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Abstract— This paper presents novel results on the optimal
design of Noise-Shaping Differential Pulse-Coded Modulation
coders. The main contribution resides in the derivation of explicit
analytic formulas for the optimal filters and the minimum
achievable frequency weighted reconstruction error. A novel
aspect in the analysis is the fact that we account for fed-back
quantization noise and that we make no restrictions on the order
of the filters deployed.

I. INTRODUCTION

Analog-to-Digital converters which utilize a scalar quantizer
and linear, time invariant filters in a feedback loop have been
extensively employed as a source coding method since the
concept was first introduced in the 1960’s. The generalized
form of this architecture, which we denote Noise Shaping
Differential Pulse Code Modulation1 (NS-DPCM), can be
represented as in Fig. 1. The filters in a NS-DPCM system
allow one to account for the correlation between consecutive
input samples, and to spectrally shape the quantization noise
in the output, so as to minimize the frequency weighted
mean square reconstruction error (FWMSE). Special cases
of the NS-DPCM architecture include ∆-Modulators, DPCM
converters [4], and noise-shaping converters, such as one and
multi-bit Sigma-Delta modulators [5]. NS-DPCM converters
are extensively used in the context of audio compression [6],
digital image half-toning [7] and oversampled A/D conver-
sion [8].
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Fig. 1: Noise Shaping-DPCM Encoder and Decoder

Provided that the input power spectral density (PSD), fre-
quency weighting error criterion, and scalar quantizer char-
acteristics are known, the design of an NS-DPCM converter
that achieves minimum FWMSE amounts to finding the cor-
responding optimal filters. This has been an intense area of
research for at least 40 years. However, available to date results
on optimal filter design for NS-DPCM encoders have been
obtained assuming either fixed, finite order filters [1], [2], [8]–
[10], negligible fed back quantization noise [3], [11], or have

1The same configuration can be found under different names in the
literature, e.g.: error feedback systems [1], direct feedback coders [2] and
DPCM with noise feedback [3].

relied upon heuristic design methods [2], [9]. Since optimal
performance can, in general, only be attained by arbitrary order
filters designed accounting for fed back quantization noise, an
exact characterization of the optimal performance (and filters)
for NS-DPCM converters has remained an open problem.

In this paper we derive an explicit analytic expression for
the optimal performance (and filter frequency responses) for
NS-DPCM converters. We characterize the scalar quantizer via
its signal-to-noise ratio, and adopt a white quantization noise
model [12]. The performance bound obtained corresponds to
the minimum FWMSE that can be achieved by an NS-DPCM
encoder-decoder with any linear, time-invariant filters. A key
departure from [3] (which, to the best of our knowledge, gives
the only currently available explicit analytic solutions to the
problem), is that we account for fed back quantization noise.
This allows us to derive exact expressions.

Our results show that an optimal NS-DPCM converter ex-
hibits several interesting properties. These include a spectrally
flat frequency weighted error spectrum, and a white signal
at the input of the scalar quantizer. We also show that, for
AR Gaussian sources, the rate-distortion efficiency with the
optimal filters depends only on how efficient the embedded
scalar quantizer is at quantizing nearly Gaussian samples.

Notation and Preliminaries

We use standard vector space notation for signals. For
example, x is used to denote {x(k)}k∈Z. We also use z as
the argument of the z-transform. Given two square integrable
complex valued functions f(ω) and g(ω) defined over [−π, π],
we adopt the inner product 〈 f, g 〉 , 1

2π

∫ π

−π
f(ω)∗g(ω)dω,

where ()∗ denotes complex conjugation. We denote the usual
2-norm as ‖f‖ ,

√
1
2π

∫ π

−π
|f(ω)|2 dω . If F (z) is a transfer

function, then we use the short hand notation F to refer to the
associated frequency response F (ejω), ω ∈ [−π, π]. If I is a
set, then we will write “a.e. on I” (almost everywhere on I)
as a short hand notation for “everywhere on I except at most
on a zero Lebesgue measure set of points”.

