5 Percent change in Cv for 2070 relative to 2000 at the Williams River 
site. (a) R1, (b) R2, and (c) R3 RCM. 
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The change in the Cv of rainfall for 2070 relative to 2000 at the Richmond River site 

is shown in Figure 13.6. As for the Williams River site, the Richmond River site is 

projected to have significant increases in the rainfall Cv by all three configurations of 

CSIRO-Mk3.0 and ECHAM5 GCMs, while MIROC3.2 and CCCMA3.1 (R1 and 

R2) generally project more decreases than increases. In contrast to the results for the 

Williams River site, ECHAM5 projects greater increases in magnitudes (0 to 30%) 

across the site than CSIRO-Mk3.0.  As for the Williams River catchment, regions 

with reduced rainfall Cv have a higher mean rainfall and vice versa. 

 

 

 

 

Figure 13.6 Percent change in Cv for 2070 relative to 2000 at the Richmond River 
site. (a) R1, (b) R2, and (c) R3 RCM. 

Figure 13.7 shows the rainfall variability trends for the Bega River site. The 

projected changes in Cv varying from -19% to 54% indicate that Bega River site will 

experience increases in the rainfall Cv by 2070 across the site (i.e. individual GCMs 

have more grid points with increased Cv) in contrast with the Williams and 

Richmond River sites. R1- and R3-ECHAM5 project a considerable increase in the 

(a) 

(b) 

(c) 
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rainfall Cv with R3-ECHAM5 projecting up to a 54% increase. Additionally, there is 

a significant decrease in the rainfall Cv for the Australian Alps which is projected 

only by the three RCM configurations of MIROC3.2. In the Australian Alps regions, 

these reductions in rainfall Cv are also accompanied by a reduction in mean annual 

rainfall.  

 

 

 

 

Figure 13.7 Percent change in Cv for 2070 relative to 2000 at the Bega River site. (a) 
R1, (b) R2, and (c) R3 RCM. 

 

Figure 13.8 shows the rainfall Cv trends for the Sydney site. As for the Williams 

River site, the rainfall Cv of the Sydney site is also likely to vary from -18% to 37%, 

with CSIRO-Mk3.0 (all three RCM configurations) mostly projecting increases of 

the monthly rainfall Cv and CCCMA3.1 (R1 and R2) and MIROC3.2 (all 

configurations) projecting decreases.  
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Figure 13.8 Percent change in Cv for 2070 relative to 2000 at the Sydney site. (a) R1, 
(b) R2, and (c) R3 RCM. 

The overall conclusions from the four sites are that in general, the occurrence of an 

increased or decreased in coefficient of variation does not have any consistent spatial 

pattern between the site as well as GCMs. As was the case for the mean rainfall, 

there is no general trend that the rainfall variability with distance from the coast, 

because at the Williams River site the coefficient of variation of the CSIRO-Mk3.0 

GCM increases more inland than at the coast while this trend is inverted for the 

(a) 

(b) 

(c) 
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Sydney site. Moreover, the negative correlation of rainfall coefficient of variation 

with mean rainfall seen at the other sites is less clear at the Sydney site.  

13.4 Changes in autocorrelation and spatial correlation of rainfall 

13.4.1 Autocorrelation 

The change in the lag-1 correlation of monthly rainfall for 2070 relative to 2000 at 

the Williams River site is shown in Figure 13.9. As for the CSIRO-Mk3.0 and 

MIROC3.2 GCMs, the monthly lag-1 correlation is likely to vary from -40% to 40% 

by 2070 for most of the region. 

 

 

 

Figure 13.9 Percent change in lag-1 correlation (monthly) for 2070 relative to 2000 
at the Williams River site. (a) R1, (b) R2, and (c) R3 RCM. 

(a) 

(b) 

(c) 
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CSIRO-Mk3.0 and MIROC3.2 GCMs, R1-ECHAM5 all show similar results. R2- 

and R3-ECHAM5 have increases of up to 100% for some regions in the site. In 

contrast, results for CCCMA3.1 indicate that monthly lag-1 correlation at the 

Williams River site is likely to vary from -100% to 100%, with R3 projecting more 

decreases than R1 and R2.  

However, this changing nature of either largely increasing or decreasing the 

magnitudes of lag-1 correlation of CCCMA3.1 can consistently be seen in Figure 

13.10, which shows the autocorrelations calculated for up to 60 lags for the monthly 

rainfall of CCCMA3.1 RCM for current (2000) and future (2070) periods at a single 

grid point (grid point A, see Figure 4.1) at the Williams River site.  

Similarly, monthly autocorrelations for CSIRO-Mk3.0, ECHAM5 and MIROC3.2 

GCMs are shown in Figures 13.11 to 13.13. As for the lag-1 correlations, the 

difference between the autocorrelations (1< lags < 60) for current and future periods 

is small for CSIRO-Mk3.0 and MIROC3.2 GCMs. ECHAM5 projects more 

increases than decreases for the future.  

However in all cases the changes in the autocorrelation are small. 

 

Figure 13.10 Monthly autocorrelations for the CCCMA3.1 GCM for current (2000) 
and future (2070) periods at grid point A - Williams River site. (a) R1, (b) R2, and 

(c) R3 RCM. 

(a) 

(b) 

(c) 
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Figure 13.11 Monthly autocorrelations for the CSIRO-Mk3.0 GCM for current 
(2000) and future (2070) periods at grid point A - Williams River site. (a) R1, (b) 

R2, and (c) R3 RCM. 

 

Figure 13.12 Monthly autocorrelations for the ECHAM5 GCM for current (2000) 
and future (2070) periods at grid point A - Williams River site. (a) R1, (b) R2, and 

(c) R3 RCM. 

 

(a) 

(b) 

(c) 
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Figure 13.13 Monthly autocorrelations for the MIROC3.2 GCM for current (2000) 
and future (2070) periods at grid point A - Williams River site. (a) R1, (b) R2, and 

(c) R3 RCM. 

13.4.2 Spatial correlation 

Spatial correlations functions for current (2000) and future (2070) periods for R1-

CCCMA3.1, R1-CSIRO-Mk3.0, R1-ECHAM5 and R1-ECHAM5 for the high 

elevation reference of Williams River site (see Table 4.2 and Figure 4.5) are shown 

in Figure 13.14. Similarly, the results for the R2 and R3 GCMs are shown in Figure 

13.15 and Figure 13.16 respectively.  

Figures 13.14 to 13.16 indicate that all GCMs, except R1-CSIRO-Mk3.0, R3-

CCCMA3.1 and R3-ECHAM5 tend to produce slight increases in the spatial 

correlation of the rainfall by 2070. However compared with general trends in the 

exponential fitted curves, the difference between the spatial correlations for current 

and future time periods are small for all GCMs and they mostly remain unchanged. 

Therefore, as for the autocorrelations (for 1 < lags < 60), there is no significant 

change in the spatial correlation of the rainfall by 2070.   
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Figure 13.14 Spatial correlations function for current (2000) and future (2070) 
periods for the Williams River site. The reference is W17 high elevation grid point. 
The plots are for the bias corrected GCM simulations of R1 RCM. (a) Current and 

(b) future. 
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Figure 13.15 Spatial correlations function for current (2000) and future (2070) 
periods for the Williams River site. The reference is W17 high elevation grid point. 
The plots are for the bias corrected GCM simulations of R2 RCM. (a) Current and 

(b) future. 
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Figure 13.16 Spatial correlations function for current (2000) and future (2070) 
periods for the Williams River site. The reference is W17 high elevation grid point. 
The plots are for the bias corrected GCM simulations of R3 RCM. (a) Current and 

(b) future. 
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13.5 Conclusions 

Overall, the assessment performed at all four sites reveals that -19% to 54% 

(averages of maximums and minimums for all sites) projected change in the mean 

rainfall can be expected across the broader east coast by 2070. These results match 

with the future rainfall projections by other organizations such as CSIRO and BOM 

(CSIRO and BoM, 2007). The lowest change for an individual site, -30% is for the 

Bega River site, while the highest 70% is for the Richmond River site. The rainfall is 

most likely to decrease in the future at the Bega River site at which has the most 

contrasting topography relative to other sites. CSIRO-Mk3.0 generally projects 

decreases of the rainfall for all sites, while CCCMA3.1 and MIROC3.2 project 

increases. The ECHAM5 GCM also tends to project more decreases than increases 

for the far future. All GCMs, except CSIRO-Mk3.0 project precipitation increases 

along the coast and this suggests that coastal regions will experience more rainfall in 

the future than the present-day.    

The change in the monthly rainfall coefficient of variation (Cv) was also assessed. 

The results suggest that there will be -19% to 40% (averages of maximums and 

minimums for all sites) change in the monthly rainfall Cv across the coastal sites by 

2070. CSIRO-Mk3.0 and ECAHM5 tend to project increases of the rainfall Cv across 

the sites, while CCCMA3.1 and MIROC3.2 projecting either increases or decreases. 

In contrast to the changes in the mean annual rainfall, there is no general trend that 

the rainfall Cv is to increase along the coast more than inland. However, there is a 

general trend that regions with reduced rainfall Cv have a higher mean rainfall and 

vice versa for all sites, except for Sydney. 

The change in the lag-1 correlation of the rainfall was also evaluated, but only for 

the Williams River site. The results suggest that monthly lag-1 correlation is likely to 

vary from -40% to 40% by 2070 for most of the region but there is non systematic 

trend. A preliminary investigation based on autocorrelations (for lags greater than 1) 

and spatial correlation of the rainfall reveal that difference between the correlations 

for current and future simulations is small and therefore, the correlations will likely 

remain almost unchanged by 2070.  
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Section 3  

Overall NARCliM assessment  
 

This section presents key insights, conclusions and recommendations of the results 

in Section 1 and Section 2.  

The key focus of this section is to compare the ability of NARCliM RCM rainfall 

(reanalysis and GCMs driven) to reproduce the observed statistics of the rainfall, 

particularly those are important for hydrology predictions and reservoir performance 

along the east coast of NSW for two different epochs: 1990-2009(20 years) and 

1950-2009 (60 years ). A detailed comparison between the model performances 

reveals insights on the suitability and limitations of these RCMs for use in 

hydrologic applications. Additionally comparing the results generated for the 

uncorrected and bias corrected RCMs, the differences caused by the bias correction 

are also investigated. 

The section comprises of two chapters: (1) Chapter 14: synthesis on the performance 

of NARCliM RCM data, and (2) Chapter 15: conclusions. 
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Synthesis 

14.1  Introduction 

The ability of NARCliM RCM simulations to capture observed rainfall statistics was 

evaluated using different statistical methods and approaches, focusing on the use of 

these datasets in water security applications, particularly the use of these datasets to 

estimate the runoff at a catchment, throughout this thesis. The results showed that 

there are discrepancies between the performances of NARCliM RCMs showing that 

some RCMs perform best at capturing one type of statistic such as probability 

distribution of the rainfall while others are better able to capture a different statistic 

of the observed rainfall. Therefore, this chapter summarises the differences between 

RCM performances in capturing the observed rainfall statistics. Additionally, to 

assess the overall performance of NARCliM along the broader east coast a cross-

comparison between the sites is also presented.  

