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Fundamental Performance Limitations of 
Modulated and Demodulated Control Systems 

K. Lau* , G.C. Goodwin* R.T. M'Closkey** 

Abstract- We consider feedback performance limitations 
for modulated and demodulated control systems whose base 
system9 have non-minimum phase (NMP) zeros or unstable 
poles. We first derive a transfer function for the modulated 
system and then show how the poles and zeros of this function 
are related to those of the base system. We next analyse 
the behaviour of the poles and zeros, when the modulation 
frequency is varied. Bode and Poisson Integral constraints for 
the modulated system are then considered. The effect of a base 
system delay is also discussed. 

Keywords: Performance limitations, linear systems, con- 
trol applications, poles and zeros 

I. INTRODUCTION 

It has been well documented that open loop unstable 
poles, non-minimum phase (NMP) zeros and delays imply 
various constraints on the achievable closed loop perfor- 
mance for linear feedback control systems. Detailed discus- 
sions on time and frequency domain integral constraints, 
their relationship, and implications for controller design 
may be found in [l]  and 121. 

In this paper, we consider feedback control of modulated 
and demodulated systems of the type shown in Fig. 1. Here, 
G(s) denotes the transfer function of a linear system and 
do(t) represents an output disturbance. The input to G(s)  
is coswot modulated (i.e., multiplied) by u(t). The output 
is demodulated by correlating it with cos(wot + 4) (where 
4 is an appropriate phase shift) and passing the resulting 
signal through a low pass filter F(s ) .  We refer to G(s) as 
the base system. 

CWSWOf 

Base System Harmonic Filter 

Fig. 1. Block diagram of modulated and demodulaled system 

Modulated and demodulated control systems are met in 
certain spec& applications. An early example of a modu- 
lated control system is the 'envelope feedback for a radio 
frequency transmitter' discussed in [3, Sect. 19.31. More 
recent examples of modulated and demodulated systems 
include vibratory microgyroscopes, such as those described 
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in 141 and [51, and rotating gravity gradiometers'. The drive 
control loop for the gyroscope described in [9] provides a 
motivating example for the study of modulated control sys- 
tems. The purpose of this loop is to maintain an oscillation 
at the resonant frequency of the device. It has been shown 
[IO] that the automatic gain control (AGC) scheme used to 
achieve this is an example of a modulated and demodulated 
control system. We r e m  to this example in our discussion 
of delays in Sect. V-A. 

Our focus in the current paper is on feedback perfor- 
mance trade-offs for modulated and demodulated systems. 
In particular, we will be concemed with the limitations 
imposed by open right half plane (ORHP) poles and zeros 
of G(s) .  The effect of a base system time delay is also 
considered. In Sect. 11, we derive a (approximate) transfer 
function for the system in Fig. 1, and in Sect. 111, we give 
example time responses. Sect. 1V contains results on the 
behaviour (as wo is varied) of the poles and zeros of this 
transfer function. In Sect. V, we use these results in the anal- 
ysis of closed loop performance limitations for modulated 
systems. We pay particular attention to the implications of 
Bode and Poisson type integral formulae for these systems. 

A .  Noiation 
In this paper, arg t denotes the argument and Argz 

denotes the principal argument of z. Thus, -K < Argz 5 
K. f(z:) is used to denote limz-s: f(z). f(z;) is defined 
similarly. Upper case is often used to denote the Laplace 
transform of a signal. 

11. GENERAL SYSTEM DESCRIPTION 
We return to the modulated and demodulated system 

shown in Fig. 1. We note that q4 is a function of wo defined 
by $(wo) = Arg[G(jwo)]. However, we omit the argument 
of 4 when it is clear from the context. 

Assumptions 
The following assumptions are made: 

1) u( t )  is a band-limited signal having bandwidth Wb 

rads  (by this we mean that lU(jw)( is small for w > 
wb). 

2) WO > Wb. 
3) juo is not a pole or zero of G(s)  (i.e., q4(w0) is well 

4) F ( s )  is a low pass filter which rolls off between Wb 

5 )  F ( s )  has no poles or zeros in the closed right half 

defined). 

and 2w0 - wb. 

plane (CRHP). 