We use σ2
x to denote the variance of a given wide sense sta-

tionary (w.s.s.) random process x, having PSD Sx(ejω). Note
that σ2

x , E {
x(k)2

}
= 1

2π

∫ π

−π
Sx(ejω)dω = ‖Ωx‖2, where

Ωx is a frequency response satisfying |Ωx| ,
√

Sx , ∀ω ∈
[−π, π]. For a given function f : [−π, π] → C, we define ηf ,
exp

(
1
2π

∫ π

−π
|f(x)|dx

)
(provided this integral converges). This

allows one to describe the Kolmogorov’s minimal prediction
error variance [13] of a w.s.s. process x via η2

x , ηSx = η2
Ωx

.
The spectral flatness measure of a w.s.s. process x is denoted



by ζx , η2
x

σ2
x

. It is easy to show that 0 ≤ ζx ≤ 1, and that
ζx = 1 if and only if Sx(ejω) is constant a.e. on [−π, π].

II. NS-DPCM MODEL

As foreshadowed in the introduction, we consider the gen-
eral form of an NS-DPCM architecture shown in Figure 1.
In our model, the input sequence x is assumed to be a zero
mean, w.s.s. random process, with known PSD Sx = |Ωx|2
satisfying Sx(ejω) > 0, a.e. on [−π, π]. The element denoted
by Q describes a scalar quantizer, with given and known
characteristics2. For each input v(k), k ∈ Z, it outputs w(k)
and generates the quantization error n(k) , w(k)−v(k). The
three discrete-time filters A(z), B(z) and F (z) in Fig. 1 are
design choices.

To asses performance, we introduce the delay-compensated
frequency weighted error

ε , P (z)(x̃− z−τx), (1)

where τ ≥ 0. The error weighting filter P (z) models the
impact that reconstruction errors have on each frequency.
Thus, it is application dependent.

In this paper, we restrict attention to the cases in which∣∣P (ejω)
∣∣ > 0, ∀ω ∈ [−π, π], i.e., P (z) has no zeros on the

unit circle. Additionally, we require:
Constraint 1: A(z), B(z), F (z) and P (z) are stable. In

addition, F (z) is strictly causal (i.e., limz→∞ F (z) = 0). 4
The first part in the above constraint is required in order

to avoid unbounded signals in the NS-DPCM converter. The
additional requirement on F (z) is needed for the feedback
loop in Fig. 1 to be well defined (see, e.g., [5, Chap. 4]).

Since the NS-DPCM architecture embeds a nonlinear ele-
ment (a scalar quantizer) within a feedback loop, exact analysis
of quantization errors is, in general, a formidable task [15].
This has motivated the widespread use of an additive noise
model for quantization errors [1]–[3], [8]–[12]. This model
allows one to study the converter via linear analysis tools. It
is usually formulated as follows:

Assumption 1: The quantization errors are i.i.d. random
variables, uncorrelated with the input signal. 4

In order not to limit our subsequent analysis to a specific
type of scalar quantizer, the following is also assumed:

Assumption 2: The probability density function (PDF) of
v is not affected by the filters in the converter other than via
its second moment 3. 4

Under Assumption 2, any given type of scalar quantizer with
a fixed number of quantization levels leads to quantization
errors whose variance is proportional to the variance of its
input. This can be stated as

γ , σ2
v

σ2
n

, (2)

2This may include, for example, any of the scalar quantizers described
in [14].

3This can be expected to be a realistic approximation especially when x is
a first-order Gaussian AR source. Indeed, it has been shown in [16] that the
prediction error in a DPCM converter with a first-order Gaussian AR input is
close to Gaussian, even for as few as two quantization levels.

where γ is the signal-to-noise ratio of the scalar quantizer (not
to be confused with that of the NS-DPCM encoder-decoder
system). γ depends on the number of quantization levels,
the PDF of the signal being quantized and the companding
characteristics of the scalar quantizer itself4.

III. FORMULATION OF THE OPTIMIZATION PROBLEM

Our ultimate goal is to find the frequency responses of the
filters A, B, and F that minimize the variance of ε under
Assumptions 1 and 2, and for given and known Ωx, P and γ.
The quantity σ2

ε so obtained will constitute the (achievable)
lower bound on the FWMSE for the NS-DPCM converter.

Towards the above goal, we first derive an expression that
relates the decision variables to the error measure that we wish
to minimize. From Fig. 1, equation (1), Assumption 1, and
recalling that |Ωx| =

√
Sx , ∀ω ∈ [−π, π], we have

σ2
ε = σ2

n‖(1− F )BP‖2 + ‖ (W − 1)ΩxP‖2, (3)

where σ2
n is the variance of the quantization error, and

W (ejω) , ejωτA(ejω)B(ejω), ∀ω ∈ R, (4)

is a delay compensated version of AB, the frequency response
from x to x̃. The first term on the right hand side of (3)
corresponds to the variance of the frequency weighted quan-
tization error in ε. The second term in (3) accounts for the
frequency weighted linear distortion introduced by the filters
in the encoder-decoder pair5.