14.2 Assessment of NARCliM RCMs current projections  

Section 1 of this thesis compared the performance of the three reanalysis RCMs for 

the 60 year (1950-2009) epoch, while Section 2 compared the performance of all 

NARCliM GCM projections, including the three reanalysis, for the 20 year (1950-

2009) epoch. The most capable NARCliM RCMs which best reproduce the observed 

rain gauge and AWAP statistics at four east coast sites are summarised and shown in 

Tables 14.1 to 14.7.  

14.2.1 Probability distribution of the rainfall 

The ability of NARCliM RCMs to reproduce the cumulative probability distribution 

of the mean annual rainfall of AWAP for all the grid points at a site was also 

evaluated. The NARCliM RCMs which closely capture the CDF of the mean rainfall 

of AWAP at each site are shown in Table 14.1. The spatial variability of the mean 

annual rainfall at each site is summarised in Section 14.2.2.1.  
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Table 14.1 The most capable NARCliM RCMs to capture the cumulative probability 
distribution of the mean annual rainfall of AWAP 

 

The numbers 1 to 5 followed by the RCM name indicate the rank of model performance. U and O 

indicate an under or overestimation of CDF of annual rainfall compared with AWAP.   
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The results suggest that there is a general trend of all uncorrected reanalyses for the 

60 year epoch to underestimate the probabilities (by 25 to 50%) of the mean annual 

rainfall of AWAP at each site, particularly for the greatest rainfall values. R2 

reanalysis tends to closely reproduce the CDF of AWAP for all the sites. 

For the 20 year epoch, the uncorrected R2-ECHAM5 for the Williams River and 

Sydney sites and R1- and R3-CCCMA3.1 for the Bega and Richmond River sites 

tended to closely reproduce the CDF of mean annual rainfall, particularly for the 

occurrence of mean rainfall less than 850 mm of AWAP. R1- and R3-CSIRO-Mk3.0 

and MIROC3.2 generally underestimated the probabilities (up to 20%) of the mean 

annual rainfall of AWAP. Compared with R1 and R3, the underestimation was less 

for R2-CSIRO-Mk3.0 and R2-MIROC3.2. In contrast, CCCMA3.1 RCMs tended to 

overestimate the CDF (10 to 5%) of AWAP for all three configurations at all the 

sites. The underestimation in the uncorrected 20 year reanalysis was slightly worse 

than the GCMs, suggesting that uncorrected GCM simulations better reproduced the 

mean CDF of AWAP than the uncorrected reanalysis for the 20 year time period for 

all sites.  

After the bias correction, all RCMs for both the 20 and 60 year epoch tended to 

closely reproduce the CDF of AWAP overlapping almost 95 to 98% of AWAP’s 

CDF. This shows the extent of improvement in the mean statistics of NARCliM 

RCMs after the bias correction.  

NARCliM RCMs’ ability to reproduce the AWAP daily rainfall probability 

distributions for single grid points was evaluated for all four sites. The NARCliM 

RCMs which most closely reproduced the AWAP daily probability distribution at 

each site are shown in Table 14.2. As explained in Section 6.2, the uncorrected and 

bias corrected reanalyses are only reliable for the midsize to large rainfall events 

(rainfall greater than 1.5 mm) so the comparison in Table 14.2 was constrained to 

that particular range.  

 

 

 



 

Chapter 14 - Synthesis 

370 
 

Table 14.2 The most capable NARCliM RCMs to capture the AWAP daily 
probability distributions (results are only for the midsized to large rainfall events) 

 The numbers 1 to 5 followed by the RCM name indicate the rank of model performance. U and O 

indicate an under or overestimation of CDF of annual rainfall compared with AWAP. 
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For low elevation grid points, all uncorrected reanalyses for 60 year epoch tended to 

underestimate the daily probability distribution of AWAP, particularly the midsized 

rainfall events (0.1 to 7 mm). R2 reanalysis was better able to capture the 

probabilities of AWAP midsized to large events (rainfall greater than 7 mm) than R1 

and R3 reanalyses. At high elevation grid points, all three uncorrected reanalyses 

underestimated (30% or more) the daily rainfall probabilities of AWAP for all 

rainfall events. Therefore, none of the uncorrected reanalyses captured the daily 

rainfall probability distributions of AWAP at high elevations. There was no 

difference in the RCM performance between the sites. 

For the 20 year epoch, uncorrected GCMs (R2-CSIRO-Mk3.0, R2-MIROC, R2-

ECAM and R2-CCCMA3.1) tended to better capture the daily probabilities of the 

AWAP at low elevations than uncorrected R2 reanalysis. However, which RCM 

performed best along the broader east coast appears to be different for each site.  At 

high elevations of Richmond River and Sydney sites, R2- and R3-CCCMA3.1 

respectively appear to be the best RCMs and closely reproduced AWAP rainfall 

probabilities. At high elevations in the Williams River site, R2-reanalysis performed 

better than the GCMs. At the Bega site none of the RCMs captured the AWAP daily 

probabilities (underestimate up to 40%).  

The bias corrected R2 reanalysis for the 60 year epoch tended to best capture the 

probabilities of midsized-to-high rainfall events of AWAP at all sites. Of bias the 

corrected RCMs for the 20 year epoch, all R2 RCMs reproduced the probabilities of 

low-to-high rainfall events (rainfall greater than 1.5 mm) of AWAP for all the grid 

points along the east coast, with small discripancies in the RCM performance. As 

mentioned earlier the probabilities of the light rainfall events (rainfall less than 1.5 

mm) are not captured by any of the RCMs (neither for 20 nor 60 year epochs), 

because only a part of the daily probability function has been improved, and also 

there are artefacts caused by the bias correction.  

Overall, the results suggest that the ability of NARCliM RCMs to capture the rainfall 

probabilities have been significantly improved with the bias correction. In particular, 

most of the systematic biases in the mean annual rainfall of uncorrected simulations 

have been removed as expected, by the bias correction. Compared with other RCMs, 

improvement in the CSIRO-Mk3.0 is most significant and this will be further 
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discussed in Section 14.2.2.1. With respect to the daily rainfall distributions, it is 

clear that daily probability distribution of midsized-to-high rainfall events of 

NARCliM RCMs’ has only been improved while probability distribution of light 

rainfall events remains erroneous even after the bias correction. The improvement of 

the probability distribution after bias correction was true for all time resolutions from 

daily to annual, even the bias correction was only performed on the daily data. 

14.2.2 Spatial variability of the rainfall statistics  

In order to investigate the ability of NARCliM RCMs to reproduce the observed 

statistics, three types of statistics were calculated for every gridded rainfall series at 

each site along the east coast and tested against the AWAP rainfall. As catchments 

consist of multiple grid points, evaluation of the spatial variability and correlation 

between grid points using different statistics is important in determining the impact 

of rainfall averaging over a catchment. The statistics used were mean, coefficient of 

variation and lag-1 correlation of the rainfall.  

14.2.2.1 Mean rainfall 

The NARCliM RCMs which best reproduced the mean annual rainfall of AWAP at 

each site is shown in Table 14.3. 

The uncorrected reanalyses for the 60 year epoch tended to overestimate the mean 

rainfall at all sites. In general, uncorrected reanalysis closely reproduced the mean 

rainfall (over or underestimation varies from 0 to 50%) of AWAP at low elevation 

grid points, but tended to overestimate, sometimes by more a factor of 2, the rainfall 

at higher elevations. A typical result was for the Merriwa site (not shown in Table 

14.3, see Section 5.1.3) where uncorrected R2 reanalysis overestimated the AWAP 

rainfall by 250% while the overestimations by the uncorrected R1 and R3 reanalyses 

were 300 and 400% respectively. The spatial patterns of the mean annual rainfall for 

all reanalyses were similar to the spatial patterns from AWAP for all sites, except for 

the Richmond River site where the spatial pattern of mean annual rainfall did not 

follow the topography. Of all three reanalyses, R2 reanalysis had rainfall most 

similar to AWAP showing a ratio between the means varying from 0.5 to 1.5 for 
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over 60% of the grid points of each site. The remaining 40% of grid points have the 

greatest overestimated values varying from 1.5 to 2.5.  

Table 14.3 The most capable NARCliM RCMs to capture the AWAP mean rainfall  

 

The numbers 1 to 5 followed by the RCM name indicate the rank of model performance. U and O 

indicate an under or overestimation of mean annual rainfall compared with AWAP.  
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For the 20 year epoch, the uncorrected R2-CCCMA3.1 was the best RCM at 

reproducing both magnitude and the spatial pattern in mean rainfall of AWAP, 

though there was a slight underestimation of the rainfall at some grid points of the 

sites studied. All other RCMs overestimated the mean rainfall of AWAP. The 

overestimation in the CSIRO-Mk3.0 and reanalysis RCMs was relatively higher (0 

to 400%) than other RCMs, and in particular, this effect was more significant at 

higher elevations. 

As expected, all bias corrected reanalysis for the 60 year epoch better reproduced the 

mean annual rainfall of AWAP at all sites than the uncorrected. In particular, all 

uncorrected reanalyses mirror the spatial pattern in AWAP mean rainfall. The ratio 

between bias corrected reanalyses and AWAP mean rainfall generally varied from 

0.5 to 1.5, and suggested that reanalyses slightly under or overestimated (up to 50%) 

the mean rainfall of AWAP at all sites. There was a significant improvement in R1 

and R3 reanalyses after the bias corrections, sometimes simulating similar 

magnitudes as R2 reanalysis. Of bias corrected RCMs for the 20 year epoch, 

CSIRO-Mk3.0 RCMs tended to better capture the mean rainfall of AWAP than other 

RCMs for the Williams and Richmond River sites. At Bega River and Sydney sites, 

all RCMs, except reanalyses closely reproduced the AWAP mean, while over or 

underestimating the mean up to 50%. With respect to the CDFs generated for the 

mean rainfall (see Table 14.1 in Section 14.2.1) at a site of the bias corrected 

datasets, this over or underestimation was 0 to 10% for all the sites studied. 

14.2.2.2 Coefficient of variation of rainfall 

The NARCliM RCMs which best captured the Cv of rainfall of AWAP at each site 

are shown in Table 14.4.  

The uncorrected reanalyses for the 60 year epoch tended to underestimate (20 to 

30%) the Cv of the AWAP rainfall, thus underestimated the actual rainfall variability 

at a site. The ratios of Cv of reanalysis to AWAP varying from 0.6 to 1.1 for all sites 

suggesting that in addition to underestimations, there is a slight overestimation of Cv 

of AWAP at some grid points at all sites. In particular, this overestimation (up to 

10%) was quite significant at the Bega River and Sydney sites. R2 and R3 reanalyses 

tended to better capture the magnitude and the spatial pattern of Cv of AWAP for all 

sites. The exception was Merriwa where the spatial patterns of the uncorrected 
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reanalyses were different from AWAP. Note that results for the Merriwa site are not 

shown in Table 14.4 as it was used as a pilot study where all analyses used only the 

uncorrected 60 years reanalyses datasets. However, the general underestimation of 

the magnitudes Cv of AWAP was similar to the other four sites (see Section 5.1.3). 
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 Table 14.4 The most capable NARCliM RCMs to capture the AWAP coefficient of 

variation of rainfall  

 

The numbers 1 to 5 followed by the RCM name indicate the rank of model performance. U and O 

indicate an under or overestimation of Cv compared with AWAP.  
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All the uncorrected GCMs, except CSIRO-Mk3.0 tended to overestimate the Cv for 

all sites for the 20 year epoch, and this was in contrast to the reanalysis. The 

uncorrected R2-MIROC3.2 for the 20 year epoch more closely captured the Cv of 

AWAP rainfall than other RCMs particularly for the fortnightly and monthly 

resolutions, overestimating the magnitudes (varying from 0 to 20%) for all sites.  