'See, for example, [6] ,  171, [SI. A description of the Bell rotating 
gradiometer can also be found at http://www.belIgeo.com under the 
heading 'FTG'. 
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Note that the role of F ( s )  is to significantly reduce the 
demodulated output components appearing at the base fre- 
quencies shifted by 2wo relative to the base frequencies. 

For any U which stabilises the modulated system, it is 
readily seen that Y f ( s )  is given by 

F ( s )  [c,(s,wo)U(s) + [e-jQG(s + j w o ) U ( s  + 2jw0)  
1 

+e+jmG(s - j q ) U ( s  - Zjwo)] + Df(s) ,  J 
where 

1 
2 

G,(s,wo) = - (e - j+G(s  + j w o )  + eJmG(s - j q ) )  

and D,( s )  = (e-jmDo(s + j w o )  +ejQDo(s - jwo) )F(s ) .  
We note that Assumptions 1, 2 and 4 imply that 

F ( j w ) U ( j w f 2 j w o )  F= 0, and so we can safely approximate 
the output response as 

yf(t) -2-’{U(s)Gm(s,wo)F(s) + o f ( s ) } .  

It follows that the modulated system has an approximate 
transfer function of G,(s,wo)F(s). It is clear that the 
fidelity of this model for the modulated system will depend 
on the fidelity of the base system model G at the frequencies 
between wo - wb and wo + wb (i.e., the baseband shifted by 
WO). 

The following example clarifies the relationship between 
~ m ,  ~f and Gm. 

111. EXAMPLE TIME RESPONSES 
Consider the following base system: 

s - 1  
(s + 5)(s + 10) 

G(s) = 

Suppose that this system is modulated at wg = 7 rads. Then 

cos(0.15)(s2 + 1.71s + 66.94)(s + 11.22) 
(s2 + 10s + 74)(s2 + 20s + 149) Gm(s, 7 )  = 

89.13 Let F ( s )  = 
s4 + 8 . 0 3 ~ ~  + 3 2 . 2 3 ~ ~  + 75.80s + 89.13 

( F ( s )  is a fourth order Butterworth filter with a cutoff 
frequency of approximately 3.1 rads) and let U ( s )  = 
F(s) / s .  

2 4 6 8 

Fig. 2. Step response (modulated plant output ym) 

Fig. 2 contains plots of the modulated output y,(t) and 
the filtered output yf(t) the system in Fig. 1. The output 
of G, (i.e. P1{G,(s,7)U(s)}) is also shown. It can 
be seen that the output of G, is the envelope of y,(t), 
and that yf ( t )  is an approximation of the envelope filtered 
by F ( s ) .  We note that the slight ‘delay’ observed in yf(t) 
relative to the output of G, is due to the phase shift of the 
low pass filter. 

IV. POLES, ZEROS, AND DELAYS 
Since F ( s )  is assumed to be stable and minimum phase, 

the feedback performance limitations of the modulated 
system are determined by G,(s,wo), especially its poles, 
zeros and delay. In this section, we analyse the behaviour 
of the poles, zeros and delay of G,(s, W O )  as functions of 
the modulation frequency WO. We note that this section is 
a condensed version of [IO, Sect. 41. Proofs of the results 
and illustrative examples are given in [lo]. 

Suppose that G(s) = N ( s ) / D ( s ) ,  where N ( s )  and D ( s )  
are polynomials with real coefficients. We assume that N ( s )  
and D ( s )  are coprime and can be written as N ( s )  = 
~ ~ , ( s - t ; ) a n d D ( s ) = ~ ~ = , ( s - p ; ) , w h e r e t ; ,  ~ ; E C  
and Re [ti] # 0. We also assume that r = n - m > 0, i.e., 
that G(s) is strictly proper. Then 

where N,(s,wo) = e- jQN(s  +jwo)D(s  - j w o )  

+ ej+N(s - j w o ) ~ ( s  + j w o ) ,  (2) 
and D,(s,wo) = D(s+jwo)D(s - jwo) .  (3) 

We note that N,(s,wo) and D,(s,wo) may have com- 
mon factors for some modulation frequencies. However, 
we will show that this occurs only at isolated values of 
WO. Hence, the zeros of D,(s,wo) will, in the sequel, 
be referred to as the poles of the modulated system (or 
of G,(s,wo)). Similarly, the zeros of N,(s,wo) will be 
referred to as the zems of G,(s,wo). 

