
Coarse and Fine Grain Objects in a
Distributed Persistent Store

Frans A. Henskens*, Peter Brosslert, J. Leslie Keedyt & John Rosenberg*

Basser Department of Computer Science
University of Sydney
N.S.W. 2006
Australia

*

(frans,johnr }@cs.su.oz.au

Abstract
This paper describes our experiences with the

development of a Distributed Shared Memory (DSM)
based on a single, very large, paged virtual memory space
distributed across an arbitrary number of discrete nodes
connected to a network of homogeneous computers. The
DSM supports two object granularities: coarse-grain
objects called modules and fine-grain objects called
segments. We show that support for both modules and
segments has advantages in the areas of naming and
location, protection, data consistency, transaction
management and garbage collection.

1. Introduction
This paper describes our experiences with the

development of a Distributed Shared Memory (DSM)
based on a single, very large, paged virtual memory space
distributed across an arbitrary number of discrete nodes
connected to a network of homogeneous computers.
DSMs allow processes executing on loosely coupled
nodes to share data by reference, such that knowledge of
the address of data in the shared memory space is
sufficient to allow a process to access the data. The DSM
paradigm has been implemented by other researchers to
form shared memory systems, for example Ivy [21] and
Memnet [9]. The main aim of these implementations
was the exploitation of parallel algorithms on loosely-
coupled processors, but their architectures were not
expandable to large shared virtual memories, and were not
oriented towards supporting persistence.

The DSM described here, on the other hand,
implements a global distributed store, enabling users
logged on to loosely-coupled computers to share all
resources including programs, data, and devices. The
advent of large-address architectures has resulted in several
other such stores, for example [6]. The DSM has several
important properties relating to the user's perception of
the services provided by a networked node compared to
those offered by a discrete node. These are:

The distribution of the system provides extra
functionality without compromising the

(1)

TFachbereich 3 Informatik
Universitiit Bremen
Postfach 330440
2800 Bremen
Germany
{ pb,keedy }@informatik.uni-Bremen.de

functionality provided by a discrete, non-
networked machine.
A resource is identified by name. This name
defines the resource only. and not its current
location. As a consequence the resource may
be moved to another node and still be accessed
using its original name.

(3) All users at all nodes have a coherent view of
shateddata.

(4) The owner of a resource has control over
access to the resource on a network-wide basis.

(5) Programs developed for use on a non-
networked machine execute without
modification over the network.

Such an implementation of DSM provides a single
network-wide virtual memory space in which all program
code and data is stored. This virtual memory provides a
store which complies with the orthogonal persistence
principles of persistence independence, data type
independence, and management orthogonality [2], Since
all processes execute within this virtual memory space,
the conventional process address space protection scheme
used by systems such as Unix cannot be used. A two-
level capability-based protection technique enforced by the
architecture is used to provide control over access to the
programs and data in the store [181.

The system supports two object granularities: coarse-
grain objects called modules (which are roughly
equivalent to files in conventional systems) and fine-grain
objects called segments (containing for instance,
procedures, records, characters or integers) [71.
Programmers and compilers see the virtual memory as a
collection of segments of arbitrary size. These segments
are mapped onto the paged virtual address space in such a
way that page and segment boundaries are orthogonal
[171. All segments have the same basic format, so access
to them is handled in a uniform manner. Segments
contain data, and capabilities for other segments, allowing
arbitrarily complex graph structures of segments to be
constructed. Access to a segment is controlled by a
segment capability which defines the segment start
address, length, and type and access information.

(2)

116
0-8186-5270-5/93 $3.00 0 1993 IEEE

mailto:informatik.uni-Bremen.de

Segments are grouped together into information-hiding
modules which present a purely procedural interface, as
proposed by Parnas [24]. Access to a module is
controlled by a module capability which contains a unique
network-wide name for the module and a set of access
rights for the interface procedures which may be invoked
when the capability is presented. Such procedures in turn
may access the encapsulated data segments.

Processes are orthogonal to modules. A process may
call an arbitrary number of modules and such calls may be
arbitrarily nested. Similarly, many processes may
concurrently execute within any one module. This
structure is fully described in [19].