As expected, after the bias correction, the reanalyses tended to better capture the Cv 

of AWAP than the uncorrected for the 60 year epoch. In particular, there is a clear 

improvement in R2 and R3 reanalyses which had ratios of reanalysis to AWAP 

ranging from 0.8 to 1.1. Comparing the number of grid points which have 

magnitudes of Cv close to AWAP (with ratio ranging from 0.9 to 1.1), the bias 

corrected R2 better reproduced the Cv of AWAP than R1 and R3 for all time 

resolutions. Of bias corrected RCMs for the 20 year epoch, all RCMs tended to 

produce improved results compared with the uncorrected. MIROC3.2 was the 

exception, yet it remained the best at capturing the Cv of AWAP for most of the grid 

points at a site. However R1 and R3-MIROC3.2 tended to perform better than R2 

after the bias correction for all sites.  

14.2.2.3 Lag-1 correlation of rainfall 

This section compares the lag-1 correlation of NARCliM RCMs relative to AWAP. 

The lag-1 correlation of the rainfall was not calculated for the daily resolution due to 

the large number of zero rainfalls.  

The NARCliM RCMs which best captured the lag-1 correlations of AWAP at each 

site are shown in Table 14.5. 

The uncorrected reanalyses for the 60 year epoch poorly reproduced the lag-1 

autocorrelations of fortnightly and monthly AWAP. There were some overestimated 

regions (up to 300%) located at the high elevations while there were some 

underestimated regions (up to 100%) at low elevations. There was a similarity in the 

spatial pattern of reanalyses and AWAP at fortnightly and monthly time resolutions 

for all sites except for the Williams River which had only the monthly pattern being 

similar to AWAP. 

The uncorrected R3-CCCMA3.1 for the 20 year epoch tended to better simulate the 

lag-1 autocorrelation (with 10 to 40% over or underestimation) for all three time 
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resolutions than the other RCMs, yet the spatial pattern in the annual lag-1 

autocorrelation of AWAP was poorly simulated. In particular the negative lag-1 

autocorrelations regions shown in the annual AWAP were not well matched with 

that of CCCMA3.1. Compared with the uncorrected reanalysis for the 60 year epoch, 

there was a reduction in the extent of the overestimation (80%) of lag-1 correlation 

for the 20 year epoch, which was due to the lesser number of data points used.    

The bias corrected RCMs produced very similar results to the uncorrected data for 

all time resolutions and sites. This suggests that the bias correction does not improve 

lag-1 autocorrelations except for the slight improvement of R3-CCCMA3.1 for the 

20 year period. Therefore, the ability to capture the lag-1 correlation of AWAP in the 

bias corrected RCMs was equal to that of the uncorrected. 
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Table 14.5 The most capable NARCliM RCMs to capture the AWAP lag-1 
correlation of rainfall  

 

The numbers 1 to 5 followed by the RCM name indicate the rank of model performance. U and O 

indicate an under or overestimation of monthly lag-1 autocorrelations compared with AWAP. The 

detailed results are maximums of R1, R2 and R3RCMs. 
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14.2.2.4 Standard deviation of the rainfall 

In addition to the mean, Cv and lag-1 correlation, the ability of the 20 year epoch 

NARCliM RCMs to capture the standard deviation of the rainfall was assessed, but 

the analysis was only performed at the Sydney site. The results showed that 

uncorrected R2-CCCMA3.1 tended to underestimate (20 to 30%) the standard 

deviation of AWAP, while all of the other uncorrected RCMs slightly overestimated 

(about 15 to 25%). However, R1 and R3-CCCMA3.1 uncorrected RCMs reproduced 

the standard deviation of AWAP better than R2. The bias corrected MIROC3.2 tend 

to reproduce the standard deviation better than the other RCMs and the overall 

performance of the standard deviation of the RCM simulated rainfall was 

significantly imporved by the bias correction. 

14.2.2.5 Relationship between spatial variability of statistics and elevation 

The NARCliM RCMs (20 and 60 year epochs) were better able to reproduce the 

rainfall distribution statistics such as mean and Cv. The bias corrected RCMs tended 

to produce more reliable results than uncorrected when capturing the mean and Cv of 

AWAP rainfall. However, there was no significant improvement in the lag-1 

correlations of uncorrected RCMs after the bias correction. This showed that bias 

correction does not improve the time series characteristics of the NARCliM RCMs.  

The statistics such as mean, Cv and lag-1 correlations calculated for NARCliM 

RCMs tended to be highly correlated to the elevation and the distance to the coast. 

The results shown in Figure 5.13 and a preliminary evaluation on the relationship 

between the mean rainfall and elevation (Chapter 8) suggested that there was a 

statistically significant positive linear relationship ( r2=0.91 and p= 0.001) between 

the observed rainfall and the elevation for the regions which were close to the 

coastline, where the ECL impacts were most dominant. Further from the coast, this 

relationship became weaker. This analysis was performed only at the Williams River 

site using the 60 year reanalyses rainfall, AWAP and rain gauge datasets. Compared 

with AWAP, and R1 and R3 reanalyses, R2 reanalysis was better at replicating the 

linear relationship between the gauged rainfall and elevation at the Williams River 

site. 
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14.2.3 Temporal autocorrelation of the rainfall 

The autocorrelations of NARCliM RCMs at selected grid points of the Williams 

River, Richmond River, Bega River and Sydney sites were evaluated against AWAP 

data at three different resolutions: fortnightly, monthly and annual. The NARCliM 

RCMs which best captured the AWAP autocorrelations at each site are shown in 

Table 14.6. Note that this section presents the results for autocorrelations up to 50 

lags, while Section 14.2.2.3 presented only the lag-1 correlation of the rainfall.  

The results of the autocorrelation analyses showed that not all NARCliM RCMs 

were able to successfully reproduce the seasonality present in the observed rainfall, 

though most of them were able to capture the correct timing of the seasonal cycle for 

all time resolutions and epochs irrespective of the spatial location. Capturing the 

seasonal cycle is of much interest in Australia, where significant seasonal shifts in 

predominant patterns and distributions of rainfall and temperature occur. 

 Compared with the AWAP autocorrelations, the uncorrected R1 and R2 reanalyses 

for 60 year epoch often overestimated the strength of the autocorrelation at each lag 

while the R3 reanalysis tended to better reproduce the AWAP autocorrelations while 

still slightly overestimating the magnitudes for all sites, except for the Richmond 

River site (where R3 reanalysis underestimated autocorrelations up to 50% at low 

elevations). However for the high elevation grid points of the Williams River site, all 

reanalyses tended to greatly overestimate the magnitudes of the autocorrelations of 

AWAP, while there was no consistency in the autocorrelation results at the high 

elevation grid points for Sydney (see Table 14.6).  
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Table 14.6 The most capable NARCliM RCMs to capture the AWAP 
autocorrelations  

 

The numbers 1 to 5 followed by the RCM name indicate the rank of model performance. U and O 

indicate an under or overestimation of the monthly autocorrelation of the 6th (6 months) lag compared 

with AWAP. 
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For all RCMs for the current 20 year epoch, the uncorrected R2 and R3 reanalyses 

performed better in capturing the spatial pattern of the autocorrelations of AWAP 

than the GCMs, yet tended to overestimate the magnitudes. Of the GCMs, CSIRO-

Mk3.0, MIRO3.2 and ECHAM5 overestimated the magnitudes (up to 500%) of 

autocorrelations of AWAP. In contrast CCCMA3.1 had similar magnitudes of 

autocorrelations of AWAP, particularly the R3-CCCMA3.1 at the Sydney site, but 

did not produce the correct timing of the seasonal signal with peaks at different lags 

compared with AWAP.  

The bias corrected reanalyses for 60 year epoch produced similar results was the 

uncorrected, except for some small improvements in magnitudes for some grid 

points at each site. Similarly, bias corrected GCM rainfall for the 20 year epoch also 

had similar autocorrelations to the uncorrected rainfall. This suggests that bias 

correction does not change the autocorrelation performance of RCMs (20 year and 

60 year epoch) relative to AWAP for all sites studied.  The results showed that bias 

correction did not improve the time series statistics of rainfall, particularly 

autocorrelations even though bias correction improved the distribution statistics of 

the rainfall.  

The autocorrelation analysis for both uncorrected and bias corrected datasets 

exhibited a seasonal signal. Further investigations of anomaly time series after the 

seasonal detrending revealed that the reduction in the number of significant 

autocorrelations in the correlograms for the original and detrended data was 

consistent with a strong seasonal signal. 

Overall, the overestimated autocorrelations (stronger persistence) of the uncorrected 

and bias corrected NARCliM RCMs suggests that if they are used in reservoir 

analysis, they would tend to predict longer durations for wet and dry periods, and 

hence likely over-predict the spillage from dams (i.e. wet periods) and the duration 

of periods of near empty reservoirs (i.e. dry periods). This overestimation was 

greater at high elevation grid points, particularly at Williams River and Sydney sites 

where none of the reanalyses reproduce the AWAP autocorrelations.  

As mentioned in Section 14.2.2, it is possible that the spatial averaging of elevation 

within the NARCliM pixels was affecting the results, particularly where rainfall 

volume is closely related to topography. This effect was more pronounced at high 
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elevation regions such as Australian Alps at the Bega River site and Blue Mountains 

at the Sydney site.   

14.2.4 Spatial correlation of the rainfall 

NARCliM RCMs’ ability to reproduce the spatial correlations of the daily AWAP 

and rain gauge rainfall was evaluated at four sites along the east coast. The spatial 

correlation of NARCliM daily time series calculated between one grid point and all 

other grid points across a site was compared with that of AWAP. The results were 

presented as spatial variability plots (spatial patterns) as well as the scatter plots of 

correlation vs distance between two points (spatial correlation function). Using the 

fitted exponential curves, the best NARCliM RCMs which captured the spatial 

correlation of AWAP at each site were identified and are shown in Table 14.7. 

In general, all uncorrected reanalyses for the 60 year epoch were able to reproduce 

the spatial correlations of AWAP, although R1 and R3 reanalyses tended to 

underestimate the spatial correlations for the long distanced grid points (large 

separations) where there is a high elevation difference between the grid points. Bega 

River and Sydney sites are examples of this behaviour. Compared with spatial 

correlations of rain gauges, both the uncorrected reanalyses and AWAP gridded 

datasets had correlations higher than that of the rain gauges, with approximately 20 

to 30% overestimation for all the grid points used (see Section 7.3). 

