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Experimental Verification of the Corrected Transfer
Function of a Piezoelectric Laminate Beam

S. O. Reza Moheimani

Abstract—Piezoelectric materials are finding increasing ap-
plications in active vibration control of structures. Modeling of
a piezoelectric laminate, often results in an infinite-dimensional
or a very high-order model. For control design purposes, such a
model is simplified by removing higher frequency modes which
lie out of the bandwidth of interest. Truncation can considerably
perturb the in-bandwidth zeros of the truncated model. This paper
suggests a method of minimizing the effect of the removed higher
order modes on the low-frequency dynamics of the truncated
model of a piezoelectric laminate beam by adding a zero frequency
term to the low-order model of the structure. Simulations and
experimental results are presented.

Index Terms—Flexible structures, model corection, model
reduction, piezoelectric actuators, piezoelectric sensors.

I. INTRODUCTION

RECENTLY, there has been an increasing interest in using
piezoelectric materials as actuators and sensors for vibra-

tion control in flexible structures. Piezoelectric ceramics pro-
vide cheap, reliable, and nonintrusive means of actuation and
sensing in flexible structures. When used in flexible structures,
the piezoelectric ceramic films are bonded to the body of the
structure using strong adhesive material. A distinct character-
istic of piezoelectric actuators or sensors is that they are spa-
tially distributed over the surface which is being sensed and/or
controlled. This property makes them different from the dis-
crete actuators and sensors which are often used in the control
of flexible structures. When a piezoelectric element is stressed
electrically by a voltage, its dimensions change and when it is
stressed mechanically by a force, it generates an electric charge.
A piezoceramic is therefore capable of acting as either a sensing
or transmitting element, or both.

One of the most popular methods of modeling piezoelectric
laminates, is via the modal analysis technique [1]. In this ap-
proach the solution of the the PDE, that governs the dynamics
of the laminate, is assumed to consist of an infinite number of
terms. Moreover, these terms are chosen to be orthogonal. This
results in an infinite-dimensional model of the structure.

In control design problems, one is often interested only in
designing a controller for a particular frequency range. In these
situations, it is common practice to remove the modes which
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correspond to frequencies that lie out of the bandwidth of in-
terest and only keep the modes which directly contribute to the
low-frequency dynamics of the system. This model is then used
to design a controller. If such a controller is implemented on
the system, say in the laboratory, the closed-loop performance
of the system can be considerably different from the theoret-
ical predictions. This is mainly due to the fact that although the
poles of the truncated system are at the correct frequencies, the
zeros can be far away from where they should be. Therefore, it
is natural to expect that a controller designed for the truncated
system may not perform well when implemented on the real
system since the closed-loop performance of the system can be
largely dictated by the open-loop zeros.

Reference [2] discusses the effect of out of bandwidth modes
on the low-frequency zeros of the truncated model. There, it is
suggested that the effect of higher frequency modes on the low-
frequency dynamics of the system can be captured by adding
a zero frequency term to the truncated model to account for the
compliance of the ignored modes. In this paper, we take a similar
approach in the sense that we allow for a zero frequency term
to capture the effect of truncated modes. However, this constant
term is found such that the norm of the resulting error system
is minimized.

To this end, we point out that there are alternative methods for
modeling of piezoelectric laminates. As an example, one can
point to the recent works of Pota and Alberts in modeling of
such systems using symbolic computations [3]–[5]. However,
the models derived via modal analysis technique have the inter-
esting property that they describe spatial and temporal behavior
of the system. Such models can then be used in designing spa-
tial controllers as noted in [6]–[10].

II. ELECTRO-MECHANICAL MODEL OF A PIEZOELECTRIC

LAMINATE

Consider the piezoelectric laminate beam of Fig. 1. The beam
is pinned at both ends. There are two piezoelectric patches
which are used as actuators and/or sensors. Here, the subscripts
“ ,” “ ,” and “ ” correspond to the top piezoelectric layer,
the beam, and the lower piezoelectric layer. In this section we
briefly explain how a transfer function can be developed for
this structure. For a thorough coverage of the modeling process,
the reader is referred to [11] and [12].

The “ ” layer serves as an actuator and the “” layer as a
sensor. If a voltage is applied to the actuating piezoelec-
tric layer, it induces a longitudinal stressgiven by:

where is the electric charge constant of
the film, is the Young’s modulus of the film and is the
thickness of the patch as shown in Fig. 1(b). The stress due to
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Fig. 1. The piezoelectric laminate beam.

an applied voltage produces a bending momentas shown
in Fig. 1(a) along the composite system’s neutral axis given
by [13]: where

. Obviously, is a constant which
depends on the geometry of the composite system. If both layers
are used as actuators with opposite polarity, thenwill change
to .