The variance σ2
n is related to σ2

v via (2). From Assumption 1,
the latter is given by σ2

v = ‖AΩx‖2 + σ2
n‖F‖2. Combining

this result with (2) gives

σ2
n =

‖AΩx‖2
γ − ‖F‖2 . (5)

When substituted into (3), this yields

σ2
ε =

‖AΩx‖2‖(1− F )BP‖2
γ − ‖F‖2 + ‖ (W − 1)ΩxP‖2. (6)

The above expression relates the filters A(z), B(z), F (z),
and the quantizer signal-to-noise ratio γ, to the FWMSE.
Minimization of this cost functional will yield expressions for
the optimal filters and performance.

For comparison, we note that the cost functional (6), to-
gether with Assumptions 1 and 2, is also part of the analysis
in [1], [3] and [10], wherein equivalent optimization problems
are addressed 6.

Finally, we note that, since σ2
ε must be positive, (6) implies

Constraint 2: ‖F‖2 < γ. 4
4The actual bit-rate associated with γ will also depend on whether or not

entropy coding is utilized to encode w, as discussed in Section V.
5Note that perfect reconstruction (in the absence of quantization errors) is

achieved if and only if there is no linear distortion, i.e., when W = 1.
6We note that quantization noise is not assumed white in [1], and that [10]

only considers P = 1, restricts to first order AR Gaussian inputs, and
minimizes γ for a given σ2

ε .



IV. OPTIMAL NS-DPCM

In this section we derive explicit analytic expressions for the
optimal filters and the associated optimal performance for the
NS-DPCM scheme, subject to a mild restriction. The analysis
is based on a set of equations that the optimal filters must
necessarily satisfy. To facilitate the flow of ideas, all proofs
are given in the Appendix.

Minimization of (6) is simplified by noting that, for stable
and strictly causal F (z), it holds that ‖F‖2 = ‖1− F‖2 − 1.
Substitution of this equality into (6) yields

σ2
ε =

‖AΩx‖2‖(1− F )BP‖2
γ + 1− ‖1− F‖2 + ‖ (W − 1)ΩxP‖2. (7)

We then have the following result:
Lemma 1: For given frequency responses F and W , the

optimal A(z) satisfies

|A| = κ

√
|P | |Ωx|−1 |1− F | |W | , a.e. on [−π, π], (8)

where κ > 0 is an arbitrary constant. This choice yields

σ2
ε =

〈|1− F | , |ΩxP | |W |〉2
γ + 1− ‖1− F‖2 + ‖ (W − 1) ΩxP‖2. (9)

4
Notice that the cost functional in (9) involves only two
unknown functions, namely W and F . This makes it simpler
to work with than the functional in (7).

The optimization problem can be further simplified by
writing the optimal W in terms of |1− F |. Unfortunately, the
relationship between F and the optimal W , for the general
case, can only be stated implicitly, as shown next.

Lemma 2: For a given frequency response F , the optimal
W satisfies

W = max
{

0 , 1− 〈|1− F | , |ΩxP | |W |〉
γ + 1− ‖1− F‖2 .

|1− F |
|ΩxP |

}
(10)

a.e. on [−π, π].
Remark 1: Notice that, from (10), W is a positive, sym-

metric and real valued function of ω. It then follows from (4)
that the product of the optimal filters A(z), B(z) must exhibit
linearly decreasing phase.

In general, the presence of |W | in the inner product on the
right hand side of (10) makes it difficult, if not impossible,
to express the optimal W explicitly in terms of F . However,
under specific conditions on γ, ΩxP and |1− F |, an analytical
explicit solution to (10) can be obtained, as follows:

Lemma 3: Provided

γ + 1 > 〈|1− F | , ΩxP 〉 |1− F |
|ΩxP | , a.e. on [−π, π], (11)

then, for a given frequency response F , the optimal W satisfies

W = 1− 〈|1− F | , |ΩxP |〉
γ + 1

|1− F |
|ΩxP | , a.e. on [−π, π]. (12)

4
To summarize our results so far, we have shown that, pro-
vided (11) holds, F determines the optimal W through (12).

These two, in turn, determine the optimal A and B via (8)
and (4), respectively.

