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Abstract 
This paper describes our experiences with the 

development of a Distributed Shared Memory (DSM) 
based on a single, very large, paged virtual memory space 
distributed across an arbitrary number of discrete nodes 
connected to a network of homogeneous computers. The 
DSM supports two object granularities: coarse-grain 
objects called modules and fine-grain objects called 
segments. We show that support for both modules and 
segments has advantages in the areas of naming and 
location, protection, data consistency, transaction 
management and garbage collection. 

1. Introduction 
This paper describes our experiences with the 

development of a Distributed Shared Memory (DSM) 
based on a single, very large, paged virtual memory space 
distributed across an arbitrary number of discrete nodes 
connected to a network of homogeneous computers. 
DSMs allow processes executing on loosely coupled 
nodes to share data by reference, such that knowledge of 
the address of data in the shared memory space is 
sufficient to allow a process to access the data. The DSM 
paradigm has been implemented by other researchers to 
form shared memory systems, for example Ivy [21] and 
Memnet [9]. The main aim of these implementations 
was the exploitation of parallel algorithms on loosely- 
coupled processors, but their architectures were not 
expandable to large shared virtual memories, and were not 
oriented towards supporting persistence. 

The DSM described here, on the other hand, 
implements a global distributed store, enabling users 
logged on to loosely-coupled computers to share all 
resources including programs, data, and devices. The 
advent of large-address architectures has resulted in several 
other such stores, for example [6]. The DSM has several 
important properties relating to the user's perception of 
the services provided by a networked node compared to 
those offered by a discrete node. These are: 

The distribution of the system provides extra 
functionality without compromising the 
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functionality provided by a discrete, non- 
networked machine. 
A resource is identified by name. This name 
defines the resource only. and not its current 
location. As a consequence the resource may 
be moved to another node and still be accessed 
using its original name. 

(3) All users at all nodes have a coherent view of 
shateddata. 

(4) The owner of a resource has control over 
access to the resource on a network-wide basis. 

(5) Programs developed for use on a non- 
networked machine execute without 
modification over the network. 

Such an implementation of DSM provides a single 
network-wide virtual memory space in which all program 
code and data is stored. This virtual memory provides a 
store which complies with the orthogonal persistence 
principles of persistence independence, data type 
independence, and management orthogonality [2], Since 
all processes execute within this virtual memory space, 
the conventional process address space protection scheme 
used by systems such as Unix cannot be used. A two- 
level capability-based protection technique enforced by the 
architecture is used to provide control over access to the 
programs and data in the store [181. 

The system supports two object granularities: coarse- 
grain objects called modules (which are roughly 
equivalent to files in conventional systems) and fine-grain 
objects called segments (containing for instance, 
procedures, records, characters or integers) [71. 
Programmers and compilers see the virtual memory as a 
collection of segments of arbitrary size. These segments 
are mapped onto the paged virtual address space in such a 
way that page and segment boundaries are orthogonal 
[ 171. All segments have the same basic format, so access 
to them is handled in a uniform manner. Segments 
contain data, and capabilities for other segments, allowing 
arbitrarily complex graph structures of segments to be 
constructed. Access to a segment is controlled by a 
segment capability which defines the segment start 
address, length, and type and access information. 

(2) 
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Segments are grouped together into information-hiding 
modules which present a purely procedural interface, as 
proposed by Parnas [24]. Access to a module is 
controlled by a module capability which contains a unique 
network-wide name for the module and a set of access 
rights for the interface procedures which may be invoked 
when the capability is presented. Such procedures in turn 
may access the encapsulated data segments. 

Processes are orthogonal to modules. A process may 
call an arbitrary number of modules and such calls may be 
arbitrarily nested. Similarly, many processes may 
concurrently execute within any one module. This 
structure is fully described in [19]. 

The DSM virtual memory space is of sufficient size to 
obviate the need ever to re-use the ranges of addresses 
previously allocated to deleted modules. Hence the 
address of a module may be used as the module's name, 
uniquely identifying it and the code or data segments 
encapsulated by it. 

