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Abstract 

  

 Mainstream theories of the Stroop effect suggest that faster colour classification on 

congruent trials (say, the word RED printed in red colour) relative to incongruent trials (GREEN 

in red) is due to channel interaction. Namely, information from the irrelevant word channel 

perturbs processing of the print colour, causing in turn slower processing of incongruent displays. 

In this note I advance a new model, in which colour and word are processed in parallel and 

completely independent channels. The Stroop effect is then the outcome of signal redundancy in 

congruent displays, where both colour and word contribute to the same response. Numerical 

computations show that the model can produce the Stroop effect (along with high accuracy rates) 

for a subset of parameter values. Thus, it provides a proof of existence for a separate-channel 

theory, and a challenge to many existing theories. 

 

[word count: 139] 
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The Stroop effect (Stroop, 1935) is the prime example of the human failure to attend 

selectively to an individual aspect of a stimulus. When naming the colour in which colour words 

are printed, people seem unable to ignore the meaning of the carrier word. They engage the 

meaning of the word even when such processes are irrelevant to the task at hand and can hurt 

performance. To gauge the influence of the irrelevant words, the Stroop effect is defined as the 

difference in colour-naming performance between congruent (the word naming its colour) and 

incongruent (word and colour conflict) stimuli. For instance, when presented with the word 

GREEN printed in red, observers are slower in responding “red” then they are when presented 

with the word RED printed in red. 

Mainstream theories of the Stroop effect posit that the detriment to performance on 

incongruent trials and facilitation on congruent trials is due to the automatic activation of word 

meaning (e.g., Anderson, 1995, Ashcraft, 1994, and more recently Catena, Fuentes, & Tudela, 

2002; but see Besner, Stoltz, & Boutilier, 1997, for a different view). Consequently, channel 

interaction is indispensable for the Stroop effect to ensue. The term “Stroop interference” (or 

Stroop facilitation; cf. MacLeod, 1991) reflects this deep-seated notion.   

The central role of word-colour cross-talk in existing theories can be exemplified by 

examining Cohen, Dunbar, and McClelland’s prominent connectionist Stroop model (1990), 

which allows “interactions between processes… when pathways intersect.” (p.335). These 

interactions can result in either interference, when patterns of activation are dissimilar, or 

facilitation when “patterns of activation are very similar.” Cohen et al. three-layer network 

accrues evidence forward along word and colour pathways, and the total activation received by 

the output units (e.g., “red”, “green”) determines which will cross its threshold first and 

determine the response. Because activation from colour and word pathways is pooled together, 
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decisions based on colour activation cannot happen independently from activation on the word 

pathway, and vice versa. 

In this note, I entertain a new, indeed revolutionary idea. I wish to show that a stochastic 

model that does not entail a cross talk between the channels for word and colour can nonetheless 

produce the behavioral Stroop effect (i.e., faster colour performance on congruent than on 

incongruent trials). In a nutshell, faster responses on congruent trials as opposed to incongruent 

trials may be a special case of the well known redundant-target effect: responses to a congruent 

Stroop stimulus (say, RED in red) are faster simply because it comprises a double- or redundant-

target display, whereas the incongruent stimulus (say, GREEN in red) is a single-target display. 

The critical point is that the redundant-target effect may ensue in a strictly parallel and 

independent system, where the different sources of information (namely, word and colour) need 

not interact. The proposed model is not that simple, yet this gives the gist of the idea.1 Notice that 

a somewhat similar idea was considered by MacLeod and MacDonald (1998), and supported 

empirically by Eidels, Townsend, and Algom (2010). Neither, however, developed a complete 

formal model. If successful, such a model invites a wholesale revision of existing theories of the 

Stroop effect.  

 

Stroop as a Redundant Targets Effect 

How can the Stroop effect emerge under a strictly parallel-independent regime? Consider 

the congruent stimulus (say, RED printed in red). Both of its presented attributes lead to the same 

                                                 
1 To be accurate, with the current realization of four channels, the incongruent stimulus GREEN in red also 
possesses two sources of information for a correct “red” response: the presented colour, and the non-presented word. 
However, since the processing rate of non-presented attributes is slower than that of presented attributes (see 
Assumption 1), the non-presented word RED does not contribute to the correct response as much as the presented 
RED would when a congruent combination, RED in red, is displayed. Therefore, the example in the text serves as a 
good approximation to illustrate the difference in processing of congruent and incongruent stimuli, until we provide a 
full description of the model in the upcoming section. Of course, the model itself makes use of all four channels, and 
no approximations are made. 
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response, “red”. Hence, this stimulus is also a double-target stimulus. Such a trial, is a race 

between separate processes (each generating a detection decision with respect to its individual 

target) with the response determined by whichever channel that finishes processing first. The 

incongruent stimulus, in contrast, is a single-target stimulus because the target is presented in one 

channel (red) but a non-target is presented in the other channel (GREEN). A race develops on this 

trial, too, with the former channel generating the correct response. Therefore, congruent and 

incongruent stimuli differ in the number of presented targets. A congruent Stroop stimulus is 

practically a display containing two targets. An incongruent Stroop stimulus, in contrast, is a 

display containing a single target (along with a single distractor). 