We can now state the main result of this paper:
Theorem 1: If

γ + 1 >
η2
ΩxP

|ΩxP |2 a.e. on [−π, π], (13)

then the minimum achievable frequency weighted reconstruc-
tion MSE of an NS-DPCM converter is

σ̆2
ε , min σ2

ε =
η2
ΩxP

γ + 1
. (14)

This minimum is achieved when the filters F , A and B satisfy:

|1− F | = ηxP

|ΩxP | , |A| = κ

|Ωx|

√
1− σ̆2

ε

|ΩxP |2 , (15a)

W = 1− σ̆2
ε

|ΩxP |2 , |B| = |Ωx|
κ

√
1− σ̆2

ε

|ΩxP |2 , (15b)

a.e. on [−π, π], where κ > 0 is an arbitrary constant. 4
V. DISCUSSION

The results stated in Theorem 1 have very interesting con-
sequences. Some of these consequences are discussed below.

a) Optimality of Scalar Quantization Without Feedback:
It is easy to verify from the results in Theorem 1 that
scalar quantization without feedback is optimal if and only
if |ΩxP | is constant. In particular, it follows from (15) that
if |ΩxP | = 1, a.e. on [−π, π], then the optimal NS-DPCM
converter reduces to a PCM converter with a fully whitening
pre-filter and a post-filter satisfying |A| = κ |Ωx|−1 and
|B| = |A|−1

γ/(γ + 1).
b) Comparison with [3]: The minimum FWMSE for an

NS-DPCM system derived by Noll in [3], neglecting fed back
quantization noise, is

η2
ΩxP

γ . Perhaps surprisingly, Theorem 1
shows that the optimal performance is slightly better (com-
pare with (14)). Moreover, the corresponding optimal filters
AN , BN and FN derived in [3] satisfy |AN | , κ |Ωx|−1,
|1− FN | , ηΩxP |ΩxP |−1 and BN = A−1

N , respectively. Sub-
stituting these expressions into (9) actually yields an FWMSE
σ2

εN , σ̆2
ε ·

ζ(xP )−1

ζ(xP )−1− 1
γ+1

, where ζ(xP )−1 is the spectral flatness

measure of (ΩxP )−1. It then follows that σ2
εN > σ̆2

ε for any
finite γ, and that σ2

εN → σ̆2
ε as γ →∞.

c) Total Frequency Weighted Distortion is White: It
follows from (14) and (15) that, in an optimized NS-DPCM
system, the PSDs of frequency weighted quantization noise
and linear distortion are, respectively

Sn′ , σ2
n |1− F |2 |B|2 P 2 = σ̆2

ε

[
1− σ̆2

ε / |ΩxP |2
]

SL , (W − 1)2 |ΩxP |2 = (σ̆2
ε )2/ |ΩxP |2 .

From the above, one can see that when the condition of
Theorem 1 holds, the noise shaping effected by an optimal
NS-DPCM system is not “complete”, i.e., frequency weighted
quantization noise is not white. However, the PSD of the total
frequency weighted error is white, since Sε = Sn′ +SL = σ̆2

ε .



d) Relation with the Reverse Water-Filling Paradigm:
The parametric Rate-Distortion formula for a Gaussian w.s.s.
process and FWMSE as the distortion measure is given by the
well known reverse water-filling paradigm (see, e.g., [17]).
For σ2

ε ≤ minω(Sx |P |2), it predicts total frequency weighted
distortion to be equally distributed over frequency. It also
predicts the input signal to appear at the output with PSD
Sx |P |2 − σ2

ε , i.e., less significant spectral components of
x suffer higher attenuation. Interestingly, (13) is equivalent
to Sx |P |2 ≥ σ̆2

ε , a.e. on [−π, π]. Furthermore, Sε is flat,
as discussed in c) above, and (15) yields Sx |W |2 |P |2 =
Sx |P |2 − σ̆2