The DSM virtual memory space is of sufficient size to
obviate the need ever to re-use the ranges of addresses
previously allocated to deleted modules. Hence the
address of a module may be used as the module's name,
uniquely identifying it and the code or data segments
encapsulated by it.

Support of two object granularities has advantages in
the areas of:

naming and location
protection
data consistency
transaction management
garbage collection

In this paper we first describe the general DSM
architecture and the relevant implementation details. We
then address in more detail the five areas listed above and
discuss the implication of dual object sizes on issues
including performance, flexibility and ease of
implementation.

2. Overview of DSM architecture
The DSM [16], which provides a distributed persistent

store, was constructed above a purpose-built microcoded
computer, known as Monads-PC, which provides a 60 bit
wide paged virtual memory [25]. Both diskless nodes and
nodes with attached disks are supported. Nodes with disks
act as servers for the pages of the objects stored on those
disks.

In this section we describe the structure of the virtual
memory and how this may be accessed in a distributed
environment.

2.1. Memory management
Two mappings are required in order to implement virtual
memory. The first is a mapping from virtual addresses to
main memory addresses for pages currently in main
memory, and the second is a mapping from virtual
addresses to disk addresses for pages not in main memory.
The conventional approach to virtual memory uses the
same data structures and mechanisms, based on page
tables, for both of these mappings. Our model, on the
other hand, decouples the virtual address to main memory
address mappings (which are needed for every memory
reference) from the virtual address to disk address

mappings (which are only needed in page fault resolution)
[27] The importance of this for distribution is that each
node maintains a main memory page table proportional in
size to the size of its own main memory, and the disk
page tables for disks mounted at the node. In contrast
other DSM implementations (eg [9,21]) require a data
structure defining the status and location of every virtual
memory page to be maintained by every node. Such
structures are proportional in size to that of the distributed
virtual memory.
To minimise the size of these page tables, other DSM
systems partition the address space in which a process
executes into local and shared areas. Only the shared
memory partition is implemented as DSM. Using this
technique, the developers of these systems were able to
simplify communication between parallel processes, but
could not provide totally transparent distribution of all
data. The method used to manage the virtual memory in
our architecture allows the entire vinual memory space to
be implemented as DSM, distributed across a network of
nodes.
In the Monads-DSM system the virtual memory
encompasses the attached disks and main memory of all
machines network-wide. Thus virtual addresses can refer
to any byte on any disk connected to any node. In order
to resolve a page fault, the disk location of the page must
be determined. The first step involves determining which
of the attached disks contains the page.
Every node is assigned a unique node number when it is
manufactured. This is a logical node identifier, and is not
the physical network address of the node. Disk drives
attached to the nodes may be partitioned as part of the
formatting operation, thus creating several logical disks
on a single physical device. Each of these partitions is
known as a volume. When a volume is created it is
assigned a unique node+volume number which is formed
by concatenating the creating node number with the
within-node volume number. This node+volume number
is used to define the range of virtual addresses that is
stored on the volume by using it as the high order bits of
all such addresses.

The range of addresses stored on a volume is further
divided into areas corresponding to the logical entities
such as processes, files and programs that exist on the
disk. These areas are called address spaces, and are
identified by address space numbers. Address spaces are
further divided into fixed size pages identified by page
numbers. A virtual address, then, consists of five parts,
as shown in figure 1.

All the pages of an address space are stored on a single
volume. Each address space has its own disk page table
which maps from virtual addresses to disk addresses for
that address space. This table is contained within the
address space and pointed to from the rmt page of the
address space. Thus every address space is selfdefining,
and efficient use is made of disk space because disk pages
are not allocated to unused virtual pages.

117

Node No.

Figure 1. The structure of a DSM virtual address.

Volume Number Within Volume Address Space Number Within AS Page Offset

Address space zero for each volume is special. It
contains red-tape information for the volume, including
the free space map and the volume address space table
listing the disk locations of the root page for each address
space on the volume. Each module and stack (which
represents a process) resides in a separate and unique
address space, and is named according to the identity of
the address space within which it resides. An address
space is never re-used, even if the module or stack
residing in it is deleted, so the name of a module or stack
is unique for the life of the system. Access to a module
is permitted on presentation of a valid module capability.
The architecture protects module capabilities from illegal
modification or use. The address space number for a
module is embedded in the module capability used to
access it, together with other fields which define the
nature of the access permitted.