Of the uncorrected RCMs for the 20 year epoch, uncorrected GCM simulations 

performed better than reanalysis at some sites such as Bega River and Sydney. The 

uncorrected R1- and R3-ECHAM5, MIROC3.2 and CSIRO-MK3.0 RCMs tended to 

better simulate the AWAP spatial correlation function than CCCMA3.1. However 

due to discrepancies in the performance of RCMs, which GCM and which RCM 

configuration (R1, R2 or R3) performed better was site specific. Though the general 

trends in the spatial correlation function of AWAP is closely captured by NARCliM 

RCMs, there are significant discrepancies in the scatter of the spatial correlation 

functions. In particular, for all datasets (AWAP and NARCliM RCMs), there is less 

scatter in the correlation functions when correlations was calculated using a low 

elevation point as the reference.  
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Table 14.7 The most capable NARCliM RCMs to capture the AWAP spatial 
correlation of rainfall  

The numbers 1 to 5 followed by the RCM name indicate the rank of model performance. U and O 
indicate an under or overestimation of the exponent of the fitted curve relative to AWAP.  
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1-R1 reanalysis 7%  -  U 
2-R2 reanalysis  
                        12%  -  U 
3-R3 reanalysis 16% - U 

1-R2 reanalysis 30%  -  U 
2-R3 reanalysis 36%  -  U 
3-R1 reanalysis 36% - U 

1-R2 reanalysis  
                       17%  -  U 
2-R1reanalysis  
                       22%  -  U 
3-R3 reanalysis 33% - U 

20
 y

ea
r e

po
ch

 u
nc

or
re

ct
ed

 

lo
w

  

R1 reanalysis R1 CSIRO-Mk3.0 R2 and R3 
reanalyses R3-CSIRO-Mk3.0 

1-Reanalysis  2%  -  O 
2- CCCMA3.7% - O 
3- CSIROMk-3.0   
                            7% - O 
4- MIROC3.2 18% - O 
5- ECHAM5 23% -O 

1-CSIROMk-3.0  0%  
2-Reanalysis 2%  -  U/O 
3- ECHAM5 4% - O 
4- CCCMA3.1  6% - O 
5- MIROC3.2  17% - O 

1-Reanalysis  2%  -  U 
2- CCCMA3.4% - U 
3- CSIROMk-3.0  4% - U 
4- MIROC3.2 8% - O 
5- ECHAM5 8% -O 

1- CSIROMk-3.0 2%-O  
2- CCCMA3.1  5% - O 
3-Reanalysis  5%  -  U 
4- ECHAM5 15% -O 
5- MIROC3.2 20% - O 

hi
gh

  

R1 reanalysis and 
R3-MIROC3.2 R1-ECHAM5 R3-MIROC3.2 R1 CSIRO-Mk3.0 

1-Reanalysis 4%  -  U 
2- MIROC3.2  4% - U 
3- CCCMA3.1 6% - U 
4- ECHAM5 6% -O 
5-CSIROMk-3.0  
                            6% - U 

1- ECHAM5 0% 
2- MIROC3.2  2.5% - U 
3-CSIROMk-3.0   
                       2.5% - U 
4- CCCMA3.1 5% - U 
5-Reanalysis 10%  -  U 

1- MIROC3.2  12% - U 
2- ECHAM5 19%- U 
3-Reanalysis 26%  -  U 
4- CCCMA3.1 40% - U 
5-CSIROMk-3.0   
                        52% - U 

1-CSIROMk-3.0   
                           3% - U  
2- ECHAM5 5%- O 
3- MIROC3.2  8% -O 
4- CCCMA3.1 8% - U 
5-Reanalysis 16%  -  U 

60
 y

ea
r e

po
ch

 b
ia

s c
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re
ct

ed
 

lo
w

  

R1 reanalysis R3 reanalysis R2 reanalyses R2 reanalysis 
1-R1 reanalysis  
                        10%  -  U 
2-R2 reanalysis  
                       12%  -  U 
3-R3 reanalysis 12% - U 

1-R3reanalysis  
                      11%  -  U 
2-R2 reanalysis  
                      13%  -  U 
3-R1 reanalysis 18% - U 

1-R2 reanalysis 13%  -  U 
2-R3 reanalysis 17%  -  U 
3-R1 reanalysis 27% - U 

1-R2reanalysis  
                        11%  -  U 
2-R1 reanalysis  
                        13%  -  U 
3-R3 reanalysis 24% - U 

hi
gh

  

R3 reanalysis R1 and R3 
reanalyses R2 reanalysis R2 reanalysis 

1-R3reanalysis  
                      19%  -  U 
2-R1 reanalysis  
                    20%  -  U 
3-R2 reanalysis 26% - U 

1-R1reanalysis  
                16%  -  U 
2-R3 reanalysis  
                 16%  -  U 
3-R2 reanalysis 20% - U 

1-R2reanalysis 36%  -  U 
2-R3 reanalysis 40%  -  U 
3-R1 reanalysis 53% - U 

1-R2 reanalysis  
                     28%  -  U 
2-R1 reanalysis  
                    33%  -  U 
3-R3 reanalysis 42% - U 

20
 y

ea
r e
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lo
w

  

R1-CSIRO-Mk3.0 R1-ECHAM5 R2 MIROC3.2 R3-CSIRO-Mk3.0 
1- CSIROMk-3.0  
                        2% - U 
2- CCCMA3.  5% - O 
3-Reanalysis  7%  -  U 
4- MIROC3.2 11% - O 
5- ECHAM5 18% -O 

1- ECHAM5 0%  
2-Reanalysis 4%  - U 
3- CCCMA3.1  6% - O 
4- CSIROMk-3.0  
                             9% -U 
5- MIROC3.2 9% - O 

1- MIROC3.2  0%  
2- ECHAM5 4%- O 
3-Reanalysis 8%  -  U 
4- CCCMA3.1 8% - U 
5-CSIROMk-3.0  8% - U 

1- CSIROMk-3.0  0%  
2- CCCMA3.  2% - O 
3-Reanalysis   
                  2%  -  O/U 
4- ECHAM5 12% -O 
5- MIROC3.2 20% - O 

hi
gh

  

R1-MIROC3.2 R1-ECHAM5 R2-ECHAM5 R3-ECHAM5 and 
R2-MIROC3.2 

1- MIROC3.2  0%  
2 - ECHAM5 2% -O 
3- CCCMA3.1 6% - U 
4- CSIROMk-3.0   
                           6% - U 
5- Reanalysis 15%  -  U 

1- ECHAM5 0% 
2- CCCMA3. 2 5% - U 
3- MIROC3.2  5% - O 
4-CSIROMk-3.0   
                        7.5% - U 
5-Reanalysis 20%  -  U 

1- ECHAM5 24%- U 
2- MIROC3.2  21% - U 
3- CCCMA3.1 36% - U 
4-Reanalysis 38%  -  U 
5-CSIROMk-3.0   
                      57% - U 

1- ECHAM5 0% 
2- MIROC3.2  0%  
3- CCCMA3.1  3% - U 
4-CSIROMk-3.0    
                          5% - U 
5-Reanalysis 27%  -  U 
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The bias corrected reanalyses for the 60 year epoch produced similar results to the 

uncorrected, with only some small differences in performance. However compared 

with the spatial correlation of rain gauges (shown in Figure 7.28), all three bias 

corrected reanalyses datasets had better results than AWAP. The bias corrected 20 

year epoch RCMs had similar performance to the uncorrected.  

It appears that the spatial variability of the spatial correlation of uncorrected and bias 

corrected rainfall for all sites was more influenced by the distance than the difference 

of the elevation between the points. 

14.3 Uncertainty of NARCliM Rainfall Simulations 

Uncertainties of climate outputs arise due to various contributing factors. For 

instance, the uncertainties of downscaled rainfall simulations are mainly due to the 

uncertainties associated with the underlying GCMs and RCM configurations. This 

section outlines uncertainties of NARCliM RCMs that have been introduced due to 

the use of different GCM and RCM combinations. The NARCliM bias corrected 

simulations for the current epoch (1990-2009) of the Williams River site were used 

in this analysis and only the key results and conclusions are shown below. 

In order to quantify the uncertainties of each simulation, percentiles of monthly 

rainfall data were used throughout the analysis.  This approach is somewhat similar 

to the method used in Woldemeskel et al (2012) which estimated the GCM/RCM 

model uncertainty based on the Square Root Error Variance of the median percentile 

(50th). However, in contrast to Woldemeskel et al (2012), the standard deviation of 

the median percentile (50th) was used in this thesis.  

14.3.1 Percentile plots 

The percentile plots for monthly NARCliM rainfall for all four GCMs and three 

RCMs at grid points A and C (see Figure 6.1) of the Williams River Catchment are 

shown in Figure 14.1. There is a clear variability of rainfall at different percentiles. 

In particular for percentiles greater than 50, this variability is significant across the 

simulations.   
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Figure 14.1 Percentile plots of rainfall for 1990-2009 at grid points A and C of 
Williams River site. Each colour shows different GCMs and consists of three 

precipitation values (For three RCM runs). 

The variability between all twelve simulations (four GCMs: CCCMA3.1, CSIRO-

Mk3.0, ECHAM5 and MIROC3.2, and three RCMs: R1, R2 and R3) for the 50th 

percentile of monthly rainfall at grid point A and C is shown in Figure 14.2 and 

Figure 14.3. 

 

Figure 14.2 Variability of GCMs and RCMs for the 50th percentile for rainfall for 
1990-2009 at grid point A of Williams River site: (a) model variability for three 

RCMs and (b) variability for four GCMs. Whiskers show range from minimum to 
maximum values. 

(a) (b) 
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Figure 14.3 Variability of GCMs and RCMs for the 50th percentile for rainfall for 
1990-2009 at grid point C of Williams River site: (a) model variability for three 

RCMs and (b) variability for four GCMs. Whiskers show range from minimum to 
maximum values. 

As shown by Figure 14.2a and 14.3a, at both low (A) and high (C) elevation grid 

points, GCMs downscaled with R1 and R2 RCMs have a greater variability of the 

rainfall relative to R3. In contrast, a greater variability of the 50th rainfall percentile 

can also be seen for CCCMA GCM across three RCMs (Figure 14.2b and 14.3b), 

particularly at the lower elevation. Despite these slight differences, the overall range 

shows that variability across GCMs is higher than that across RCM runs. Therefore, 

this suggests that uncertainties of NARCliM model simulations are predominantly 

driven by the underlying GCMs, not by the RCMs.  

14.3.2 Calculation of uncertainty 

Uncertainty in climate simulations can be evaluated by analysing the consistency 

between different projections. As stated in Woldemeskel et al (2012), “Standard 

deviation at a specific percentile can be used as a measure of uncertainty”, as it 

calculates the variability between equally possible climate projections of multiple 

RCM/GCM combinations.  