ε , in full agreement with the above prediction.
e) Output of the Scalar Quantizer is White: It can be

seen from (15a) that, unless |ΩxP | is constant, the optimal A
is not a full whitening filter for Ωx. Interestingly, however, it is
straightforward to verify that the optimal filters in (15) render
a sequence w (see Fig. 1) with flat PSD. More precisely, Sw ,
|Ωx|2 |A|2 + σ2

n |1− F |2 = κ2, where κ is the same arbitrary
constant that appears in (15a). A remarkable implication is that
the quantized output of the optimized NS-DPCM converter
can be efficiently translated into bits by means of a first-order
entropy coder.

f) Rate-Distortion Analysis: The rate-distortion effi-
ciency of any source encoding scheme (with quadratic error
as distortion measure) can be established by comparing its

SNR , σ2
x

σ2
ε

against the upper bound derived by O’Neal in [18]. For the
case σ2

ε ≤ minω Sx(ejω)P (ejω), and restricting to Gaussian
inputs, this bound [18, eq. (6)] can be written as7

SNRmaxdB , 6R− 10 log ζ2
x − 10 log η2

P , (16)

where R denotes the bit-rate (in bits per sample), ζ2
x is the

spectral flatness measure of x and η2
P is the minimum variance

associated with P (see Section I). Notice that 6R is Shannon’s
upper bound [19] for the SNR (in decibels) of encoding a
Gaussian memoryless source.

On the other hand, under the conditions of Theorem 1 and
using (14), the best achievable SNR of an NS-DPCM system
is given by

SNR =
σ2

x(γ + 1)
η2
ΩxP

=
γ + 1
ζ2
xη2

P

.

In decibels, this ratio is

SNRdB = 10 log(γ + 1)− 10 log ζ2
x − 10 log η2

P . (17)

By comparing8 (17) and (16), we see that the SNR of the
NS-DPCM converter optimized via Theorem 1 departs from
the information-theoretic upper bound (16) as follows:

SNRdB−SNRmaxdB = 10 log(γ+1)−6R ≈ 10 log γ−6R.

The difference ∆SNR , 10 log γ−6R for of Gaussian sources
has long been known for a variety of scalar (memoryless)

7Hereafter, log denotes the base 10 logarithm.
8Notice that the observations made in d) above validate this comparison.

quantizer types (see, e.g. [14] and the references therein).
Assuming v to be Gaussian in the optimized NS-DPCM
converter, ∆SNR can be approximated by −1.5, −2.45, −4.35
and −7.3 for a uniform quantizer with entropy coding (E.C.),
non-uniform quantizer with E.C., non-uniform quantizer op-
timized for MSE without E.C., and uniform quantization
without E.C. and a loading factor of 4, respectively9 (see [14]).

VI. CONCLUSIONS

This paper has derived explicit analytic expressions for the
best achievable performance (and optimal filters) for noise-
shaping DPCM encoders. These expressions, which we be-
lieve to be novel, were found by accounting for fed back
quantization noise in the optimization. The results presented
in this paper simplify the analysis and design of NS-DPCM
converters, and provide valuable insight into the trade-offs
inherent in linear feedback quantizers.

VII. APPENDIX

A. Preliminary Result

Lemma 4: Let g ∈ L2 be a given function such that g(ω) >

0, ∀ω ∈ [−π, π] and e
1
2π

R π
−π

ln(g(ω))dω is finite. Then

arg min
f∈B+

〈 f, g 〉 = e
1
2π

R π
−π

ln(g(ω))dωg−1,

where

B+ ,
{

f : R→ R+ : 0 ≤
∫ π

−π

ln (f(ω)) dω < ∞
}

(18)

is the set of non-negative log-integral functions. 4
Proof: Since ln(·) is a monotonically increasing function,

minimization of
∫

fg is equivalent to minimizing ln
(∫

fg
)
.

From Jensen’s inequality and the constraint f ∈ B+, we obtain

ln
(∫

fg

)
(a)

≥
∫

ln fg =
∫

ln f +
∫

ln g
(b)

≥
∫

ln g.

Equality is obtained in (a) if and only if f =
ηg−1, a.e. on [−π, π], for some η > 0. Inequality (b) becomes
equality if and only if η = e

1
2π

R π
−π

ln(g(ω))dωg−1. This com-
pletes the proof.