Programmers and compilers see the virtual memory as
a collection of segments which may be of arbitrary size,
from one byte to 256 Mbytes in the Monads PC.
Because segment boundaries are orthogonal to page
boundaries [171, excessive internal fragmentation is
avoided. Segments contain data and capabilities for other
segments, with the result that complex graph structures
can be constructed. Access to a segment is permitted on
presentation of a valid segment capability. This
capability defines the full virtual address of the start of the
segment and the segment length and is protected from
arbitrary modification. The basic addressing mode
supported by the architecture involves the specification of
an offset relative to a segment capability.

Segments are grouped together into the previously
described modules. Presentation of a valid module
capability allows a process to open the module, after
which the segment capabilities which allow access to its
interface routines and internal data become available.
These segment capabilities are stored in a special module
call segment (MCS) which is initialised after access to
the module root page. The significance of these
structures will become apparent in the following sections.

2.2. Distributed access
The DSM model is based on a single very large virtual

memory space which encompasses all nodes in the
network. Processes running on these nodes have access
to the whole virtual memory space (provided they can
present an appropriate capability), without the need for
knowledge of the storage location of the program code and

data they access. This model was initially proposed in
[11, Related schemes have been reported in the literature
[9,21]. However these schemes allow processes to share
only a limited portion of their total address space, and
still maintain a separate file store.

The Monads DSM is designed to support the
interconnection of Monads-PC computers using a local
area network (LAN) [14]. The kemel at each machine
maintains knowledge of the mappings between the
network addresses of connected nodes and their Monads
node numbers using an up/down protocol similar to
ARP/RARP [8]. Since the processors are loosely
coupled, there is no physically shared memory, so the
underlying communications system is used to provide an
abstraction of a shared memory space.

During execution a process accesses a sequence of
virtual addresses. If the virtual page containing such an
address is in the local node's page cache (main memory),
the access may proceed. If not, a page fault condition
applies. To resolve the page fault, the local kernel
examines the <node numberxvolume numberxaddress
space> fields of the faulting address, and by consulting
internally maintained tables it determines whether the
page fault may be resolved by a local disk access. If not,
the kemel causes transmission of a message requesting
provision of the page. In this sense each node views the
other nodes in the network as collections of volumes.

3. Naming and location transparency
As described in section 2.1, a module is named

according to the address space in which it resides. This
defines the position of the module in the virtual memory
space. The module name is embedded in the capabilities
used to address the module. Any node with attached disks
acts as a server for the pages of the modules stored on
those disks. During the life of the system, it may
become necessary to mount disks on different nodes. For
example a node may fail; mounting its disks on another
node would make the data on those disks available. It
would also be beneficial to efficient use of network
bandwidth to move the modules owned by a user to his
new home node when his place of work changes. As
described in section 2.2, the module location information
embedded in addresses is crucial to efficient access to their
pages. Module addresses form part of the capabilities
used to control access to them. Since no attempt is made
to record the owners of such capabilities, it is important
that the name of a module is not modified when the

118

storage location for the module changes. If this were not
done, the movement of a module would render invalid all
existing capabilities for it. A change of storage location
for a module occurs if either:

the volume containing the module is mounted
on another node, or
the module is moved to another volume.

3.1. Moving volumes
Page request messages are typically transmitted to the

node whose identity is embedded in the page address.
Prior to transmitting a request for provision of a page,
however, the kemel checks local tables which map moved
volumes to their new mounting node. These tables are
maintained on a need to know basis using a kernel
message protocol. If necessary the destination node for
the page request message is adjusted accordingly.

3.2. Locating moved modules
Access to a module which has been moved between

volumes is detected when the module is opened.
Advisory information regarding the new location is
obtained from the module capability and used to direct the
page request message. If such advisory information
proves to be incorrect, the creating node is queried, and if
possible it provides forwarding information maintained on
the original storage volume. In the case that neither of
these attempts is successful, a broadcast message is used
in an attempt to locate the module. Location of a moved
module therefore incurs an overhead compared to the
location of a non-moved module.

Once the module has been located and opened,
subsequent page requests occur as a result of page faults
generated by accesses to the segments within the module.
Since such page requests occur much more frequently than
open module requests it is important that location of the
server node is efficient.