Support of two object granularities has advantages in 
the areas of: 

naming and location 
protection 
data consistency 
transaction management 
garbage collection 

In this paper we first describe the general DSM 
architecture and the relevant implementation details. We 
then address in more detail the five areas listed above and 
discuss the implication of dual object sizes on issues 
including performance, flexibility and ease of 
implementation. 

2. Overview of DSM architecture 
The DSM [16], which provides a distributed persistent 

store, was constructed above a purpose-built microcoded 
computer, known as Monads-PC, which provides a 60 bit 
wide paged virtual memory [25]. Both diskless nodes and 
nodes with attached disks are supported. Nodes with disks 
act as servers for the pages of the objects stored on those 
disks. 

In this section we describe the structure of the virtual 
memory and how this may be accessed in a distributed 
environment. 

2.1. Memory management 
Two mappings are required in order to implement virtual 
memory. The first is a mapping from virtual addresses to 
main memory addresses for pages currently in main 
memory, and the second is a mapping from virtual 
addresses to disk addresses for pages not in main memory. 
The conventional approach to virtual memory uses the 
same data structures and mechanisms, based on page 
tables, for both of these mappings. Our model, on the 
other hand, decouples the virtual address to main memory 
address mappings (which are needed for every memory 
reference) from the virtual address to disk address 

mappings (which are only needed in page fault resolution) 
[27] The importance of this for distribution is that each 
node maintains a main memory page table proportional in 
size to the size of its own main memory, and the disk 
page tables for disks mounted at the node. In contrast 
other DSM implementations (eg [9,21]) require a data 
structure defining the status and location of every virtual 
memory page to be maintained by every node. Such 
structures are proportional in size to that of the distributed 
virtual memory. 
To minimise the size of these page tables, other DSM 
systems partition the address space in which a process 
executes into local and shared areas. Only the shared 
memory partition is implemented as DSM. Using this 
technique, the developers of these systems were able to 
simplify communication between parallel processes, but 
could not provide totally transparent distribution of all 
data. The method used to manage the virtual memory in 
our architecture allows the entire vinual memory space to 
be implemented as DSM, distributed across a network of 
nodes. 
In the Monads-DSM system the virtual memory 
encompasses the attached disks and main memory of all 
machines network-wide. Thus virtual addresses can refer 
to any byte on any disk connected to any node. In order 
to resolve a page fault, the disk location of the page must 
be determined. The first step involves determining which 
of the attached disks contains the page. 
Every node is assigned a unique node number when it is 
manufactured. This is a logical node identifier, and is not 
the physical network address of the node. Disk drives 
attached to the nodes may be partitioned as part of the 
formatting operation, thus creating several logical disks 
on a single physical device. Each of these partitions is 
known as a volume. When a volume is created it is 
assigned a unique node+volume number which is formed 
by concatenating the creating node number with the 
within-node volume number. This node+volume number 
is used to define the range of virtual addresses that is 
stored on the volume by using it as the high order bits of 
all such addresses. 

The range of addresses stored on a volume is further 
divided into areas corresponding to the logical entities 
such as processes, files and programs that exist on the 
disk. These areas are called address spaces, and are 
identified by address space numbers. Address spaces are 
further divided into fixed size pages identified by page 
numbers. A virtual address, then, consists of five parts, 
as shown in figure 1. 

All the pages of an address space are stored on a single 
volume. Each address space has its own disk page table 
which maps from virtual addresses to disk addresses for 
that address space. This table is contained within the 
address space and pointed to from the rmt page of the 
address space. Thus every address space is selfdefining, 
and efficient use is made of disk space because disk pages 
are not allocated to unused virtual pages. 

117 



Node No. 

Figure 1. The structure of a DSM virtual address. 