The uncertainty of NARCliM simulations was calculated as three values: (1) 

uncertainty across GCMs, (2) uncertainty across RCMs and (3) total uncertainty: 

(a) (b) 
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square root of (1) and (2). For instance, Figure 14.4 and Figure 14.5 show the 

standard deviation of the 50th percentile of uncorrected and bias corrected monthly 

rainfall (1990-2009) at all 400 grid points of Williams River site.  As was in 

previous chapters, the purpose of calculating uncertainties of both uncorrected and 

bias corrected simulations was to study any possible increases or decreases of the 

uncertainty caused by the applied bias correction method.  Further, as summarized in 

section 14.2.1, CSIRO-MK3.0 GCM and R2 RCM have been shown to better 

reproduce the observed PDFs of rainfall, therefore only the results based on CSIRO-

Mk3.0 GCM and R2 RCM are shown in Figure 14.4 and Figure 14.5. 

The three values plotted in each figure can be summerized as follows. 

1. GCM uncertainty: standard deviation of the median percentile of rainfall of 

the four GCMs downscaled using RCM2- this is the variability of all GCMs 

for a single RCM configuration – The GCM/RCMs used were R2-CCCMA, 

R2-CSIRO, R2-ECHAM and R2-MIROC  

2. RCM uncertainty: standard deviation of the median percentile of rainfall of 

the three RCMs using CSIRO GCM - this is the variability of all RCMs for a 

single GCM – The GCM/RCMs used were R1-CSIRO, R2-CSIRO and R3-

CSIRO  

3. Total uncertainty = ((GCM uncertainty)2 + (RCM uncertainty)2)1/2 

 

As expected, Figure 14.4 shows that total uncertainty of uncorrected rainfall is 

higher than that of the bias corrected simulations (Figure 14.5). Similar to other 

statistics calculated in previous chapters, the spatial distribution of the standard 

deviation shows that uncertainty of GCMs mirrors the topography of the site, with 

greater uncertainty at higher elevations.  The results also indicate that uncertainties 

of both GCM and RCM simulations have approximately similar or slightly different 

impacts on the total uncertainty of the uncorrected rainfall.   
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Figure 14.4 Maps of standard deviation values of 50th percentile for total, GCM, 
RCM and Total uncertainty for uncorrected rainfall for 1990-2009 of Williams River 

site. The standard deviation values are shown for CSIRO-Mk3.0 GCM and R2 
RCM. 

In contrast, results for the bias corrected rainfall (Figure 14.5) indicate that GCM 

uncertainty is the main contributor to the total uncertainty at all grid points showing 

higher uncertainty than RCMs, although this uncertainty is low across the whole 

catchment which is expected. This result is consistent with the results of whisker 

plots shown in Figure 14.2 and 14.3.  

 

Figure 14.5 Maps of standard deviation values of 50th percentile for total, GCM and 
RCM uncertainty for bias corrected rainfall for 1990-2009 of Williams River site. 
The standard deviation values are shown for CSIRO-Mk3.0 GCM and R2 RCM. 

The spatial distribution of coefficient of variation of the median percentile of rainfall 

for the Williams River site for current (1990-2009) and two future epochs (2020-

2040 and 2060-2080) are shown in Figures 14.6 to 14.8. The results indicate that 

uncertainty is greater in future NARCliM projections, with far future (2060-2080) 

epoch showing greatest uncertainty compared with current and the near future epoch 

(2020-2040). Similar to the standard deviation, spatial distribution of uncertainty 
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calculated using coefficient of variation plots also show that GCM uncertainty 

follows the topography of the site, although the trend is not as pronounced.   

 

 

Figure 14.6 Maps of coefficient of variation values of 50th percentile for total, GCM 
and RCM uncertainty for bias corrected rainfall for 1990-2009 of Williams River 

site. The standard deviation values are shown for CSIRO-Mk3.0 GCM and R2 
RCM. 

 

Figure 14.7 Maps of coefficient of variation values of 50th percentile for total, GCM 
and RCM uncertainty for bias corrected rainfall for 2020-2040 of Williams River 

site. The standard deviation values are shown for CSIRO-Mk3.0 GCM and R2 
RCM. 
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Figure 14.8 Maps of coefficient of variation values of 50th percentile for total, GCM 
and RCM uncertainty for bias corrected rainfall for 2060-2080 of Williams River 

site. The standard deviation values are shown for CSIRO-Mk3.0 GCM and R2 
RCM. 

Overall, the results show that GCM uncertainty is the main contributing factor for 

the total uncertainty of NARCliM bias corrected simulations. As expected the bias 

correction used in the NARCliM design clearly reduces the total, GCM and RCM 

uncertainties of NARCliM uncorrected simulations. Further, the uncertainty of 

NARCliM future projections appears to be higher than that of the current projection. 

In addition, similar to the other statistics, NARCliM model uncertainty also follows 

the topography of the site.    

14.4 Assessment of NARCliM RCMs future projections  

The future change of rainfall for 2070 relative to 2000 was assessed for the four east 

coast sites using the bias corrected NARCliM GCM projections, and is shown in 

Table 14.8. 

The results reveal that -19% to 54% (averages of maximums and minimums of R1, 

R2 and R3 GCMs for all sites) projected change in the mean rainfall is predicted 

across the broader east coast by 2070. The lowest change for an individual site, -30% 

was for the Bega River, while the highest (70%) was for the Richmond River site. 

There was a general trend that CCCMA3.1 and MIROC3.2 GCMs projected an 

increase in the mean rainfall while CSIRO-mk3.0 and ECHAM5 projected a 

decrease for 2070 for all sites. For all sites the MIROC3.2 RCMs projected larger 

increases (up to 70%) than CSIRO-Mk3.0.  
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Table 14.8 Percent change in mean and Cv of rainfall for 2070 relative to 2000  

 

GCMs 

Williams 

River site 

Richmond 

River site 

Bega 

River site 

Sydney 

Site 

Percent change 

in mean annual 

rainfall 

CCCMA3.1 

CSIRO-Mk3.0 

ECHAM5 

MIROC3.2 

-5 to 40 

-20 to 5 

-20 to 10 

-15to 50 

-5 to 30 

-20 to 5 

-15 to 10 

0 to 75 

-20 to 30 

-20 to 5 

-30 to 20 

-25 to 45 

-10 to 30 

-20 to 5 

-15 to 10 

-15 to 50 

Percent change 

in Cv of monthly 

rainfall 

CCCMA3.1 

CSIRO-Mk3.0 

ECHAM5 

MIROC3.2 

-25 to 30 

-5 to 35 

-10 to 25 

-25 to 10 

-25 to 30 

-10 to 25 

-5 to 30 

-20 to 10 

-20 to 45 

-15 to 30 

-10 to 55 

-25 to 30 

-20 to 35 

-15 to 35 

-15 to40 

-20 to 30 
 

The results are maximum and minimum values of all GCMs (R1, R2 and R3) for a particular GCM at 

a site. 

Further, the models suggest that there will be a -19% to 40% (averages of 

maximums and minimums for all sites) change in the monthly rainfall variability 

across the coastal sites by 2070. CSIRO-Mk3.0 and ECHAM5 tend to project 

increases of the rainfall variability (up to 40%) across the sites, while CCCMA3.1 

and MIROC3.2 project either increases or decreases (percent change varying from -

25 to 45%). There is a general trend that regions with reduced rainfall variability 

have a higher mean rainfall and vice versa for all sites, except for Sydney.
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Conclusions 

15.1 Introduction 

The primary objective of this thesis was to evaluate the ability of NARCliM 

downscaled RCM data to generate the correct statistical representation of current day 

hydrology. Both the uncorrected and bias corrected data was used in each analysis to 

compare the performance of the datasets with and without bias correction. As a 

specific objective, the similarities and differences between the performance of 

NARCliM RCM data to capture the temporal and spatial statistics of observed 

rainfall was investigated at four study sites, from north to south along the east coast 

of NSW, and with different orography, exposure to the coastal weather systems and 

ECL occurrence.  

The secondary objective was to assess the impacts of orography on rainfall and its 

potential impact on hydrology and water security. Most of the water supply 

catchments along the east coast are subjected to orographic rainfall due to closeness 

of the Great Divide to the coast. Therefore, the relationship between the rainfall and 

elevation was explored and inferences drawn about potential impact on hydrology 

and water security.  

The third objective was to determine any future changes in NARCliM rainfall 

properties compared with current day rainfall statistics. This final chapter 

summarises how these objectives were achieved, the major findings and conclusions 

and future research directions. 

15.2 Statistical testing of NARCliM rainfall 

The past studies on the evaluation of NARCliM in the literature review showed that 

10 km resolution NARCliM RCMs were able to successfully reproduce the daily 

statistics such as mean, bias in minimum and maximum precipitation and probability 

distributions of the rainfall when compared to AWAP observations. The results here 

support these findings in past studies, the results of the evaluation of the probability 
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distribution functions suggest there is a general trend of all uncorrected RCMs to 

underestimate the mean annual probability distribution of AWAP at a site, 

particularly the occurrence of greatest rainfall values. However, as was expected, 

this behaviour has been significantly improved with the bias correction and as a 

result, NARCliM RCMs tend to reproduce almost 98% of AWAP’s CDF. This 

shows the extent of improvement in the mean statistics of NARCliM RCMs after the 

bias correction. Compared with other RCMs, improvement in the CSIRO-Mk3.0 to 

capture the CDF of mean annual rainfall of AWAP is quite significant. An important 

caveat is that the bias correction used daily AWAP data and many of the statistical 

conmparisons here also used AWAP, so improved performance for those specific 

statistics is not surprising. 

The ability of NARCliM RCMs to capture the daily rainfall probabilities was also 

assessed. As for the results, R2 RCMs are better able to capture the daily rainfall 

CDF of AWAP than R1 and R3, though the probabilities of the light rainfall events 

(rainfall less 1.5 mm) are captured by none of the uncorrected RCMs (neither for 20 

(1990-2009) nor 60 year (1950-2009) epochs). For the midsized to high rainfall 

events, the uncorrected R2 reanalysis for the period 1950-2009 closely captures the 

daily rainfall distribution at low elevations at the sites studied. For the 20 year epoch, 

uncorrected R2-GCMs tend to better capture the daily probabilities of AWAP at low 

elevations than reanalysis. At high elevations, all uncorrected RCMs, struggle to 

reproduce the daily rainfall distributions of AWAP for both 60 and 20 year epochs. 

Compared with the uncorrected, there is a significant improvement in the RCM 

performance after the bias correction, though datasets are only reliable for the 

rainfall events greater than 1.5 mm due to the artefacts caused by the bias correction 

method. However, since none of NARCliM RCMs (neither uncorrected nor bias 

corrected) simulate the entire daily rainfall distribution of AWAP, the reliability of 

using this data in rainfall-runoff models to generate estimates of runoff is 

questionable.  

The results for the analysis of the spatial variability of temporal rainfall statistics 

show that NARCliM RCMs are able to capture the mean and standard deviation of 

the rainfall. While uncorrected RCMs tend to largely overestimate these statistics, as 

expected bias corrected RCMs better capture these statistics at the catchment scale. 