To understand how the sensing layer works, note that
when the beam is bent, it results in a strain

. Due to the piezoelectric effect, this
strain produces a charge distribution per unit area given
by: where is the piezoelectric
electromagnetic coupling constant and is the piezoelectric
stress constant. The total charge accumulated on the sensing
layer can be found by integrating over the entire surface
area of the piezoelectric patch. That is

Since the piezoelectric patch, once charged, can be consid-
ered as a simple parallel plate capacitor, the voltage across the
two layers can be found to be

Here, is the patch capacitance and is the length
of the sensing layer. Moreover, is a constant which can be
determined as .

The partial differential equation describing the elastic deflec-
tion of the composite beam-piezoelectric system is a Bernoulli-

Euler beam equation with an additional term due to actuating
layer [3]. This equation is given as

(1)

where and represent, respectively, the
Young’s modulus, moment of inertia, cross-section area,
voltage across the actuating layer, and the linear mass den-
sity of the beam. Notice that if the piezoelectric patches
do not cover the entire beam surface, then both and

will be functions of . However, since the piezoelectric
layers are often thin by comparison to the base structure,
we can assume that and are uniform over the length
of the beam. The boundary conditions for the simply-sup-
ported beam in Fig. 1(c) are: and

.
One way of solving (1) is to expand as an infinite series

in the form [14]

(2)

where are the eigenfunctions satisfying the ordinary dif-
ferential equations, resulting from the substitution of (2) into (1)
and its associated boundary conditions.

Following this procedure, a dynamical model of the beam is
found to be

(3)
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where mode shapes are given by
and resonant frequencies are . It can
be observed that the transfer function (3) consists of an infinite
number of resonant modes. In reality each mode is very lightly
damped. The damping factor associated with each mode can be
determined experimentally.

III. CORRECTION OF THEIN-BANDWIDTH DYNAMICAL MODEL

OF A LAMINATE

The model that was developed in the previous section is for a
beam with pinned-pinned boundary conditions. It is possible to
carry out the same procedure for piezoelectric laminated beams
with different boundary conditions. It is also possible to extend
this procedure to two-dimensional structures such as piezoelec-
tric laminated plates. In any case, the modeling of a piezoelectric
laminate using the modal analysis technique results in a model
that can be represented by

(4)

This is an infinite-dimensional transfer function due to the
existence of an infinite number of modes. We notice that (4)
does not include any modal dampings. In reality, however, each
mode is lightly damped. Therefore, a more precise version of
(4) can be written as

It is a very difficult task to determine modal structural damp-
ings using physical principles. Therefore,’s are often deter-
mined by experiments. In this paper, we ignore the effect of
modal dampings for the reasons that will be explained later.
However, it is straightforward to extend this work to include the
effect of modal dampings.

In a typical control design scenario, the designer is often in-
terested only in a particular bandwidth. Therefore, an approx-
imate model of the system is needed that best represents the
dynamics of the system in the prescribed frequency range. A
natural choice in this case is to simply ignore the modes which
correspond to the frequencies that lie outside of the bandwidth
of interest. For instance, if is equivalent or larger than the
highest frequency of interest, one may choose to approximate

by

(5)

A drawback of this approach is that the truncated higher order
modes may contribute to the low-frequency dynamics in the
form of distorting zero locations. Reference [2] suggests a way
of dealing with this problem. The idea that is put forward in [2]
is to allow for a constant feed-through term in (5) to account for
the compliance of omitted higher order modes of (4). That is, to
approximate by

(6)

where . The logic behind this choice of
is that at lower frequencies one can ignore the effect of dy-

namical responses of higher order modes since they are much
smaller than the force responses at those frequencies. Although
an approximation, [2] shows that is a good representation of
the effect of higher order modes on .

This paper is an attempt to find an optimal value for. In
other words, we intend to determine such that the effect of
higher order modes on the low-frequency dynamics is mini-
mized in some measure. Our objective here is to choose a value
for such that the following cost function is minimized:

(7)

where . Here, and
are defined as in (4) and (6) and is an ideal low-pass
weighting function with its cut-off frequency chosen to lie
within the interval . That is, for

and elsewhere. The reason for this choice of
will be explained soon. To this end, it should be clear that

a chosen to minimize (7) will minimize the effect of out of
bandwidth dynamics of on in an optimal sense.
Notice that the cost function (7) conveys no information on fre-
quencies higher than .