Volume Number Within Volume Address Space Number Within AS Page Offset 

Address space zero for each volume is special. It 
contains red-tape information for the volume, including 
the free space map and the volume address space table 
listing the disk locations of the root page for each address 
space on the volume. Each module and stack (which 
represents a process) resides in a separate and unique 
address space, and is named according to the identity of 
the address space within which it resides. An address 
space is never re-used, even if the module or stack 
residing in it is deleted, so the name of a module or stack 
is unique for the life of the system. Access to a module 
is permitted on presentation of a valid module capability. 
The architecture protects module capabilities from illegal 
modification or use. The address space number for a 
module is embedded in the module capability used to 
access it, together with other fields which define the 
nature of the access permitted. 

Programmers and compilers see the virtual memory as 
a collection of segments which may be of arbitrary size, 
from one byte to 256 Mbytes in the Monads PC. 
Because segment boundaries are orthogonal to page 
boundaries [ 171, excessive internal fragmentation is 
avoided. Segments contain data and capabilities for other 
segments, with the result that complex graph structures 
can be constructed. Access to a segment is permitted on 
presentation of a valid segment capability. This 
capability defines the full virtual address of the start of the 
segment and the segment length and is protected from 
arbitrary modification. The basic addressing mode 
supported by the architecture involves the specification of 
an offset relative to a segment capability. 

Segments are grouped together into the previously 
described modules. Presentation of a valid module 
capability allows a process to open the module, after 
which the segment capabilities which allow access to its 
interface routines and internal data become available. 
These segment capabilities are stored in a special module 
call segment (MCS) which is initialised after access to 
the module root page. The significance of these 
structures will become apparent in the following sections. 

2.2. Distributed access 
The DSM model is based on a single very large virtual 

memory space which encompasses all nodes in the 
network. Processes running on these nodes have access 
to the whole virtual memory space (provided they can 
present an appropriate capability), without the need for 
knowledge of the storage location of the program code and 

data they access. This model was initially proposed in 
[ 11, Related schemes have been reported in the literature 
[9,21]. However these schemes allow processes to share 
only a limited portion of their total address space, and 
still maintain a separate file store. 

The Monads DSM is designed to support the 
interconnection of Monads-PC computers using a local 
area network (LAN) [14]. The kemel at each machine 
maintains knowledge of the mappings between the 
network addresses of connected nodes and their Monads 
node numbers using an up/down protocol similar to 
ARP/RARP [8]. Since the processors are loosely 
coupled, there is no physically shared memory, so the 
underlying communications system is used to provide an 
abstraction of a shared memory space. 

During execution a process accesses a sequence of 
virtual addresses. If the virtual page containing such an 
address is in the local node's page cache (main memory), 
the access may proceed. If not, a page fault condition 
applies. To resolve the page fault, the local kernel 
examines the <node numberxvolume numberxaddress 
space> fields of the faulting address, and by consulting 
internally maintained tables it determines whether the 
page fault may be resolved by a local disk access. If not, 
the kemel causes transmission of a message requesting 
provision of the page. In this sense each node views the 
other nodes in the network as collections of volumes. 

3. Naming and location transparency 
As described in section 2.1, a module is named 

according to the address space in which it resides. This 
defines the position of the module in the virtual memory 
space. The module name is embedded in the capabilities 
used to address the module. Any node with attached disks 
acts as a server for the pages of the modules stored on 
those disks. During the life of the system, it may 
become necessary to mount disks on different nodes. For 
example a node may fail; mounting its disks on another 
node would make the data on those disks available. It 
would also be beneficial to efficient use of network 
bandwidth to move the modules owned by a user to his 
new home node when his place of work changes. As 
described in section 2.2, the module location information 
embedded in addresses is crucial to efficient access to their 
pages. Module addresses form part of the capabilities 
used to control access to them. Since no attempt is made 
to record the owners of such capabilities, it is important 
that the name of a module is not modified when the 
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storage location for the module changes. If this were not 
done, the movement of a module would render invalid all 
existing capabilities for it. A change of storage location 
for a module occurs if either: 

the volume containing the module is mounted 
on another node, or 
the module is moved to another volume. 

3.1. Moving volumes 
Page request messages are typically transmitted to the 

node whose identity is embedded in the page address. 
Prior to transmitting a request for provision of a page, 
however, the kemel checks local tables which map moved 
volumes to their new mounting node. These tables are 
maintained on a need to know basis using a kernel 
message protocol. If necessary the destination node for 
the page request message is adjusted accordingly. 