Of all RCMs for the 20 year epoch, the bias corrected CSIRO-Mk3.0 RCMs are able 
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to best capture the mean rainfall, while bias corrected MIROC3.2 captures the 

standard deviation of rainfall of AWAP. While these two models performed best, all 

other RCMs show some discrepancies compared with AWAP at all sites. Therefore, 

the results suggest that not all NARCliM RCMs are equally able to capture a 

particular statistic. The bias corrected MIROC3.2 RCMs were able to closely capture 

the coefficient of variation (Cv) of AWAP which determines the temporal variability 

of rainfall at a particular grid point, yet the ability of capturing the Cv was not as 

good for the mean and standard deviation of the rainfall. Further with respect to 

reproducing the Cv of AWAP, there is only a slight difference between bias 

corrected uncorrected RCMs. Further, it appears that the spatial variability of the 

rainfall (both uncorrected and bias corrected) has been influenced by the topography 

and the spatial patterns in all statistics are well simulated by NARCliM RCMs.   

The ability of NARCliM RCMs to capture the lag-1 autocorrelation of the rainfall 

was also studied. In contrast to the CDF, mean, standard deviation and Cv, the ability 

of NARCliM RCMs to capture lag-1 correlation of AWAP is poor, with either under 

or overestimation of the magnitudes of AWAP autocorrelations. Both uncorrected 

and bias corrected R3-CCCMA3.1 for the 20 year epoch, produce similar results 

closely reproducing both the magnitude and spatial pattern of lag-1 autocorrelation 

of AWAP for fortnightly and monthly resolutions. The spatial pattern in the annual 

lag-1 autocorrelation of AWAP is not well simulated. In particular there are regions 

negative lag-1 autocorrelations in AWAP that are not well matched by CCCMA3.1. 

The similarity between the uncorrected and bias corrected results of lag-1 

autocorrelations shows that bias correction does not improve the time series statistics 

of rainfall, particularly the lag-1 autocorrelations though they are capable to correct 

the systematic biases in distribution statistics such as CDF, mean, Cv and standard 

deviation of rainfall. 

There are strong seasonal autocorrelations in the NARCliM data that are not 

observed in AWP or rain gauge data. The autocorrelation analyses showed that all 

NARCliM RCMs are unable to successfully reproduce the seasonal variability 

present in the observed rainfall at each time resolution for each time epoch 

irrespective of the spatial location. For the 20 year epoch, all GCMs, except 

CCCMA3.1 greatly overestimate the autocorrelations of the AWAP rainfall for all 

sites. The bias corrected R3-CCCMA3.1 RCM, particularly at low elevation grid 
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points appear to have similar magnitudes of autocorrelations of AWAP, yet does not 

produce the correct timing or the phase of the seasonal signal. For the 60 year epoch, 

R3 reanalysis tend to closely reproduce autocorrelations trends with time, yet 

overestimates the magnitudes. The overly strong seasonal signal in the NARCliM 

data is consistent with the number of significant autocorrelations in the detrended 

correlograms. As was seen for the lag-1 correlations, the correlograms of bias 

corrected RCMs look almost similar to the uncorrected correlograms and indicate 

that there is no significant improvement in model performances, with respect to the 

autocorrelations, after the bias correction. These results indicate that the significant 

deviations in the autocorrelation were not improved by the bias corrections. 

Compared with the time series statistics such as temporal autocorrelations, 

NARCliM RCM data are better at reproducing the spatial correlation of AWAP 

rainfall. The analysis on the spatial correlation shows that R1 and R2 reanalyses 

produce similar spatial correlations as AWAP for all separations for all sites along 

the east coast. Compared with spatial correlations of rain gauges, both uncorrected 

reanalyses and AWAP gridded datasets have correlations higher than that of the rain 

gauges, with approximately 20-30% overestimation for all the grid points used. For 

the uncorrected RCMs for the 20 year epoch, R1- and R3-ECHAM5, MIROC3.2 and 

CSIRO-MK3.0 RCMs sometimes perform better than reanalysis at some sites. 

However, which model (ECHAM5, MIROC3.2 or CSIRO-MK3.0) and which 

configuration (R1, R2 or R3) performs better varies depending on the site 

topography and general climate properties. Though the exponential structure of the 

spatial correlation function of AWAP is closely captured by NARCliM RCMs, there 

are some discrepancies in the scatter of the spatial correlation functions of individual 

NARCliM RCM simulations. The bias corrected RCMs produce similar results as 

for the uncorrected, while having some small differences in the performance. Since 

both gridded datasets (bias corrected NARCliM RCMs and AWAP) overestimate the 

observed spatial correlations, usage of these datasets to estimate the rainfall, 

particularly the water availability in reservoir simulations in a catchment where there 

is no sufficient ground observations, may produce erroneous estimates with an over 

predicted actual water availability. As was seen for the other statistics, it appears that 

the spatial variability of the spatial correlation of rainfall also has been influenced by 

the topography. 
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15.3 Relationship between rainfall and the orography 

It was found that the spatial variability of the rainfall statistics has a link to the 

topography. There are two types of rainfall and elevation relationships found in this 

study. 

The first type is that there is a poor relationship between the mean rainfall and 

elevation which seems to be inconsistent across a catchment, with only 20% of the 

total variation of the mean rainfall explained by the linear relationship with 

elevation, while 80% of the variation remains unexplained. A combined approach of 

further assessing the relationship between the mean rainfall and elevation, and 

impacts from ECLs on this relationship suggest that there is a statistically significant 

positive linear relationship (r2=0.91 and p= 0.001) between the mean rainfall and the 

elevation, but only for the regions which are close to the coastline of the Williams 

River site, where the ECL impacts are dominant. As the distance from the coast 

increases this relationship becomes weaker. However, it should be noted that this 

combined approach of the assessment of the relationship between mean annual 

rainfall and elevation was performed only as a preliminary case study, therefore 

further investigations are needed. 

The second type is the relationship of the correlation of the rainfall with distance, 

and with elevation differences from a reference gauge. This means that even if two 

rain gauges have exactly similar mean rainfall, rainfall at one rain gauge can have a 

low correlation to the other because they are some distance away, or they have 

different elevations.  

15.4 Performance of the NARCliM RCMs at various sites 

The statistical tests performed at five study sites chosen along the east coast of 

Australia show that there is no north to south trend in either AWAP or NARCliM 

rainfall statistics along the broader east coast. Further, no specific recommendations 

can be made of a best GCM-RCM combination that performs best for any given site, 

due to the discrepancies between RCMs depending on the elevation, site hydrology, 

distance to the ocean, varying impacts from climatic phenomenon such as ECLs etc. 

There was a clear indication that NARCliM RCMs poorly simulate the rainfall 
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statistics at high elevation regions along the east coast, and this might be related to 

the averaging of the topography in NARCliM elevation data within a grid point. 

Note that most of the comparisons of the mean rainfall were against AWAP and 

there is emerging evidence that AWAP is poor for higher elevations. In particular, if 

this averaging effect is high at high elevations, the resulting lowered averaged 

elevations at these grid points may lead to low magnitudes of statistics as the rainfall 

statistics follow the trends in topography. Further, the rainfall in the Alpine region is 

less correlated with the other regions of the east coast and this was seen in both 

AWAP and NARCliM RCMs. Therefore, this suggests that both NARCliM and 

AWAP may not produce the rainfall at the Alpine region, where there is a distinct 

climate with snow occuring compared to other regions on the eastern seaboard.   

15.5 Final remarks on NARCliM current rainfall projections 

Overall, statistical testing performed along the east coast suggest that bias corrected 

NARCliM RCMs are able to capture the daily AWAP rainfall probabilities only for 

the midsized to large rainfall events, therefore fail to simulate the entire cumulative 

probability distribution of the daily rainfall at single grid points. The bias corrected 

NARCliM RCMs are able to reproduce both the magnitudes and spatial pattern in 

distribution statistics such as mean, standard deviation and Cv. The uncorrected R2 

RCMs for both reanalysis and GCMs tend to perform better in capturing the 

distribution statistics of rainfall. This suggests that there are differences between the 

outputs depending on the underlying RCM configurations which were used in the 

downscaling process. Therefore, it appears that the internal dynamics of the RCMs 

plays a major role in driving the deterministic details of the rainfall time series. The 

spatial correlation function of AWAP rainfall is well captured by both uncorrected 

and bias corrected NARCliM RCMs. In contrast, the ability of both uncorrected and 

bias corrected NARCliM RCMs to reproduce the time series statistics such as 

autocorrelations of the rainfall is poor, and strongly overestimate the magnitudes of 

autocorrelations of AWAP. The similar correlograms for the uncorrected and bias 

corrected RCMs suggest that the bias correction does not influence the time series 

statistics, particularly the autocorrelations.  
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Since the NARCliM RCMs do not reproduce some of the statistics such as daily 

rainfall probabilities and time series statistics autocorrelations of the rain gauge and 

AWAP data which are important for the reservoir simulations at a site this raises 

unanswered questions about whether the NARCliM reanalysis datasets are 

sufficiently reliable to be used for reservoir analysis, particularly when generating 

estimates of runoff. In general, rainfall-runoff models are used to generate the daily 

runoff yield required for reservoir analysis and are typically calibrated using 

observed raingauge data at daily resolution. Therefore, this analysis suggests that 

NARCliM rainfall data cannot be used to drive a rainfall-runoff model calibrated to 

observed data and further, it is unlikely to generate correct estimates of runoff even 

if rainfall-runoff models are calibrated to NARCliM rainfall, particularly if the site 

average errors in NARCliM are greater than the site average errors in raingauge and 

AWAP data. It is important to note that the uncertainties associated with gauge and 

AWAP data cannot be neglected, particularly for possible interpolation errors in 

AWAP (e.g. Chubb et al., 2016), there is no simple way of assessing how accurately 

each dataset captures the rainfall in ungauged areas (Tozer et al., 2012).  

Assessments of uncertainties of NARCiM simulations reveal that both GCM and 

RCM models that were used in the downscaling process contribute to the total 

uncertainty of NARCliM outputs. In particular, GCM uncertainty appears to be the 

main contributing factor for the total uncertainty of NARCliM bias corrected 

simulations. The reason of this is bias correction reduces all types of uncertainties 

including GCM, RCM and total uncertainties, however, the reduction of uncertainty 

in RCMs appears to be greater than that is of GCMs. As a result, uncertainties of 

RCMs have minimal impact on the total uncertainty of the simulations relative to the 

GCMs. Therefore, total uncertainty of bias corrected simulations tends to be mostly 

governed by the uncertainty of GCMs.   In addition, uncertainity of NARCliM future 

projections appears to be higher than that of the current projection. Similar to the 

other statistics, NARCliM model uncertainity also follow the topography of the site, 

particularly this can clearly seen in uncertainity of GCMs than RCMs.     
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15.6 NARCliM future projections 

Overall, the assessment performed at all four sites reveals that -19% to 54% 

(averages of maximums and minimums for all sites) projected change in the mean 

rainfall can be expected across the broader east coast by 2070. The lowest change for 

an individual site (-30%) is for the Bega River site, while the highest (70%) is for the 

Richmond River site. The rainfall is most likely to decrease by far future at the Bega 

River site, and this may be due to the relatively topography compared with the other 

sites. CSIRO-Mk3.0 and ECHAM5 GCMs generally project decreases of the rainfall 

for all sites, while CCCMA3.1 and MIROC3.2 project increases. All GCMs, except 

CSIRO-Mk3.0 project precipitation increases along the coast and this suggests that 

coastal regions will experience more rainfall in the future than the present-day.    