At the time of such page faults all that is available to
the page fault handler is the faulting virtual address,
which contains the original location of the module. The
kernel could maintain a table of moved modules and their
current locations 131. However, this table would have to
be searched on every page fault, resulting in an overhead
for all requests, including those for non-moved modules.
We therefore use a different approach as described in the
following section.

3.3. Efficient access to moved modules
The essence of the technique presented in this section

is that the identity of an open module may be temporarily
altered to reflect its current location, thus allowing
efficient access to the pages of the module [131.

The implementation of this technique for accessing
moved modules requires that:

(1)

(2)

(1) A new unique address space number defining
the new node, volume, and (logical) within-
volume address space is allocated to a moved
module. This number is called the current
name for the module, and is used for internal
system purposes only. The name by which
the module is known to users remains the
name allocated when the module was created,
and as a result all existing module capabilities
still allow access to the module. The current
name may be viewed as an alias for the
original name.
An additional table is maintained in the red
tape of each volume. This table is called the
Foreign Address Space Table (FAST), and
contains mappings between module names and
current names for moved modules currently
stored on the volume, as shown in figure 2.
The FAST is accessed using the original
module name as a key, and allows the current
name for any moved module stored on the
volume to be determined.
When a module is moved its volume directory
entry at the new owner node contains the
current name for the module.
When a module is moved from a volume the
volume directory of the source volume is
changed to link the current name used on the
source volume to a forwarding address in the
same manner as described in the previous
section.
The system is able to detect that a newly
opened module has been moved from its
original storage volume.

When a module is opened, the root page of the module
must be accessed to allow creation of the MCS. When
the MCS is set up the system determines whether the
module is stored on its original volume or has been
moved to a different volume. If the module has been
moved, the system is informed of its new location when
it obtains the module's root page.

Efficient access to the pages of the module is achieved
by altering the segment capabilities used to access the
module's data as they are stored in the MCS. This
alteration replaces the original node number, volume
number, and address space number fields with values
indicating the current node, volume, and address space
numbers. Subsequent accesses to these data segments
generate virtual addresses containing the current name
rather than the original name; as a result the kernel can
obtain pages from these segments as if the module had
never been moved. Since all the segments of a module
are contained within the module, and pointers to data
within a module are relative to the address space in which
it resides, these pointers do not need to be changed as a
result of the change of address space name.

(2)

(3)

(4)

(5)

119

I Module Name

Creating Node,
Volume, and Address

Space Number of Module

Flgure 2. The Structure of a typic

Significantly, the use of a Foreign Address Space
Table (FAST) in accessing the segments stored in moved
modules allows page faults for accesses to such segments
to be resolved efficiently whilst not increasing the
overhead of resolution of page faults for segments stored
in non-moved modules.

The encapsulation of small objects (segments) within
large objects (modules) has allowed us to incur all of the
overheads of locating moved (and non-moved) objects at
the time at which a module is opened, rather than the
time at which page faults occur. Thus the use of two
object sizes has provided a considerable performance
advantage.

4. Protection
In a conventional distributed system protection is

provided by a combination of a separate addressing
environment for each process and the file system. In a
distributed shared memory such as that described above
the addressing environment for every process is the entire
shared memory. As a result, in the absence of some
additional protection mechanism, every process has access
to every byte of data stored in the network. It is therefore
necessary to provide a protection mechanism to control
access to data. Given that data is logically grouped into
structures such as arrays, procedures, etc., it would seem
appropriate to support protection at this (small object)
level.

A suitable means for providing such protection is the
use of capabilities [lo]. We have described above that
access to segments is controlled by segment capabilities.
The right to access a segment must be checked on every
access. It is therefore essential that the mechanism be
simple and efficient. In the case of our DSM this has
been achieved by provision of ,hardware support for
capability-based addressing [25].

There are clearly advantages from a software
engineering point of view in support for information
hiding modules. Such modules hide implementation
details and therefore simplify maintenance and improve

I Current Name

Cur rent Node, Vol u me,
and (Logical) Address I Space Number of Module

I forelgn address space table entry.

reliability. They encourage the construction software of
systems in a modular fashion [24]. However, in many
object-based systems this encapsulation may be
circumvented and object data directly manipulated.