An immense literature on target search (e.g., Ben-David & Algom, 2009; Egeth & 

Dagenbach, 1991; Grice, Canham, & Boroughs, 1984; Feintuch & Cohen, 2002; Miller, 1982; 

Mordkoff & Yantis, 1991; Townsend & Eidels, 2011; Townsend & Nozawa, 1995) shows that 

performance is faster with displays containing redundant targets than with displays containing a 

single target. Notably, this redundant target effect is present even when processing is strictly 

parallel as it is in the present model, by way of statistical facilitation (Raab, 1962). According to 

this notion, responses on redundant target trials, within the purview of a race model, are 

especially fast because they are produced by the faster of two stochastic processes. The generally 

faster process determines the response on the majority of redundant target trials; the other process 

does so on the remaining trials on which it is uncharacteristically fast. Therefore, on average, 

response time (RT) on redundant target trials will be shorter than on single target trials. 

We immediately see that the Stroop effect is equivalent to the redundant-target effect. 

One can say that the Stroop effect is a special case of the redundant-target effect where the 

pertinent displays are colour words printed in various colours. If so, the Stroop effect can derive 
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without any form of interaction between colour and word (e.g., automatic dominance of reading 

over naming, semantic interference and facilitation, or response competition at the response 

buffer). Word and colour do not communicate with one another nor share a decision mechanism. 

The colour horse does not “know” the content, indeed the very existence of the word horse. 

 

The Model 

Consider the standard Stroop task of naming the colour of colour words in a simple 2 

(word: RED, GREEN) x 2 (colour: red, green) matrix. The word RED printed in red and the 

word GREEN printed in green both comprise congruent stimuli. RED in green and GREEN in 

red comprise incongruent stimuli. A Stroop effect ensues if, for example, participants are faster to 

name the colour “red” when presented with the congruent stimulus RED in red than they are with 

the incongruent stimulus GREEN in red.  

The Stroop process is formalized as a counter model (Townsend & Ashby, 1983), with 

four parallel and independent counters. A prototypical schemata for a four-channel parallel model 

is shown in Figure 1. All of the words and colours included in the stimulus ensemble are activated 

on each trial. Given the aforementioned 2 x 2 matrix of colour words and colours, the four 

channels for RED, GREEN, red, and green are activated on each trial of the experiment 

regardless of the single combination presented for view on any particular trial. In a different 

situation, for example given a Stroop matrix of 6 colours and 10 words, 16 channels are activated 

on each and every trial. This is a stochastic modeling instantiation of a well-known result from 

information theory. Perception depends not only on the stimulus presented for view but also on 

its alternatives, those stimuli that could have been presented although were not presented on that 

particular trial (Garner, 1974; Melara & Algom, 2003).  [Figure 1 here] 



Independent Race 

 7 

 

 

Figure 1. Illustration of activations in a separate channels model with four parallel and 
independent channels. Each panel shows activation on four channels, for a particular Stroop 
stimulus. Longer arrows represent higher processing rates for presented over non-presented 
attributes. The circled channels contribute to the correct response. When presented with the word 
RED written in the congruent colour red (Rr; panel A), activation rates for the presented 
attributes (word RED, colour red) are higher than the respective rates for the non-presented 
attributes (GREEN, green). Notably, these potent channels contribute to the correct response 
(“red”). When presented with the incongruent combination of the word GREEN written in red 
(Gr; panel B), the presented colour red and the non-presented word RED contribute to a correct 
“red” response. The total “red” activation on a congruent trial (from channels RED, red -- panel 
A) is higher than the total “red” activation on an incongruent trial (channels GREEN, red -- panel 
B). 
 

With four processing channels, each working as a counter that accumulates evidence 

towards some criterion at a given rate, there are 8 parameters in the model. There are 4 rate 

parameters, one for each of the channels (presented word, presented colour, non-presented word, 

non-presented colour), and there are 4 corresponding criterion values. By criterion, or threshold, I 

refer to the critical amount of evidence that is necessary in order for a particular channel to win 

Presented word (RED) 

Presented colour (red) 

Non-presented word (GREEN) 

Non-presented colour (green) 

Presented word (GREEN) 

Presented colour (red) 

Non-presented word (RED) 

Non-presented colour (green) 

A. Congruent stimulus: RED in red 

B. Incongruent stimulus: GREEN in red 



Independent Race 

 8 

the race and initiate response. The rate of each channel corresponds to the speed by which it 

accumulates evidence. Thus, a high rate in a particular channel, say, the presented colour red, 

implies that in a fixed unit of time this channel gathers a lot of evidence in favor of responding 

“red”. Concomitantly, a high rate implies that a particular channel needs little time to collect 

enough evidence to exceed its criterion. Channels with high rates and/or low criterion values are 

more likely to win the race and consequently determine the response. 