B. Proofs of Lemmas 1-3 and Theorem 1

Proof: [Lemma 1] The numerator of the first term on the
right side of (7), denoted here by N , is given by

N , ‖AΩx‖2‖(1− F )BP‖2. (19)

We can use the Cauchy-Schwartz inequality to obtain

N ≥ 〈 |AΩx| , |(1−F )BP | 〉2 =〈 |ΩxP | , |1−F | |W | 〉2. (20)

Substituting (20) into (7) yields (9), which is obtained with
equality in (20). The latter is achieved if and only if |AΩx| =
κ2 |(1− F )BP | , a.e. on [−π, π], for arbitrary κ2 ∈ R+, or,
equivalently, |A|2 |Ωx| = κ2 |(1− F )P | |W | , a.e. on [−π, π].

9These figures are good approximations only for many quantization lev-
els. Better estimates for ∆SNR with few quantization levels can obtained
from [20].



This last equation leads directly to (8), completing the proof.

Proof: [Lemma 2] Expanding the squared norm of the
last term in (3) we obtain

σ2
ε = σ2

n‖(1−F )PB‖2+‖ΩxPAB‖2−2Re
{〈Ω2

xP 2,W 〉}

+ ‖ΩxP‖2. (21)

Substituting (4) into the above equation yields

σ2
ε =‖TPB‖2−2Re

{〈Ω2
xP 2e−jωτA∗, B〉}+‖ΩxP‖2, (22)

where T , (σ2
n |1− F |2 + Ω2

x |A|2)1/2. Rearranging terms,

σ2
ε =

∥∥∥∥
(
T 2B − Ω2

x e−jωτA∗
) P

T

∥∥∥∥
2

+
∥∥∥∥

σ2
nΩxP |1− F |

T

∥∥∥∥
2

,

which is clearly minimized if and only if B = Ω2
x e−jωτ A∗

T 2

a.e. on [−π, π]. Multiplying the latter by A yields10

W =
|Ωx|2 |A|2

σ2
n |1− F |2 + |Ωx|2 |A|2

, a.e. on [−π, π], (23)

where σ2
n is given by (5). By direct substitution of (8) into (23),

and after some algebra, the optimal W is found to satisfy (10).
This completes the proof.

Proof: [Lemma 3] Define

α , 〈|1− F | , |ΩxP |W 〉
γ + 1− ‖1− F‖2 , (24)

and suppose that

α |1− F | |ΩxP |−1 ≤ 1, a.e. on [−π, π]. (25)

Then, from (10),

W = 1− α |1− F | |ΩxP |−1
, a.e. on [−π, π]. (26)

Substituting (26) into (24) yields α = 〈|1−F |,|ΩxP |〉−α‖1−F‖2
γ+1−‖1−F‖2 .

Thus,

α =
〈|1− F | , |ΩxP |〉

γ + 1
. (27)

Substituting this into (26) yields (12). Notice that (11) guar-
antees that the denominator on the right hand side of (24)
is strictly positive. The proof is completed by noting that
substitution of (27) into (11) gives the inequality (25), thus
validating our initial supposition.

Proof: [Theorem 1] Suppose the optimal F is such
that (11) in Lemma 3 holds. Then, one can substitute (12)

into (9) to obtain σ2
ε =

〈|1−F | , |ΩxP |− 〈|1−F |,|ΩxP |〉
γ+1 |1−F |〉2

γ+1−‖1−F‖2 +
〈|1−F |,|ΩxP |〉2

(γ+1)2 ‖1− F‖2. After some algebra, this becomes

σ2
ε =

〈|1− F | , |ΩxP |〉2
γ + 1

. (28)

Requiring F (z) to be stable and strictly causal (from Con-
straint 1) is equivalent to requiring the function

∣∣1− F (ejω)
∣∣

10Notice that W in (23) describes the anti-causal form of the Wiener filter
for a w.s.s. signal with PSD Sx |A|2 corrupted by uncorrelated additive noise
with PSD σ2

n |1− F |2. This filter is known to minimize error variance.

to belong to the set of non-negative log-integral functions
defined in (18), see, e.g. [21, Theorem 3.4.4] and [22]. Then, it
follows from Lemma 4 that the optimal |1− F | is as in (15a).
Substitution of the latter into (28) yields (14). It also follows
from (15a) that the inequality in Lemma 3 is equivalent
to the condition required by the theorem. This validates our
initial supposition. Notice also that the latter inequality also
guarantees that ‖1−F‖2 < γ +1, as required by Condition 2.
Finally, substituting (15a) into (12), (8) and (4) yields the
remaining equalities of (15). This completes the proof.
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