3.2. Locating moved modules 
Access to a module which has been moved between 

volumes is detected when the module is opened. 
Advisory information regarding the new location is 
obtained from the module capability and used to direct the 
page request message. If such advisory information 
proves to be incorrect, the creating node is queried, and if 
possible it provides forwarding information maintained on 
the original storage volume. In the case that neither of 
these attempts is successful, a broadcast message is used 
in an attempt to locate the module. Location of a moved 
module therefore incurs an overhead compared to the 
location of a non-moved module. 

Once the module has been located and opened, 
subsequent page requests occur as a result of page faults 
generated by accesses to the segments within the module. 
Since such page requests occur much more frequently than 
open module requests it is important that location of the 
server node is efficient. 

At the time of such page faults all that is available to 
the page fault handler is the faulting virtual address, 
which contains the original location of the module. The 
kernel could maintain a table of moved modules and their 
current locations 131. However, this table would have to 
be searched on every page fault, resulting in an overhead 
for all requests, including those for non-moved modules. 
We therefore use a different approach as described in the 
following section. 

3.3. Efficient access to moved modules 
The essence of the technique presented in this section 

is that the identity of an open module may be temporarily 
altered to reflect its current location, thus allowing 
efficient access to the pages of the module [ 131. 

The implementation of this technique for accessing 
moved modules requires that: 

(1) 

(2) 

(1) A new unique address space number defining 
the new node, volume, and (logical) within- 
volume address space is allocated to a moved 
module. This number is called the current 
name for the module, and is used for internal 
system purposes only. The name by which 
the module is known to users remains the 
name allocated when the module was created, 
and as a result all existing module capabilities 
still allow access to the module. The current 
name may be viewed as an alias for the 
original name. 
An additional table is maintained in the red 
tape of each volume. This table is called the 
Foreign Address Space Table (FAST), and 
contains mappings between module names and 
current names for moved modules currently 
stored on the volume, as shown in figure 2. 
The FAST is accessed using the original 
module name as a key, and allows the current 
name for any moved module stored on the 
volume to be determined. 
When a module is moved its volume directory 
entry at the new owner node contains the 
current name for the module. 
When a module is moved from a volume the 
volume directory of the source volume is 
changed to link the current name used on the 
source volume to a forwarding address in the 
same manner as described in the previous 
section. 
The system is able to detect that a newly 
opened module has been moved from its 
original storage volume. 

When a module is opened, the root page of the module 
must be accessed to allow creation of the MCS. When 
the MCS is set up the system determines whether the 
module is stored on its original volume or has been 
moved to a different volume. If the module has been 
moved, the system is informed of its new location when 
it obtains the module's root page. 

Efficient access to the pages of the module is achieved 
by altering the segment capabilities used to access the 
module's data as they are stored in the MCS. This 
alteration replaces the original node number, volume 
number, and address space number fields with values 
indicating the current node, volume, and address space 
numbers. Subsequent accesses to these data segments 
generate virtual addresses containing the current name 
rather than the original name; as a result the kernel can 
obtain pages from these segments as if the module had 
never been moved. Since all the segments of a module 
are contained within the module, and pointers to data 
within a module are relative to the address space in which 
it resides, these pointers do not need to be changed as a 
result of the change of address space name. 

(2) 

(3) 

(4) 

(5) 
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I Module Name 

Creating Node, 
Volume, and Address 

Space Number of Module 

Flgure 2. The Structure of a typic 

Significantly, the use of a Foreign Address Space 
Table (FAST) in accessing the segments stored in moved 
modules allows page faults for accesses to such segments 
to be resolved efficiently whilst not increasing the 
overhead of resolution of page faults for segments stored 
in non-moved modules. 

The encapsulation of small objects (segments) within 
large objects (modules) has allowed us to incur all of the 
overheads of locating moved (and non-moved) objects at 
the time at which a module is opened, rather than the 
time at which page faults occur. Thus the use of two 
object sizes has provided a considerable performance 
advantage. 