I present the model by first introducing the notation for rates and criteria. Let VA, VB, VC, 

and VD be the processing rates for the channels of the presented word, presented colour, non-

presented word, and non-presented colour, respectively. Let kA, kB, kC, and kD be the 

corresponding criterion values for each of the channels. For processing rates, it is sensible to 

assume that the rates for presented features are faster than the rates for non-presented features, 

MIN(VA, VB) > MAX(VC, VD). For example, when stimulus GREEN in red is presented, the 

GREEN and red counters will accumulate evidence at a faster rate than will the RED and green 

counters. Perceived stimuli (i.e., the attributes presented for view on a particular trial) are 

processed more efficiently than those merely remembered from previous trials, although, again, 

all channels are activated on each and every trial. This assumption is captured by the length of the 

arrows in the visual illustration of the model, presented in Figure 1. Note though that when fitting 

the model to data I relaxed this assumption and let the rates vary freely. To foreshadow the 

outcome, it was reassuring to find out that this rates-order assumption was maintained in the 

fitting results. 

Next, I derive the conditional processing-time density functions for congruent and 

incongruent trials (i.e., completion time conditioned on correct responding). With these 

expressions at hand I can fit the new model to empirical Stroop data (from Eidels, Townsend, and 

Algom, 2010; Experiment 4), or simulate it for a range of parameter values (see Appendix). 
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Let f(t) = P(T=t) be the probability density function of processing time, T, that represents 

the likelihood of a process to finish at time t. Let F(t)=P(T≤t) be the cumulative distribution 

function of processing time, that tells the probability of a process to finish at or before time t. 

Finally, let us define the survivor function S(t) = P(RT>t) = 1-F(t), as the probability that the 

process is finished later than time t. Now, assume that there are two parallel and independent 

processing channels, A and B, that race against each other to determine the response, and that the 

overall processing in the system terminates as soon as the faster of the two channels finishes 

(minimum-time stopping rule). Townsend & Ashby (1983) showed that for a two-channels 

independent parallel model with a minimum-time stopping rule the survivor function for the 

faster of the two channels (i.e., the winner of the race) is the product of the survivor functions of 

each channel alone, such that  

 

)()()(),( tStStS BABAMIN ⋅=         (1) 

 

Observe that neither A nor B alone always win. Because processing is stochastic, then on 

some cases A wins, and on others B wins. The overall processing of the system only lasts as long 

as both processes are unfinished. Once the winner terminates then processing in the system 

ceases, and a response is initiated. If we take the derivative (d/dt) from both sides of Equation (1) 

we obtain the (unconditional) probability distribution for the winner of the race, which, by 

product rule, turns to be 

 

 )()()()()(),( tftStStftf BABABAMIN ⋅+⋅=       (2) 
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It is termed unconditional density since it gives the probability of the faster of the two 

channels (A, B) to finish at time t, regardless of whether the response was correct or not. In other 

words, this is the probability distribution of the winner of the race that is not conditioned on the 

response being correct. For example, consider a letter identification experiment where either A or 

B can be presented as stimuli, and “A” or “B” are the corresponding responses. Suppose that the 

letter A is presented on the screen. Then, if performance is better than chance, on most trials 

channel A wins and determines the response. On some trials, however, channel B wins and leads 

to an incorrect response, “B”. The unconditional density gives the response times distribution of 

the winner of the race, regardless of whether it was A or B, and thus it includes responses from 

both correct and incorrect trials. Similarly, with four channels rather than two, the survivor 

function and the (unconditional) probability distribution of the winner are, respectively: 

 

)()()()()(),,,( tStStStStS DCBADCBAMIN ⋅⋅⋅=       (3) 

 

)()()()()()()()(
)()()()()()()()()(),,,(

tftStStStStftStS
tStStftStStStStftf

DCBADCBA

DCBADCBADCBAMIN

⋅⋅⋅+⋅⋅⋅+

⋅⋅⋅+⋅⋅⋅=
  (4) 

 

Now we are ready to move on from the general case, where A, B, C, and D can be any 

four channels, to our Stroop situation where colours and colour words are the subject of 

processing. Let A be the processing channel of the presented word (with rate VA and criterion 

kA). Similarly, let B, C, and D be the processing channels of the presented colour, non-presented 

word, and non-presented colour, with rates VB, VC, and VD (and criteria kB, kC, and kD), 

respectively. Consider first the congruent condition, say, the word RED printed in red (Rr). A 

correct response (“red”) ensues if and only if the word RED (with rate VA) or the colour red 
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(with rate VB) wins the race. To obtain the conditional probability density function for either 