Because we provide direct support for coarse-grain
objects it is possible to guarantee the integrity of
modules by enforcing that access to their data is through
the provided interface routines [20]. This is achieved by
supporting a second level of capability, called a module
capability. A module capability includes the name of the
module referenced and a list of the interface procedures
(methods) which may be accessed by the holder of the
capability. This is implemented by storing each interface
procedure in a separate segment and ensuring that only
appropriate segment capabilities are made accessible to
the process at the time the module is opened.

The provision of such flexible protection for modules
without sacrificing efficient access at the data structure
level is only possible because of the separation of the two
granularities of object. In a system which supports only
one granularity of object, all of the overheads of method
invocation are incurred for all object accesses [1 11.

5. Consistency
A major issue in the design of a global DSM for a

persistent environment is the ability to recover a
consistent state after a crash. According to the DSM
protocol, current versions of parts of an object may be
spread over several nodes in the network. The failure of
any of such nodes can result in the loss of parts of the
current version of the object, with a subsequent loss of
object integrity. In addition, modifications to other
objects may have been based on the lost changes.
Although these additional objects may be self-consistent
after some failure, they may not be consistent with data
contained in other objects [151.

A technique for solving this problem is to ensure that
the store moves from one consistent state to another.
This can be achieved by periodically copying the entire
store to a stable medium, such as disk. This process is

usually called checkpointing and a number of proposals
for efficient checkpointing have been described in the
literature 15, 22, 261. During such a checkpoint all
operation on the store must cease.

In many circumstances checkpointing the entire store
as a single operation may have unacceptable performance
implications, particularly for a distributed store
supporting concurrent access. A better approach is to
checkpoint regions of the store independently [15].
However, as we have indicated above, there may be
relationships between objects within the store. It is
essential that related objects are checkpointed at the Same
time to ensure that they are consistent with each other.
Such groups of related objects have been referred to as
associations [29].

Maintaining associations based on fine-grain objects
rapidly results in large associated sets. Given that we
have architectural support for grouping related fine-grain
objects to form coarse-grain objects, it becomes possible
to maintain associations at the coarse-grain level. These
associated sets are considerably smaller than those for
fine-grain objects. Performance is improved for two
reasons. First, the data structures used to store
association information are significantly reduced in size.
Second, coarse-grain objects may be checkpointed at the
virtual page level, with each write operation on a virtual
page potentially checkpointing multiple fine-grain
objects.

6. Transactions
The two different object granularities are also

beneficial for transaction processing [123. The basic
form of (nested) transactions uses segments.
Applications requiring a higher degree of parallelism than
is possible without semantic knowledge use object-level
transactions.

Basic transactions [4] use segments as the entities for
concurrency control and recovery. When a transaction
loads a segment capability for the first time, the segment
is read-locked. The lock data structures are part of the
segments thus simplifying the management and the
addressing of the lock information. The first update of a
segment within a transaction leads to the acquisition of a
write-lock and to the writing of a before-image into a
specific address space. A commit of a transaction releases
all the locks and before-images, whereas an abort restores
all segments to their original values and then releases all
locks.

Object-transaction$ allow a higher degree of
parallelism by using commutativity relationships
between routines of objects. Each call to such a routine
is executed as a basic transaction. Segment-level locks
are released at the end of such a call and routine-specific
(semantic) locks are held until the end of the whole
transaction. The execution model follows the concept of
generalised multi-level transactions [23]. Aborts of
object-transactions must be handled by the execution of

logical undo operations in contrast to the restoration of
segments in basic transactions.

7. Garbage Collection
Garbage collection is an important issue for single

level stores such as DSMs. In most systems objects
contain both data and references to other objects. Garbage
collection involves traversing the graph of objects from
some root and removing all unreachable objects. This is
of particular importance in DSM systems because it
releases parts of the store for re-use. The disk space
associated with garbage is also released for re-use.

There are two basic approaches to garbage collection:
1 . Garbage collection of the entire store as a

single operation. This is extremely expensive
for large distributed stores and may not be
possible, if for example, one of the nodes is
unavailable.

2. Garbage collect regions of the store
independently. This reduces the impact of
garbage collection on users of the store.