4. Protection 
In a conventional distributed system protection is 

provided by a combination of a separate addressing 
environment for each process and the file system. In a 
distributed shared memory such as that described above 
the addressing environment for every process is the entire 
shared memory. As a result, in the absence of some 
additional protection mechanism, every process has access 
to every byte of data stored in the network. It is therefore 
necessary to provide a protection mechanism to control 
access to data. Given that data is logically grouped into 
structures such as arrays, procedures, etc., it would seem 
appropriate to support protection at this (small object) 
level. 

A suitable means for providing such protection is the 
use of capabilities [lo]. We have described above that 
access to segments is controlled by segment capabilities. 
The right to access a segment must be checked on every 
access. It is therefore essential that the mechanism be 
simple and efficient. In the case of our DSM this has 
been achieved by provision of ,hardware support for 
capability-based addressing [25]. 

There are clearly advantages from a software 
engineering point of view in support for information 
hiding modules. Such modules hide implementation 
details and therefore simplify maintenance and improve 

I Current Name 

Cur rent Node, Vol u me, 
and (Logical) Address I Space Number of Module 

I forelgn address space table entry. 

reliability. They encourage the construction software of 
systems in a modular fashion [24]. However, in many 
object-based systems this encapsulation may be 
circumvented and object data directly manipulated. 

Because we provide direct support for coarse-grain 
objects it is possible to guarantee the integrity of 
modules by enforcing that access to their data is through 
the provided interface routines [20]. This is achieved by 
supporting a second level of capability, called a module 
capability. A module capability includes the name of the 
module referenced and a list of the interface procedures 
(methods) which may be accessed by the holder of the 
capability. This is implemented by storing each interface 
procedure in a separate segment and ensuring that only 
appropriate segment capabilities are made accessible to 
the process at the time the module is opened. 

The provision of such flexible protection for modules 
without sacrificing efficient access at the data structure 
level is only possible because of the separation of the two 
granularities of object. In a system which supports only 
one granularity of object, all of the overheads of method 
invocation are incurred for all object accesses [ 1 11. 

5. Consistency 
A major issue in the design of a global DSM for a 

persistent environment is the ability to recover a 
consistent state after a crash. According to the DSM 
protocol, current versions of parts of an object may be 
spread over several nodes in the network. The failure of 
any of such nodes can result in the loss of parts of the 
current version of the object, with a subsequent loss of 
object integrity. In addition, modifications to other 
objects may have been based on the lost changes. 
Although these additional objects may be self-consistent 
after some failure, they may not be consistent with data 
contained in other objects [ 151. 

A technique for solving this problem is to ensure that 
the store moves from one consistent state to another. 
This can be achieved by periodically copying the entire 
store to a stable medium, such as disk. This process is 



usually called checkpointing and a number of proposals 
for efficient checkpointing have been described in the 
literature 15, 22, 261. During such a checkpoint all 
operation on the store must cease. 

In many circumstances checkpointing the entire store 
as a single operation may have unacceptable performance 
implications, particularly for a distributed store 
supporting concurrent access. A better approach is to 
checkpoint regions of the store independently [15]. 
However, as we have indicated above, there may be 
relationships between objects within the store. It is 
essential that related objects are checkpointed at the Same 
time to ensure that they are consistent with each other. 
Such groups of related objects have been referred to as 
associations [29]. 

Maintaining associations based on fine-grain objects 
rapidly results in large associated sets. Given that we 
have architectural support for grouping related fine-grain 
objects to form coarse-grain objects, it becomes possible 
to maintain associations at the coarse-grain level. These 
associated sets are considerably smaller than those for 
fine-grain objects. Performance is improved for two 
reasons. First, the data structures used to store 
association information are significantly reduced in size. 
Second, coarse-grain objects may be checkpointed at the 
virtual page level, with each write operation on a virtual 
page potentially checkpointing multiple fine-grain 
objects. 