RED or red winning (‘conditional’ since it is conditioned on the response being correct), we take 

only the first two terms from Equation 4, where the first term correspond to the probability that 

channel A (processing the word RED) satisfies the prescribed criterion but channels B, C, & D do 

not, and, similarly, the second term corresponds to B (colour red), but not A, C, & D reaching 

criterion. We then divide by the over all probability of a correct response, i.e., the probability that 

either RED or red wins, which is given by integrating the numerator from zero to infinity. 

The probability density function (pdf) of a correct response “red” on a congruent trial Rr 

in which either RED or red wins the race is thus given by 

 

∫ ∫
∞

=

∞

=

⋅⋅⋅+⋅⋅⋅

⋅⋅⋅+⋅⋅⋅
=

0 0

|___

)()()()()()()()(

)()()()()()()()()(

t t
DCABDCBA

DCABDCBA
CORwinBorA

dttStStStfdttStStStf

tStStStftStStStftf  (5) 

 

In a similar fashion we can obtain the probability density function of a correct response on an 

incongruent trial, Gr. For Gr, the presented attributes are the word GREEN and the colour red. 

Because the task remains that of colour naming, the correct response is still “red.” As in the 

congruent case, a correct response (“red”) ensues if and only if the word RED or the colour red 

(with rate VB) win the race. Unlike the congruent case, however, the word RED is not presented 

for view, hence it is processed at a slower rate, VC. To obtain the conditional density for either 

RED or red winning, we now take the second and the third terms from Equation 4, and divide by 

their integrals from zero to infinity.  

The probability density function for a correct response “red” on an incongruent trial Gr in 

which either RED (with rate VC) or red (with rate VB) wins the race is 
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∫ ∫
∞

=

∞

=

⋅⋅⋅+⋅⋅⋅

⋅⋅⋅+⋅⋅⋅
=

0 0

|___

)()()()()()()()(

)()()()()()()()()(

t t
DCABDBAC

DCABDBAC
CORwinBorC

dttStStStfdttStStStf

tStStStftStStStftf  (6) 

 

Using the probability density functions for the congruent and incongruent RTs in 

Equations 5 and 6, respectively, one can simulate the model or fit it to data, as I report next. 

Before moving on to the results the reader may have noticed at this point two interesting 

properties of the model: first, it explains Stroop effect as the difference between RTs for 

incongruent versus congruent displays. Thus, it has no separate mechanism for ‘interference’ 

(slowdown on incongruent trials compared with neutral trials) and ‘facilitation’ (faster responses 

on congruent trials compared with neutral trials). I shall address this point in the final section the 

paper. Second, the model is ‘error-driven’, meaning that it requires errors in order to manifest a 

Stroop effect. Namely, for a Stroop effect to ensue in the current regime, the (irrelevant) 

presented-word channel has to occasionally win. On congruent trials this will lead to faster 

responses via the redundant target effect, but on incongruent trials, such as GREEN in red, if the 

GREEN channel wins then the outcome is an erroneous “green” response. Thus, an important 

prediction of the model is that human performance in the Stroop task is imperfect. A related 

prediction then follows: the presented-word channel winning results in incorrect responses on 

incongruent trials, but correct responses on congruent trials. Therefore, the model predicts a 

higher error rate on incongruent compared with congruent trials. Finally, the most important 

prediction of the model was iterated before, here and in many other papers: response times on 

congruent trials are predicted to be faster than incongruent trials (the Stroop effect). 
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In the next section I test the above predictions by examining the Stroop data collected by 

Eidels, Townsend, and Algom (2010). I consider RTs, error rates, and their relationships. I then 

report results of fitting these data to the generic form of the new model (Equations 5 and 6). 

 

Results 

 Eidels, Townsend, and Algom (2010; Experiment 4) presented 22 participants with a 

standard Stroop task, where they had to classify the print colour of the colour-words RED and 

GREEN by pressing one key if the colour was red and another key if the colour was green. 

Conveniently, this stimulus ensemble perfectly matches the 2 colours x 2 words stimulus set-up 

presented earlier in the Model section (and in Figure 1), making these data readily available for 

fitting. 

Response-Time Stroop Effect 

 One participant (#18) had an error rate of 31% and was excluded from analysis. Table 1 

presents individual data for each of the remaining 21 participants as well as their average. For the 

data pooled over the participants, there was a large Stroop effect of 32.9 ms [t(20)=6.1, p<.001]. 

Positive Stroop effects were observed for virtually all participants except for Participant 4.  