The second approach seems more appealing. The issue
is the criterion for the division of the store into regions.
A common approach is to divide into regions based on
time of object creation. Such collectors are usually called
generation-based garbage collectors. Proponents of this
technique argue that most recently created objects are
temporary and will soon become garbage. They segregate
such objects and maintain a table of references between
the segregated region and older objects. However,
eventually the entire store must be garbage collected in
order to remove unreachable older objects [281.

An alternative is to group objects according to their
logical relationships. Our two level coarse and fine grain
model effectively provides such a grouping automatically.
No additional data needs to be maintained in order to
garbage collect such groups. In our DSM, references
between fine-grain objects within different coarse-grain
objects are prohibited. Therefore it is possible to garbage
collect each coarse-grain object independently. If required
it is possible to perform generation-based garbage
collection within modules.

8. Conclusion
Figure 3 contains a summary of the most significant

differences between coarse-grain and fine-grain objects in
the Monads DSM.

We have described a system based on a distributed
shared memory which supports two granularities of
object. Segments are fine-grain objects which are used to
hold logical entities such as structures, arrays, procedures,
etc. Logically related segments are grouped together to
form coarse-grain information-hiding objects called
modules.

Figure 3. A summary of differences between

It was shown that there are significant advantages in
supporting two granularities of object. First, coarse-grain
objects provide a convenient and efficient mechanism for
naming and locating data in a distributed system. Second,
different protection paradigms may be supported for each
object granularity. This allows efficient access for fine-
grain objects without sacrificing flexibility for coarse-
grain objects. Third, coarse-grain objects assist with
limiting the cost of checkpointing by allowing groups of
objects to be checkpointed independently. Fourth, fine-
grain objects are used for efficient transaction management
whereas course-grain objects allow increased parallelism
using object transactions. Finally, coarse-grain objects
provide an appropriate clustering of fine-grain objects for
the purposes of garbage collection.

Most of the mechanisms described in this paper have
been implemented in a distributed network of Monads-PC
computers. Work is continuing in the areas of distributed
checkpointing mechanisms and object availability
techniques.

Acknowledgements

Sydney research grant.

References

Part of this work was supported by a University of

[I] Abramson, D. A. and Keedy, J. L. "Implementing a
Large Virtual Memory in a Distributed Computing
System", Proc. 18th Hawaii Conference on System
Sciences, pp. 515-522, 1985.

[2] Atkinson, M. P.. Bailey, P.. Chisholm. K. J..
Cockshott, W. P. and Morrison, R. "An Approach to
Persistent Programming", The Computer Journal, 26.
4. Nov., pp. 360-365, 1983.

coarse and fine grain objects.

Brbsler, P., Henskens, F. A., Keedy, J. L. and
Rosenberg, J. "Addressing Objects in a Very Large
Distributed System", Proc. IFIP Conference on
Distributed Systems, North-Holland, pp. 105-1 16,
1987.
Br6ssler, P. and Rosenberg, J. "Support for
Transactions in a Segmented Single Level Store
Architecture", Proceedings of the International
Workshop on Computer Architectures to support
Security and Persistence of Information. (ed J.
Rosenberg and J. L. Keedy), Springer-Verlag and
British Computer Society, pp. 319-338. 1990.
Brown, A. L., Connor, R. C. H., Carrick. R., Dearle,
A. and Morrison, R. "The Persistent Abstract
Machine". Universities of Glasgow and St. Andrews,
Persistent Programming Research Report PPRR-59-
88. 1988.
Chase, J. S., Levy, H. M., Baker-Harvey, M. and
Lazowska, E. D. "Opal: A Single Address Space System
for 64-Bit Architectures", Third IEEE Workshop on
Workstation Operating System, IEEE, 1992.
Chin, R. S . and Chanson, S . T. "Distributed Object-
Based Programming Systems", ACM Computing
Surveys, 23(1), pp. 92-124, 1991.
Comer, D. "Intemetworking With TCP/IP - Principles,
Protocols and Architecture". Prentice Hall, pp. 49-63,
1988.
Delp, G. S . "The Architecture and Implementation of
Memnet: a High-speed Shared-Memory Computer
Communication Network", University of Delaware,
Udel-EE Technical Report Number 88-05-1, 1988.
Fabry, R. S . "Capability-Based Addressing",
Communications of the A.C.M., 17(7), pp. 403-412.
1974.
Goldberg, A. and Robson, D. "Smalltalk-80".
Addison-Wesley, 1985.