6. Transactions 
The two different object granularities are also 

beneficial for transaction processing [ 123. The basic 
form of (nested) transactions uses segments. 
Applications requiring a higher degree of parallelism than 
is possible without semantic knowledge use object-level 
transactions. 

Basic transactions [4] use segments as the entities for 
concurrency control and recovery. When a transaction 
loads a segment capability for the first time, the segment 
is read-locked. The lock data structures are part of the 
segments thus simplifying the management and the 
addressing of the lock information. The first update of a 
segment within a transaction leads to the acquisition of a 
write-lock and to the writing of a before-image into a 
specific address space. A commit of a transaction releases 
all the locks and before-images, whereas an abort restores 
all segments to their original values and then releases all 
locks. 

Object-transaction$ allow a higher degree of 
parallelism by using commutativity relationships 
between routines of objects. Each call to such a routine 
is executed as a basic transaction. Segment-level locks 
are released at the end of such a call and routine-specific 
(semantic) locks are held until the end of the whole 
transaction. The execution model follows the concept of 
generalised multi-level transactions [23]. Aborts of 
object-transactions must be handled by the execution of 

logical undo operations in contrast to the restoration of 
segments in basic transactions. 

7. Garbage Collection 
Garbage collection is an important issue for single 

level stores such as DSMs. In most systems objects 
contain both data and references to other objects. Garbage 
collection involves traversing the graph of objects from 
some root and removing all unreachable objects. This is 
of particular importance in DSM systems because it 
releases parts of the store for re-use. The disk space 
associated with garbage is also released for re-use. 

There are two basic approaches to garbage collection: 
1 .  Garbage collection of the entire store as a 

single operation. This is extremely expensive 
for large distributed stores and may not be 
possible, if for example, one of the nodes is 
unavailable. 

2. Garbage collect regions of the store 
independently. This reduces the impact of 
garbage collection on users of the store. 

The second approach seems more appealing. The issue 
is the criterion for the division of the store into regions. 
A common approach is to divide into regions based on 
time of object creation. Such collectors are usually called 
generation-based garbage collectors. Proponents of this 
technique argue that most recently created objects are 
temporary and will soon become garbage. They segregate 
such objects and maintain a table of references between 
the segregated region and older objects. However, 
eventually the entire store must be garbage collected in 
order to remove unreachable older objects [281. 

An alternative is to group objects according to their 
logical relationships. Our two level coarse and fine grain 
model effectively provides such a grouping automatically. 
No additional data needs to be maintained in order to 
garbage collect such groups. In our DSM, references 
between fine-grain objects within different coarse-grain 
objects are prohibited. Therefore it is possible to garbage 
collect each coarse-grain object independently. If required 
it is possible to perform generation-based garbage 
collection within modules. 

8. Conclusion 
Figure 3 contains a summary of the most significant 

differences between coarse-grain and fine-grain objects in 
the Monads DSM. 

We have described a system based on a distributed 
shared memory which supports two granularities of 
object. Segments are fine-grain objects which are used to 
hold logical entities such as structures, arrays, procedures, 
etc. Logically related segments are grouped together to 
form coarse-grain information-hiding objects called 
modules. 



Figure 3. A summary of differences between 

It was shown that there are significant advantages in 
supporting two granularities of object. First, coarse-grain 
objects provide a convenient and efficient mechanism for 
naming and locating data in a distributed system. Second, 
different protection paradigms may be supported for each 
object granularity. This allows efficient access for fine- 
grain objects without sacrificing flexibility for coarse- 
grain objects. Third, coarse-grain objects assist with 
limiting the cost of checkpointing by allowing groups of 
objects to be checkpointed independently. Fourth, fine- 
grain objects are used for efficient transaction management 
whereas course-grain objects allow increased parallelism 
using object transactions. Finally, coarse-grain objects 
provide an appropriate clustering of fine-grain objects for 
the purposes of garbage collection. 

Most of the mechanisms described in this paper have 
been implemented in a distributed network of Monads-PC 
computers. Work is continuing in the areas of distributed 
checkpointing mechanisms and object availability 
techniques. 
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