Error Rates  

 The Stroop effect for error amounted to 1.2% [t(20)=2.4, p<. 05]. In line with the model’s 

prediction, more errors were observed in the incongruent condition compared with the congruent 

condition. This pattern holds at the individual level for most participants (only four out of 21 

observers exhibited higher error rate on congruent trials). Evidently, the majority of the 

participants exhibited some amount of errors, as predicted by the model. 

Stroop Effect and Error Rates 
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 Because Stroop effect in the model is driven by errors, the model qualitatively suggests 

that RT and error measures will be positively correlated. Since the proposed model is offered as a 

challenge to existing theories rather than as a comprehensive new theory, there is no space for an 

exhaustive meta-analysis of Stroop and error rates. Nevertheless, examining the RT-error 

relationship in the limited data-set I have surveyed so far can be proven useful. Indeed, there was 

a small (though non-significant) positive linear correlation between the magnitude of the Stroop 

effects and error rates (both averaged across conditions), rPearson=.201, p=.19. When converted to 

a rank-order scale, to account for the non-linear relationship between RT and accuracy (e.g., 

Luce, 1986) this correlation was stronger and close to significant, rSpearman=.303, p<.1.  [Table 1] 

 

Table 1 

Mean RT (ms) and error rate from Eidels, Townsend, and Algom (2010), Experiment 4. 

Participant 

number 

Mean RT 

Incongruent 

Mean RT 

Congruent 

Stroop 

effect 

% error 

Incongruent 

% error 

Congruent 

1 621.0 581.1 39.9 * 8.6 4.7 

2 400.2 389.8 10.4 1.6 1.6 

3 528.4 498.5 30.0 ** 0 0 

4 476.9 477.5 -0.6 1.6 1.6 

5 501.0 481.1 20.0 0 0 

6 537.1 478.9 58.3 * 3.9 6.3 

7 493.5 483.7 9.8 1.6 0 

8 582.5 557.9 24.6 0 0.8 

9 420.5 379.3 41.2 ** 3.9 0.8 
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10 534.2 519.0 15.2 0 0 

11 453.6 418.0 35.6 * 5.5 7.0 

12 463.5 443.9 19.6 2.3 3.9 

13 464.5 435.4 29.1 9.4 5.5 

14 515.6 505.2 10.5 3.1 1.6 

15 556.8 511.8 45.1 ** 7.0 0.8 

16 480.6 425.3 55.3 ** 9.4 2.3 

17 590.8 561.4 29.5 * 3.9 0.8 

19 563.2 494.2 69.0 ** 2.3 2.3 

20 584.2 507.7 76.6 ** 3.9 0.8 

21 871.8 771.6 100.3 ** 1.6 0.8 

22 408.7 404.0 4.7 3.1 3.1 

Means 502.2 469.3 32.9** 3.3 2.0 

* Significant at p<.05 

** Significant at p<.01 

 

Model Fitting 

 To fit Eidels et al. (2010) Stroop data I used the likelihood functions of the new model, 

given in Equations 5 and 6. Notice that the likelihoods (the expression in the numerator) are 

specified in general terms, as f(t) and S(t). Therefore, for the actual fitting one can substitute f(t) 

and S(t) with comparable functions from practically any parametric process model that accounts 

for accumulation of evidence within independent channels. I have chosen to use the Linear 

Ballistic Accumulator (LBA; Brown & Heathcote, 2008), for two main reasons. First, because of 
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its analytical tractability, which makes it simple to use and relatively easy to fit. Second, because 

unlike several other successful choice-RT models (e.g., the Leaky Competing Accumulator, 

Usher & McClelland, 2001), accumulation of evidence within each channel is completely 

independent of whatever happens in other channels. This, of course, is the trademark property of 

the model I developed here, and must be satisfied when fitting the data. A brief description of the 

LBA and fitting procedure follows, succeeded by fitting results. 

The LBA assumes that evidence about a decision (say, whether to press the “red” key) is 

accumulated, at some rate, until it exceeds a prescribed threshold. On each trial, the initial level 

of evidence in an accumulator is drawn from a uniform distribution with a zero minimum and a 

maximum determined by the parameter A. The accumulator’s rate is drawn from a normal 

distribution with mean v and standard deviation s. Evidence in the accumulator increases linearly, 

at a speed given by the drift rate, until it reaches a response threshold determined by parameter b. 

RT is the time taken for the evidence to reach threshold plus non-decision time, or base time, 

which we model as a constant, t0. The latter component represents the time consumed by early 

sensory processes as well as by response preparation and execution. Overall then, the behavior of 

each accumulator is controlled by five parameters. Brown and Heathcote (2008) derived closed-

form solutions for the cumulative density, F(t), and density, f(t), of the time taken for a single 

accumulator to reach threshold. By plugging these expressions into Equations 5 and 6 [recalling 

that S(t)=1-F(t)], one can obtain the necessary likelihood functions for congruent and incongruent 

RTs in the Stroop task. 