The change in the monthly rainfall variability was also assessed. The results suggest 

that there will be -19% to 40% (averages of maximums and minimums for all sites) 

change in the monthly rainfall variability across the coastal sites by 2070. CSIRO-

Mk3.0 and ECHAM5 tend to project increases of the rainfall variability across the 

sites, while CCCMA3.1 and MIROC3.2 project either increases or decreases.  

In contrast to the changes in the mean annual rainfall, there is no general trend that 

the rainfall variability is to increase along the coast more than inland. There is a 

general trend that regions with reduced rainfall variability have a higher mean 

rainfall and vice versa for all sites, except for Sydney. This behaviour is consistent 

with the standard deviation of the rainfall remaining the same as the mean rainfall 

increases, which in turn is consistent with the rate of occurrence of rain days 

increasing but with the rain on each rainy day remaining unchanged. This is being 

studied in a parallel PhD project (Chowdhury, 2016). 

15.7 Future work 

The high-resolution RCMs can be evaluated using different approaches. As the 

primary objective, the ability of NARCliM RCMs to reproduce the current observed 

rainfall statistics which are important for reservoir modelling and water availability 

analysis was assessed in this thesis. However, this evaluation can be extended in 

several ways.  
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 In the calculation of statistics, four time resolutions; daily, fortnights, months and 

annual were used in this thesis. The major motivation to use these different time 

resolutions is that reservoirs of different capacities respond to rainfall differently; 

small reservoirs respond to daily variations in rainfall while large reservoirs respond 

to rainfall variations over weeks or months. However, previous authors have 

evaluated the statistics of RCMs on seasonal basis. Therefore, the evaluation of the 

statistics based on the seasons could also reveal more insights on how these RCMs 

perform at different climate seasons. 

Additionally, as a direct application on the reservoir simulation, the ability of 

NARCliM RCMs to generate the observed runoff could be evaluated. This 

assessment could be preceded by generating runoffs using a rainfall runoff model 

calibrated for the observed rainfall such as AWAP, and comparing the outputs 

against the historical runoff data.  

Since this study focuses on the hydrologic validity of RCM simulations, the potential 

uses and limitations of these RCM datasets could be evaluated in many ways. For 

example, these datasets can be used to model the potential evapotranspiration, and 

then outputs can be compared against actual values. 
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The statistical testing performed at different sites showed that the rainfall properties 

show similar trends for all site studied. Therefore, when the difference is small 

between the sites, results for only two or more selected sites that highlight the 

differences were only presented in the text in previous chapters. This section 

presents the results for the sites that were not discussed in detail in previous sections. 
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A.1 Chapter 6 - Section 6.2 

Cumulative probability distributions for the uncorrected and bias-corrected 

fortnightly to yearly averaged rainfall for the Williams River site are presented in 

Figures A.1 and A.2. 

 

 

Figure A. 15.1 Cumulative probability distributions of uncorrected reanalyses and 
AWAP across the Williams River site for (a) fortnightly, (b) monthly and (c) annual 
resolutions at grid points A, B, C and D. Note that daily rainfall are in log scale and 

only values greater than 0.2 mm are plotted. 
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Figure A. 15.2 Cumulative probability distributions of bias corrected reanalyses and 
AWAP across the Williams River site for (a) fortnightly, (b) monthly and (c) annual 
resolutions at grid points A, B, C and D. Note that daily rainfall are in log scale and 

only values greater than 0.2 mm are plotted. 
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A.2 Chapter 9 - Section 9.2 

The CDFs of the mean annual and daily rainfall for Richmond River and Sydney 

sites are presented in Figures A.3 to A.10.   

 

Figure A. 15.3 Cumulative probability distributions of mean annual rainfall of 
uncorrected NARCliM GCMs and AWAP across the Richmond River site. R1, R2 

and R3 (columns) are three RCM configurations 
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Figure A.15.4 Cumulative probability distributions of mean annual rainfall of bias 
corrected NARCliM GCMs and AWAP across the Richmond River site. R1, R2 and 

R3 (columns) are three RCM configurations 
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Figure A.15.5 Cumulative probability distributions of daily rainfall of uncorrected 
NARCliM GCMs and AWAP at Grid point E, F, G and H of Richmond River site. 

Note that daily rainfall is in log scale and only values greater than 0.2 mm are 
plotted. Points E and F are low elevation, G and H high elevation. 
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Figure A.15.6 Cumulative probability distributions of daily rainfall of bias corrected 
NARCliM GCMs and AWAP at Grid point E, F, G and H of Richmond River site. 

Note that daily rainfall is in log scale and only values greater than 0.2 mm are 
plotted. Points E and F are low elevation, G and H high elevation. 
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Figure A.15.7 Cumulative probability distributions of mean annual rainfall of 
uncorrected NARCliM GCMs and AWAP across the Sydney site. R1, R2 and R3 

(columns) are three RCM configurations 
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Figure A.15.8 Cumulative probability distributions of mean annual rainfall of bias 
corrected NARCliM GCMs and AWAP across the Sydney site. R1, R2 and R3 

(columns) are three RCM configurations 
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Figure A.15.9 Cumulative probability distributions of daily rainfall of uncorrected 
NARCliM GCMs and AWAP at Grid point P, Q, R and S of Sydney site. Note that 

daily rainfall is in log scale and only values greater than 0.2 mm are plotted. Points P 
and Q are low elevation, R and S high elevation. 
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Figure A.15.10 Cumulative probability distributions of daily rainfall of bias 
corrected NARCliM GCMs and AWAP at Grid point P, Q, R and S of Sydney site. 

Note that daily rainfall is in log scale and only values greater than 0.2 mm are 
plotted. Points P and Q are low elevation, R and S high elevation. 
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A.3 Chapter 10 - Section 10.2 

The mean annual rainfall of uncorrected reanalyses and AWAP for the Bega River 

and Sydney sites are shown in Figures A.11 to A.12.  

 

 

 
Figure A.15.11 Spatial distribution of the mean annual rainfall (1990-2009) of the 
Bega River site: The plots are for the uncorrected simulations of (a) R1 and (b) R3, 

and AWAP. 

 

 

 

Figure A.15.12 Spatial distribution of the mean annual rainfall (1990-2009) of the 
Sydney site: The plots are for the uncorrected simulations of (a) R1 and (b) R3, and 

AWAP. 
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RCMs  Observed 
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(b) 
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A.4 Chapter 10, Section 10.2.3 

The spatial variability of Cv of the uncorrected and bias corrected NARCliM RCMs 

compared with AWAP for the Williams River and Bega River sites are shown in 

Figures A.13 to A.24.  

 

 

 

 

Figure A.15.13 Spatial distribution of the Cv of the rainfall (1990-2009) of the 
Williams River site: The plots are for the uncorrected simulations of R1, and 

AWAP. Time resolutions are; (a) daily, (b) fortnightly, (c) monthly, and (d) annual. 
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Figure A.15.14 Spatial distribution of the Cv of the rainfall (1990-2009) of the 
Williams River site: The plots are for the uncorrected simulations of R2, and 

AWAP. Time resolutions are; (a) daily, (b) fortnightly, (c) monthly, and (d) annual. 
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Figure A.15.15 Spatial distribution of the Cv of the rainfall (1990-2009) of the 
Williams River site: The plots are for the uncorrected simulations of R3, and 

AWAP. Time resolutions are; (a) daily, (b) fortnightly, (c) monthly, and (d) annual. 
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Figure A.15.16 Spatial distribution of the Cv of the rainfall (1990-2009) of the 
Williams River site: The plots are for the bias corrected simulations of R1, and 

AWAP. Time resolutions are; (a) daily, (b) fortnightly, (c) monthly, and (d) annual. 
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Figure A.15.17 Spatial distribution of the Cv of the rainfall (1990-2009) of the 
Williams River site: The plots are for the bias corrected simulations of R2, and 

AWAP. Time resolutions are; (a) daily, (b) fortnightly, (c) monthly, and (d) annual. 

 

 

 

 

 

 

 

 

 

 

R2 RCM Observed 



 

Appendix 

416 
 

 

 

 

Figure A.15.18 Spatial distribution of the Cv of the rainfall (1990-2009) of the 
Williams River site: The plots are for the bias corrected simulations of R3, and 

AWAP. Time resolutions are; (a) daily, (b) fortnightly, (c) monthly, and (d) annual. 
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Figure A.15.19 Spatial distribution of the Cv of the rainfall (1990-2009) of the Bega 
River site: The plots are for the uncorrected simulations of R1, and AWAP. Time 

resolutions are; (a) daily, (b) fortnightly, (c) monthly, and (d) annual. 
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Figure A.15.20 Spatial distribution of the Cv of the rainfall (1990-2009) of the Bega 
River site: The plots are for the uncorrected simulations of R2, and AWAP. Time 

resolutions are; (a) daily, (b) fortnightly, (c) monthly, and (d) annual. 
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Figure A.15.21 Spatial distribution of the Cv of the rainfall (1990-2009) of the Bega 
River site: The plots are for the uncorrected simulations of R3, and AWAP. Time 

resolutions are; (a) daily, (b) fortnightly, (c) monthly, and (d) annual. 
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Figure A.15.22 Spatial distribution of the Cv of the rainfall (1990-2009) of the Bega 
River site: The plots are for the bias corrected simulations of R1, and AWAP. Time 

resolutions are; (a) daily, (b) fortnightly, (c) monthly, and (d) annual. 
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Figure A.15.23 Spatial distribution of the Cv of the rainfall (1990-2009) of the Bega 
River site: The plots are for the bias corrected simulations of R2, and AWAP. Time 

resolutions are; (a) daily, (b) fortnightly, (c) monthly, and (d) annual. 
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Figure A.15.24 Spatial distribution of the Cv of the rainfall (1990-2009) of the Bega 
River site: The plots are for the bias corrected simulations of R3, and AWAP. Time 

resolutions are; (a) daily, (b) fortnightly, (c) monthly, and (d) annual. 
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A.5 Chapter 10 - Section 10.2.4 

The spatial variability of lag-1 correlations of the uncorrected and bias corrected 

NARCliM RCMs compared with AWAP for the Williams River and Bega River 

sites are shown in Figures A.25 to A.36.  

 

 

Figure A.15.25 Spatial distribution of the lag-1 autocorrelation of the rainfall (1990-
2009) of the Williams River site: The plots are for the uncorrected simulations of 
R1, and AWAP. Time resolutions are; (a) fortnightly, (b) monthly, and (c) annual. 
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Figure A.15.26 Spatial distribution of the lag-1 autocorrelation of the rainfall (1990-
2009) of the Williams River site: The plots are for the uncorrected simulations of 
R2, and AWAP. Time resolutions are; (a) fortnightly, (b) monthly, and (c) annual. 