It is easy to see that (7) is equivalent to

(8)

The fact that is chosen to be an ideal low-pass filter with
its cutoff frequency lower than the first out-of-bandwidth pole
of , guarantees that (8) will remain finite. Let

It is straightforward to show that (8) is equivalent to

(9)

where . It is straightfor-
ward to verify that the that minimizes (9) is given by

(10)

which is equivalent to

(11)

where represents the real part of the complex number,
and consequently

(12)
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Fig. 2. The experimental setup.

TABLE I
PARAMETERS OF THE PIEZOELECTRIC

LAMINATE BEAM

TABLE II
FIRST EIGHT RESONANTFREQUENCIES OF THESIMPLY-SUPPORTEDBEAM

Hence, to obtain the optimal , one has to carry out the fol-
lowing integration:

(13)

The optimal value of is found to be

(14)

At this point, we try to show how is related to the value
of suggested by [2]. We know that for , the term
can be expanded as (see [15, p. 52])

If we use the first term of the series to approximate
in (14), we obtain

(15)

Hence, we recover the result of [2]. Therefore, the value of
suggested by [2] approximates the optimalwhich minimizes
(7).

To this end, we point out that this result can have direct impli-
cations on the development of system identification techniques
for piezoelectric laminates. Indeed, if a model is to be fitted to
the experimental data, care has to be taken that a proper model
which consists of a sufficient number of second order resonant
terms and a feed-through term is chosen.

IV. THE EXPERIMENT

In this section we validate our model correction technique
through simulations and an experiment on a piezoelectric lami-
nate. The experiment is depicted in Fig. 2. The structure consists
of a 60-cm long uniform aluminum beam of a rectangular cross
section (50 mm 3 mm). The beam is pinned at both ends. A
pair of piezoelectric ceramic elements are attached symmetri-
cally to either side of the beam, 50 mm away from one end of
the beam. The piezoceramic elements used in our experiment
are PIC151 patches. These patches are 25-mm wide, 70-mm
long, and 0.25-mm thick. The physical parameters of PIC151
are given in Table I.

In this experiment, a Hewlett Packard model 89 410A vector
analyzer is used to determine the frequency response of the
piezoelectric laminate. In [3], it is argued that the transfer func-
tion of the laminate has to be modified to allow for the effect of
finite input resistance of the measurement device. If the total re-
sistance of the measuring device is and the total capacitance
of the sensing piezoelectric patch is, in the transfer function
(3), should be replaced with

The input resistance of HP89410A is 1 M. To reduce the
effect of this low input resistance on our measurement, a Tek-
tronix P6201 active probe with 1 M-input resistance is used.
Therefore, the high-pass cutoff frequency is
moved below 1 Hz.
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Fig. 3. Comparison of the frequency responses of the 150 mode model of the laminate with the experimental data.

Fig. 4. Comparison of the frequency responses of the five mode model of the laminate with the measured frequency response.

A model of the beam is determined using the (3). Here,
the mode shapes and resonant frequencies are determined as
explained in Section II. Our model consists of the first 150
modes of the beam. This is enough to give us an accurate
model of the structure in the frequency range of up to 500
Hz. There are five modes within this particular bandwidth.

Hence, we are interested in working with a five mode model
of the laminate.

In Fig. 3 we compare the frequency response of the beam
based on its first 150 modes with our experimental measure-
ments in up to 500-Hz range. It can be observed that the
two models are very close. In Fig. 4 we plot the experi-
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Fig. 5. Comparison of the frequency responses of the 50 mode model of the laminate with the measured frequency response.

Fig. 6. Comparison of the frequency responses of the corrected model of the laminate with the measured frequency response.

mental data and the frequency response of the five mode
model. This figure clearly shows the error that is introduced
by truncation. In Fig. 5 we plot our experimental data and
the frequency response of the 50 mode model of the beam.
Some improvement can be observed, however, the difference
between the frequency responses of the two systems is still

unacceptably high. Now, we approximate the effect of trun-
cated modes on the five mode model of the system via the
(14). The frequency is chosen to be , i.e.,
3572.7 rad/s. In Fig. 6, we plot and compare the frequency
response of the corrected five mode model of the beam with
our experimental measurements. It can be observed that the
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difference between the two frequency responses in the fre-
quency range of interest is minimal.

V. CONCLUSION

In this paper we proposed a model correction methodology
that can be used to minimize the effect of truncated modes on
low-frequency models of piezoelectric laminates. This is done
by adding a feed-through term to the truncated model of the
laminate. This term is chosen such that thenorm of the error
system is minimized. We also presented experimental results
which support our model correction technique.
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