 To model the Stroop task used by Eidels et al. (2010) the LBA instantiation should have 

four channels (presented word, presented colour, non-presented word, and non-presented colour), 

with five parameters each. To simplify the fitting, I have employed a couple of conventions used 

by Eidels, Donkin, Brown, and Heathcote (2010). First, I treated the s parameter as a scaling 
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factor and fixed it at s=1. Second, I assumed that the A and t0 parameter values are identical 

across the four accumulators. Thus, I ended up with ten free parameters: A, t0, four mean-rate 

parameters (one for each channel: VA, VB, VC, and VD ), and four criteria (kA, kB, kC, and kD).2 

 Table 2 shows the best fitting parameter-values for Eidels et al. data, using maximum 

likelihood estimation. The values in the top row were estimated by pooling the data from all 21 

participants into a single set, and treating the set as if it came from a single participant. This is 

essential because for some participants error rate was low, with only few error data-points to rely 

on. I then used the best fitting parameter values from this ‘super-set’ as starting values for the 

parameter-space search when fitting individual data. The bottom row of Table 2 shows the 

individual best-fitting parameter values, averaged across 16 participants. Participants 3, 5, 7, 8, 

and 10 had a 0% error rate in either one of the conditions (congruent, incongruent), or both, and 

had to be excluded from the analysis, as the model cannot accommodate error-free performance.3  

 [Table 2 here] 

 
Table 2 
Best fitting parameter-values for Eidels et al. (2010) Experiment 4 Stroop data. The rate 
parameter, for each channel, represents the mean of a normal distribution from which rates are 
sampled on each trial. The criterion parameter represents the distance between the to-be-
reached threshold and the end of the start-point distribution, A. The base time parameter, t0, 
represents a proportion of the fastest response in a data set. If the fastest measured RT was about 
200ms (depending on the participant), then base time is estimated as 0.84 * 200ms = 168ms. 
 Rates Criterion values Start 

point 
Base 
time 

 VA 
presented 

word 

VB 
presented 

colour 

VC 
non- 

presented 
word 

VD 
non- 

presented 
colour 

kA 
presented 

word 

kB 
presented 

colour 

kC 
non- 

presented 
word 

kD 
non- 

presented 
colour 

A t0 

Pooled 
data 

-1.04 3.03 -1.02 -5.23 0 0.45 0.06 0 0.91 0.84 

Individual -0.30 3.48 -1.53 -6.84 0.33 0.75 0.13 0 0.98 0.65 

                                                 
2 Parameter k is analogous to the distance from the start point to the criterion, which is denoted b-a in the LBA 
framework. To be consistent with the more general notation used earlier in the Model section I use k instead of b-a. 
3 For participants 5 and 10 the model compensated for the lack of errors by assigning kC values (criterion for the non-
presented word channel) that were four and seven orders of magnitude larger than other participants’ values. For 
participants 3, 7, and 8, there were smaller irregularities but in more than one parameter.  
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data 
average 
(std error) 

(0.26) (0.28) (0.76) (0.57) (0.18) (0.21) (0.05) (0.00) (0.29) (0.09) 

 

 At first inspection, some of parameter values in Table 2 may look alarming, so a 

clarification is needed. First, the V parameter represents the mean of a normal distribution from 

which rates are drawn on each trial. Thus, negative values do not mean that the actual 

accumulation rate is negative. Nevertheless, on many trials the actual rate in certain channels may 

have been negative. That is not a problem as long as at least one of the channels accumulates 

evidence at a positive rate, which is almost always the case. Notice that this channel will often be 

the presented-colour channel, which leads to a correct response, in compliance with the task’s 

instructions. Second, the zero values for the k parameter are also not a problem. This parameter 

represents the distance between the to-be-reached threshold and the end of the start-point 

distribution, A. since the start point values are drawn from a uniform distribution ranging from 

zero to A, there is only a miniscule chance that the actual distance will be zero. In fact, the 

expected value of the start point is A/2, so the average distance given k=0 should be A-A/2 =A/2. 

 Importantly, for interpreting the fitting results, all rate and criterion parameters, as well as 

A and t0, were allowed to vary freely. Thus, instead of imposing any constraints or assumptions, I 

let the data tell the story. A close examination of Table 2 reveals interesting patterns. First, 

parameter estimates from the pooled data, and these estimated for individual participants and then 

averaged are in close qualitative agreement. Second, the rate for the presented-colour channel 

was higher than any of the other rates. This is sensible in a Stroop task, where participates’ are 

asked to report the presented print-colour. The presented-word rate was also larger than (or equal 

to) the rates of the non-presented channels. This is also sensible in this model since this channel 

has to win on some trials to contribute to a Stroop effect. Thus, although channel rates were free 
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parameters, higher rate-values were estimated for presented channels compared with non-

presented channels, in complete agreement with the assumption entertained in the Model section. 