 

 

 

Figure A.15.27  Spatial distribution of the lag-1 autocorrelation of the rainfall (1990-
2009) of the Williams River site: The plots are for the uncorrected simulations of 
R3, and AWAP. Time resolutions are; (a) fortnightly, (b) monthly, and (c) annual. 
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Figure A.15.28 Spatial distribution of the lag-1 autocorrelation of the rainfall (1990-
2009) of the Williams River site: The plots are for the bias corrected simulations of 
R1, and AWAP. Time resolutions are; (a) fortnightly, (b) monthly, and (c) annual. 

 

 

 

Figure A.15.29 Spatial distribution of the lag-1 autocorrelation of the rainfall (1990-
2009) of the Williams River site: The plots are for the bias corrected simulations of 
R2, and AWAP. Time resolutions are; (a) fortnightly, (b) monthly, and (c) annual. 
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Figure A.15.30 Spatial distribution of the lag-1 autocorrelation of the rainfall (1990-
2009) of the Williams River site: The plots are for the bias corrected simulations of 
R3, and AWAP. Time resolutions are; (a) fortnightly, (b) monthly, and (c) annual. 

 

 

 

Figure A.15.31 Spatial distribution of the lag-1 autocorrelation of the rainfall (1990-
2009) of the Bega River site: The plots are for the uncorrected simulations of R1, 

and AWAP. Time resolutions are; (a) fortnightly, (b) monthly, and (c) annual. 
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Figure A.15.32 Spatial distribution of the lag-1 autocorrelation of the rainfall (1990-
2009) of the Bega River site: The plots are for the uncorrected simulations of R2, 

and AWAP. Time resolutions are; (a) fortnightly, (b) monthly, and (c) annual. 

 

 

 

Figure A.15.33 Spatial distribution of the lag-1 autocorrelation of the rainfall (1990-
2009) of the Bega River site: The plots are for the uncorrected simulations of R3, 

and AWAP. Time resolutions are; (a) fortnightly, (b) monthly, and (c) annual. 
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Figure A.15.34 Spatial distribution of the lag-1 autocorrelation of the rainfall (1990-
2009) of the Bega River site: The plots are for the bias corrected simulations of R1, 

and AWAP. Time resolutions are; (a) fortnightly, (b) monthly, and (c) annual. 

 

 

 

Figure A.15.35  Spatial distribution of the lag-1 autocorrelation of the rainfall (1990-
2009) of the Bega River site: The plots are for the bias corrected simulations of R2, 

and AWAP. Time resolutions are; (a) fortnightly, (b) monthly, and (c) annual. 
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Figure A.15.36 Spatial distribution of the lag-1 autocorrelation of the rainfall (1990-
2009) of the Bega River site: The plots are for the bias corrected simulations of R3, 

and AWAP. Time resolutions are; (a) fortnightly, (b) monthly, and (c) annual.  
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A.6 Chapter 12 - Section 12.2 

The spatial correlation of the uncorrected and bias corrected NARCliM RCMs 

compared with AWAP for the Bega River and Sydney sites are shown in Figures 

A.37 to A.68. 

 

 

 

 

 

 

 

Figure A.15.37 Spatial correlations of daily rainfall between the reference grid point 
and all other grid points in the Bega River site. The plots are for the uncorrected 

simulations of (a) R1, (b) R2, and (c) R3 RCMs, and AWAP. The reference is Q12, 
a high elevation grid point (shown in yellow boxes). 
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Figure A.15.38 Spatial correlations function (1990-2009) of the Bega River site. The 
reference is Q12 high elevation grid point. The plots are for the uncorrected GCM 

simulations of R1 RCM and AWAP. 
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Figure A.15.39 Spatial correlations function (1990-2009) of the Bega River site. The 
reference is Q12 high elevation grid point. The plots are for the uncorrected GCM 

simulations of R2 RCM and AWAP. 
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Figure A.15.40 Spatial correlations function (1990-2009) of the Bega River site. The 
reference is Q12 high elevation grid point. The plots are for the uncorrected GCM 

simulations of R3 RCM and AWAP. 
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Figure A.15.41 Spatial correlations of daily rainfall between the reference grid point 
and all other grid points in the Bega River site. The plots are for the bias corrected 

simulations of (a) R1, (b) R2, and (c) R3 RCMs, and AWAP. The reference is Q12, 
a high elevation grid point (shown in yellow boxes). The sky blue grid points inside 

the site are inland reservoirs updated with the bias correction. 
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Figure A.15.42 Spatial correlations function (1990-2009) of the Bega River site. The 
reference is Q12 high elevation grid point. The plots are for the bias corrected GCM 

simulations of R1 RCM and AWAP. 
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Figure A.15.43 Spatial correlations function (1990-2009) of the Bega River site. The 
reference is Q12 high elevation grid point. The plots are for the bias corrected GCM 

simulations of R2 RCM and AWAP. 
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Figure A.15.44 Spatial correlations function (1990-2009) of the Bega River site. The 
reference is Q12 high elevation grid point. The plots are for the bias corrected GCM 

simulations of R3 RCM and AWAP. 
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Figure A.15.45 Spatial correlations of daily rainfall between the reference grid point 
and all other grid points in the Bega River sitesite. The plots are for the uncorrected 
simulations of (a) R1, (b) R2, and (c) R3 RCMs, and AWAP. The reference is Q3, a 

low elevation grid point (shown in yellow boxes). 
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Figure A.15.46 Spatial correlations function (1990-2009) of the Bega River site. The 
reference is Q3 low elevation grid point. The plots are for the uncorrected GCM 

simulations of R1 configuration of the WRF RCM and AWAP. 
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Figure A.15.47 Spatial correlations function (1990-2009) of the Bega River site. The 
reference is Q3 low elevation grid point. The plots are for the uncorrected GCM 

simulations of R2 configuration of the WRF RCM and AWAP. 
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Figure A.15.48 Spatial correlations function (1990-2009) of the Bega River site. The 
reference is Q3 low elevation grid point. The plots are for the uncorrected GCM 

simulations of R3 configuration of the WRF RCM and AWAP. 
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Figure A.15.49 Spatial correlations of daily rainfall between the reference grid point 
and all other grid points in the Bega River site. The plots are for the bias corrected 

simulations of (a) R1, (b) R2, and (c) R3 RCMs, and AWAP. The reference is Q3, a 
low elevation grid point (shown in yellow boxes). The sky blue grid points inside the 

site are inland reservoirs updated with the bias correction. 
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Figure A.15.50 Spatial correlations function (1990-2009) of the Bega River site. The 
reference is Q3 low elevation grid point. The plots are for the bias corrected GCM 

simulations of R1 RCM and AWAP. 
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Figure A.15.51 Spatial correlations function (1990-2009) of the Bega River site. The 
reference is Q3 low elevation grid point. The plots are for the bias corrected GCM 

simulations of R2 RCM and AWAP. 
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Figure A.15.52 Spatial correlations function (1990-2009) of the Bega River site. The 
reference is Q3 low elevation grid point. The plots are for the bias corrected GCM 

simulations of R3 RCM and AWAP. 
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Figure A.15.53 Spatial correlations of daily rainfall between the reference grid point 
and all other grid points in the Sydney sitesite. The plots are for the uncorrected 

simulations of (a) R1, (b) R2, and (c) R3 RCMs, and AWAP. The reference is S22, a 
high elevation grid point (shown in yellow boxes). 

 

  

(a) 

(b) 

(c) 

RCM simulations Observed 



 

Appendix 

447 
 

  

Figure A.15.54 Spatial correlations function (1990-2009) of the Sydney site. The 
reference is S22 high elevation grid point. The plots are for the uncorrected GCM 

simulations of R1 RCM and AWAP. 
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Figure A.15.55 Spatial correlations function (1990-2009) of the Sydney site. The 
reference is S22 high elevation grid point. The plots are for the uncorrected GCM 

simulations of R2 RCM and AWAP. 
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Figure A.15.56 Spatial correlations function (1990-2009) of the Sydney site. The 
reference is S22 high elevation grid point. The plots are for the uncorrected GCM 

simulations of R3 RCM and AWAP. 
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Figure A.15.57 Spatial correlations of daily rainfall between the reference grid point 
and all other grid points in the Sydney site. The plots are for the bias corrected 

simulations of (a) R1, (b) R2, and (c) R3 RCMs, and AWAP. The reference is S22, a 
high elevation grid point (shown in yellow boxes). The sky blue grid points inside 

the site are inland reservoirs updated with the bias correction. 
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Figure A.15.58 Spatial correlations function (1990-2009) of the Sydney site. The 
reference is S22 high elevation grid point. The plots are for the bias corrected GCM 

simulations of R1 RCM and AWAP. 
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Figure A.15.59 Spatial correlations function (1990-2009) of the Sydney site. The 
reference is S22 high elevation grid point. The plots are for the bias corrected GCM 

simulations of R2 RCM and AWAP. 
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Figure A.15.60 Spatial correlations function (1990-2009) of the Sydney site. The 
reference is S22 high elevation grid point. The plots are for the bias corrected GCM 

simulations of R3 RCM and AWAP. 
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Figure A.15.61 Spatial correlations of daily rainfall between the reference grid point 
and all other grid points in the Sydney sitesite. The plots are for the uncorrected 

simulations of (a) R1, (b) R2, and (c) R3 RCMs, and AWAP. The reference is S8, a 
low elevation grid point (shown in yellow boxes). 
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Figure A.15.62 Spatial correlations function (1990-2009) of the Sydney site. The 
reference is S8 low elevation grid point. The plots are for the uncorrected GCM 

simulations of R1 RCM and AWAP. 
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Figure A.15.63 Spatial correlations function (1990-2009) of the Sydney site. The 
reference is S8 low elevation grid point. The plots are for the uncorrected GCM 

simulations of R2 RCM and AWAP. 
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Figure A.15.64 Spatial correlations function (1990-2009) of the Sydney site. The 
reference is S8 low elevation grid point. The plots are for the uncorrected GCM 

simulations of R3 RCM and AWAP. 
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Figure A.15.65 Spatial correlations of daily rainfall between the reference grid point 
and all other grid points in the Sydney site. The plots are for the bias corrected 

simulations of (a) R1, (b) R2, and (c) R3 RCMs, and AWAP. The reference is S8, a 
low elevation grid point (shown in yellow boxes). The sky blue grid points inside the 

site are inland reservoirs updated with the bias correction. 
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Figure A.15.66 Spatial correlations function (1990-2009) of the Sydney site. The 
reference is S8 low elevation grid point. The plots are for the bias corrected GCM 

simulations of R1 RCM and AWAP. 
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Figure A.15.67 Spatial correlations function (1990-2009) of the Sydney site. The 
reference is S8 low elevation grid point. The plots are for the bias corrected GCM 

simulations of R2 RCM and AWAP. 
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Figure A.15.68 Spatial correlations function (1990-2009) of the Sydney site. The 
reference is S8 low elevation grid point. The plots are for the bias corrected GCM 

simulations of R3 RCM and AWAP. 
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