Gray, J. and Reuter. A. "Transaction Processing:
Concepts and Techniques", Morgan Kaufmann Series
in Data Management Systems, Morgan Kaufmann.
1992.
Henskens. F. A. "Addressing Moved Modules in a
Capability-based Distributed Shared Memory",
Proceedings of the 25th Hawaii International
Conference on System Sciences, vol 1, Hawaii, U. S.
A., (ed V. Milutinovic and B. D. Shriver), IEEE
Computer Society Press, pp. 769-778, 1992.
Henskens. F. A. "A Capability-based Persistent
Distributed Shared Memory", Basser Department of
Computer Science, University of Sydney, Australia,
Technical Report 462. ISBN 0 86758 668 0, 1993.
Henskens. F. A.. Rosenberg, J. and Hannaford, M. R.
"Stability in a Network of MONADS-PC Computers",
Proceedings of the International Workshop on
Computer Architectures to support Security and
Persistence of Information, (ed J. Rosenberg and J. L.
Keedy), Springer-Verlag and British Computer
Society, pp. 246-256, 1990.
Henskens, F. A., Rosenberg, J. and Keedy, J. L. "A
Capability-based Distributed Shared Memory",
Australian Computer Science Communications, 13(l),

Keedy, J. L. "Paging and Small Segments: A Memory
Management Model", Proc. IFIP-80, 8th World
Computer Congress, pp. 337-342, 1980.
Keedy, J. L. "An Implementation of Capabilities
without a Central Mapping Table", Proc. 17th Hawaii
International Conference on System Sciences, pp.

Keedy, I. L. and Rosenberg. J. "Support for Objects in
the MONADS Architecture", Proceedings of the
International Workshop on Persistent Object Systems,
(ed J. Rosenberg and D. M. Koch), Springer-Verlag,
1989.
Keedy, J. L. and Vosseberg. K. "Persistent Protected
Modules and Persistent Processes as the Basis for a
More Secure Operating System". Proceedings of the
25th Hawaii International Conference on Systems
Sciences, vol 1, IEEE, Hawaii, USA, pp. 747-756,
1992.

pp. 29.1-29.12, 1991.

180-185, 1984.

Li. K. "Shared Virtual Memory on Loosely Coupled
Multiprocessors", Ph.D. Thesis, Yale University,
1986.
Lorie. R. A. "Physical Integrity in a Large Segmented
Database", ACM Transactions on Database Systems,
2.1. pp. 91-104. 1977.
Muth, P., Rakow. T. C., W e b , G.. Brbsler, P. and
Hasse, C. "Semantic Concurrency Control in Object-
Oriented Database Systems", Proceedings, IEEE
International Conference on Data Engineering, Wien.
IEEE. 1993.
Parnas. D. L. "On the Criteria to be Used in
Decomposing Sys tems in to Modules" ,
Communications of the ACM, 15(12). pp. 1053-1058.
1972.
Rosenberg, J. and Abramson. D. A. "MONADS-PC: A
Capability Based Workstation to Support Software
Engineering", Proc, 18th Hawaii International
Conference on System Sciences, pp. 515-522, 1985.
Rosenberg, J., Henskens, F. A., Brown, A. L.,
Morrison, R. and Munro. D. "Stability in a Persistent
Store Based on a Large Virtual Memory". Proceedings
of the International Workshop on Architectural
Support for Security and Persistence of Information,
(ed J. Rosenberg and J. L. Keedy), Springer-Verlag and
British Computer Society, pp. 229-245, 1990.
Rosenberg, J., Keedy, I. L. and Abramson, D.
"Addressing Large Virtual Memories", The Computer
Journal, (to appear), 1992.
Ungar, D. "Generation Scavenging: A Non-disruptive
High Performance Storage Reclamation Algorithm",
ACM SIGPLAN Notices, 9(5), pp. 157-167, 1984.
Vaughan, F.. Schunke, T., Koch, B.. Dearle, A.,
Marlin, C. and Barter, C. "A Persistent Distributed
Architecture Supported by the Mach Operating
System", Proceedings of the 1st USENIX Conference
on the Mach Operating System, pp. 123-140, 1990.

123