 The relative magnitudes of the criterion-values provide a more intricate picture. The 

criterion value for the presented-colour channel was higher than any of the other channels. It is 

possible that through the complex dynamics of the LBA model, rates and criterion values trade-

off in a way that is difficult to predict. In this case, the fact that the rate for presented colour was 

much higher than any other rate might mitigate the high criterion-value estimated for this 

channel. Finally, while fitting the model to data generally resulted in sensible parameter values, 

parameters became distorted when trying to capture data patterns they cannot really manage 

(namely, 0% errors). Thus, the model can accommodate data from most, but not all participants.4  

The theoretical weight of the present outcomes invited replication and generalization. To 

reinforce the conclusions, I have simulated (numerically computed, to be exact) the general 

model presented in Equations 5 and 6 using alternate expressions for f(t) and S(t).  Instead of 

plugging in the f(t) and S(t) expressions of the LBA model, I assumed that completion times in 

each of the channels are Gamma distributed. The latter is a convenient test case (see, e.g., 

Townsend & Ashby, 1983) as it has two parameters akin to rate and criterion. Using f(t) and S(t) 

of a Gamma distribution I have tested a wide range of rate and criterion values and found that a 

considerable subset of the parameter combinations that satisfy the rate assumption led to a 

positive Stroop effect (96,229 out of the 200,880 parameter combinations). Full details are 

provided in the Appendix.  

 
                                                 
4 How do we know if the model can accommodate the data? What are sensible parameter values? Because I do not 
compare several models, measures such as deviance or BIC are not very helpful. A useful strategy is to plug the best 
fitting parameter values back in the model, simulate it, and test whether the model can reproduce the important 
qualitative patterns that were observed in the empirical data. Using the pooled-data parameter values from Table 2, 
the model successfully recovered a positive Stroop effect in mean RT (albeit smaller than observed empirically) and 
in error rate, accompanied with high, yet imperfect accuracy (2.6% errors). 
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Conclusions 

I proposed and tested a new model for the Stroop effect, in which colour and word are 

processed in parallel and completely independent channels. Model fitting to empirical data and 

subsequent simulations show that the model can produce the Stroop effect (along with high 

accuracy rates), at least for a subset of parameter values. Thus, it provides a proof of existence for 

a separate-channel theory, and a challenge to many existing theories. 

The theoretical implications are nothing less than startling. Given the present results, the 

Stroop effect cannot be exclusively viewed as the inevitable outcome of word-colour conflict. In 

many an occasion, it may simply be an instance of the redundant target effect by which the 

congruent (i.e., double-target) stimulus enjoys the benefit of target redundancy over the 

incongruent (single-target) stimulus. Faster responses for the former merely reflect the activation 

gained from processing channels of two presented attributes as opposed to processing just one.  

One must be circumspect though before drawing too strong conclusions. Although a 

substantial part of the parameter combinations that were used in the simulations produced the 

behavioral Stroop effect, a smaller subset produced the high accuracy rates observed often in 

experimental data (see Appendix). Note also that I did not demonstrate that other more traditional 

models of the Stroop effect are incorrect; I have merely shown that, under realistic conditions, the 

effect can emerge based on completely independent processing of the colour and the word.  

In its present form, the independent-channels model concerns the Stroop effect, namely, 

the difference in performance between incongruent and congruent stimuli. However, a third class 

of stimuli is often presented in Stroop experiments, non-colour words in colour. Considering 

performance with these neutral stimuli, the Stroop effect is conveniently divided into interference 

(the difference in performance between incongruent and neutral stimuli) and facilitation (the 

complementary difference in performance between neutral and congruent stimuli). Again, the 
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present development concerns the Stroop effect -- as do the majority of existing Stroop theories 

(cf. Brown, 2011; Melara & Algom, 2003; MacLeod, 1991) -- and not the components of 

interference and facilitation. The reason is that (a) it is not clear which stimulus qualifies as a 

neutral one (MacLeod, 1990), that (b) a vast variability is observed with different types of neutral 

or control stimuli (Brown, 2011), and that (c) it is not prima facie clear that such stimuli belong 

in the Stroop realm in the first place (Eidels et al., 2010). 

Nevertheless, how does the present model account for the often found difference in 

performance between the neutral and the incongruent conditions favoring the former (but see 

Algom, Dekel, & Pansky, 1996, Melara & Algom, 2003 or Melara & Mounts, 1993, for the lack 

of interference or a reverse pattern)? In the present model, strain on capacity with incongruent 

stimuli is the root cause for the longer RTs observed (in comparison with neutral stimuli). With 

an incongruent stimulus, the observer must process (at least) four pieces of information (the 

presented and non-presented colours as well as the presented and non-presented words), whereas 

she or he processes merely two pieces of information (presented and non-presented colour) with 

neutral stimuli. As Townsend and colleagues have proved (Townsend & Ashby, 1983; Townsend 

& Eidels, 2011; Townsend & Wenger, 2004), the presence of multiple signals can facilitate 

performance (the redundant target effect), but can impair performance especially as the number 

of signals increases. The limitation on capacity is expressed as longer RTs with incongruent 

stimuli (cf. Ben-David & Algom, 2009).  

A comprehensive Stroop theory should explain further pertinent phenomena such as the 

reduction in the Stroop effect when word and colour are spatially separated (Wuhr & Frings, 

2008), Stroop dilution (Kahneman and Chajczyk, 1983), or practice effects (Melara & Mounts, 

1993). The current model is offered as a challenge to the central claim of many existing Stroop 

theories -- that word must interact with colour processing -- and provides a proof of existence for 
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a completely independent model of processing. The model should be augmented in various ways 

in future development (for example, by adding a memory-decay function it may account for 

practice and other sequential effects) as long as the basic architecture remains that of parallel 

independent channels.  

 In conclusion, I showed that a parallel race model with four independent channels can 

generate the Stroop effect. The model leads to the surprising result that what appears as 

“interference” or “facilitation” at the behavioral level may actually be sustained by completely 

separate processes at the underlying microscopic level. Because I do not postulate a processing 

conflict to stand for an apparent behavioral conflict, the theory is favored by applying Occam’s 

razor. The theory serves as a yardstick against which theories assuming actual interaction in 

processing must be measured and compete. 
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Appendix: numerical computations of the Stroop effect 

 

To reinforce the results reported in the main text using the LBA model, I have simulated 

the same general model (Equations 5 and 6) using f(t) and S(t) expressions of a Gamma 

distribution. This distribution is convenient to use in RT modeling in general and here in 

particular, since it has two parameters akin to rate and criterion. 

In order to estimate numerically the Stroop effect the model can generate, one first needs 

to compute the probability distribution functions and survivor functions in each channel, and 

insert them then into Equations 5 and 6. From there, it is trivial to estimate the expected value of 

processing time on congruent and incongruent trials and calculate their difference – the Stroop 

effect. The probability distribution functions and survivor functions of a Gamma distribution for 

channel A (presented word) are given, respectively, by 
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where VA is the scale parameter (corresponding to the processing rate of channel A), and kA is the 

shape parameter (corresponding to the criterion value of that channel). We can similarly compute 

probability distribution functions and survivor functions for the other channels by using their 

corresponding rates and criteria. 
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I numerically computed the Stroop effect, using Gamma distributions, for a range of 

values that satisfied the assumption concerning the relative magnitude of the rate parameters. I 

allowed the rates for the presented word channel, VA, and for the presented colour channel, VB, to 

take any value between 1 and 11 (due to memory constraints I used steps of 2, i.e., 1, 3, 5 …11). I 

allowed the rates for the non-presented word and colour channels, VC and VD, to take any value 

between 1 and 11 (in steps of 2), as long as they were smaller than MIN (VA, VB). So, the 

possible values for rate across the four channels were, 11 ≥ VA, VB > VC, VD. The values of 

criterion were assigned, in steps of 2, such that 12 ≥ kA, kB, kC, kD ≥ 2.5 

On a considerable number of cases (96,299 out of 200,880 parameter combinations) the 

expected processing time of a congruent stimulus was faster than that of an incongruent stimulus, 

thus manifesting a positive Stroop effect. 

What is truly revealing about these results is the fact that the Stroop effects are obtained 

in the environment of a strictly parallel, independent model. One can say that within the parallel 

independent race of colour and word, the colour horse knows neither the position nor indeed the 

very existence of the word horse (and vice versa). Given the absence of cross talk, word and 

colour cannot interact. In these cases, the terms “Stroop interference” or “Stroop conflict” are not 

interpretative of any underlying process.   

I note though that only a subset of the tested parameter combinations led to a positive 

Stroop. When one imposes the additional constraint of high accuracy [say, P(correct) > .9 on both 

congruent and incongruent trials], this number further decreases (to 3,635 combinations). 

Nevertheless, the present outcome comprises a proof of existence for the possibility of a Stroop 

effect in the absence of channel cross talk for a variety of reasonable set parameters. 

                                                 
5 I did not use criterion values of 1, since the Gamma probability distribution is then reduced to an exponential form, 
which does not permit an important distinction between a co-active and an independent race model (see Eidels, 
Townsend, & Algom, 2010, for details). 
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