A .  Poles 
An immediate consequence of (3) is the following: 

Lemma IV.1 For each wg E R, the zeros ofD,(s,wo) are 
given by s = p;  f jwo for i = 1, ..., n. 

Remark I We thus see that the poles of the transfer func- 
tion G,(s,wo) are simply shifted forms of the poles of 

0 G(s). This is a straightforward connection. 

B. Zems 
Determining the zeros of N,(s,wo) is, in general, more 

difficult.* We can, however, gain some insight into the 
location of the zeros by analysing the limiting behaviour 
of the zeros as wo + 0 and as WO + 03. We first note 

lWe note that the System in Fig. I is a periodic system. Hence, 
the relative degree of the system can be determined f“ [11, Det 31. 
However, the results in [I I ]  on computing zeros cannot be applied 0 this 
system because it does not have a uniform relative degree. 
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that, for a given WO, N,(s, W O )  is a polynomial in s. Thus 
N,(S,WO) can be written as 

Since N,(a,wo) is real V a E R, the coefficients ci(w0) 
are real functions of WO. It is also clear that ci is continuous 
at w0 = WI if j w ,  is not a pole or zero of G(s). 

Suppose that V wo E (wl, wz) ,  j w o  is not a pole or zero of 
G(s) and the degree of N,(s,wo) is M .  We let the zeros 
of N,(S,WO) be denoted by ~ ( w o ) ,  i = 1 ,..., M .  Then 
N,(s,wo) can also be expressed in the following form: 

M 

~ m ( s , w O )  = C M M W O )  n(s C(w0)). ( 5 )  
i=l 

Since the coefficients of N,(s,wo) are continuous on 
(wlr wz), the zeros of N,(s,wo) are also continuous func- 
tions of W O .  

Since N ( s )  and D ( s )  are monic, it follows from (2) that 

Cn+m(WO) = 2 COS #(WO). (6) 
Equation (6)  implies that the degree of N,(s, W O )  will be 
< n + m whenever I ~ ( w o ) ~  = 5~12. However, as stated in 
the following lemma, the degree cannot be < n + m - 1. 

Lemma IV.2 For each wo > 0, the degree of N,(s, W O )  is 

m+n  if Id(wo)l # 5~12  
and m + n - 1 if I4(wo)I = 7112. 

The following lemma describes the behaviour o f t ,  i = 
1, ..., M as WO i w+ We note that the lemma is stated for 
the case of wo t w1 but clearly also holds for the case of 
WO + w;. 

Lemma IV.3 Consider the polynomial (in s )  de$ned by 
(4). Let M be the degree of N,(s, W O )  as WO approaches w1 
from above. Suppose that c,(w:) isfinite V i and let M‘ 5 
M be the degree of N,(s,w:). Then as WO + w:, M‘ of 
the zeros of N,(s,wo) tend to the zeros of N,(s, w:). I f  
M - iW‘ = 1. then the remaining zero tends to w or -w. 

Lem. IV.2 and Lem. IV.3 imply that if 14(wo)l = a12 at 
WO = WI, then n+m-1 of the zeros are continuous at wo = 
WI and the remaining zero tends to w or -w as WO i w: 
or w;. We also note that if G(s) has a pole or zero of 
multiplicity ml at j w ~ ,  then c,(wf) = -c;(w;) if ml is 
odd and ci(w:) = c i (w; )  i fml  is even. Thus, provided that 
CM(W:) # 0, there exist M continuous functions ci(w0) 
which satisfy ( 5 )  in the neighbourhood of ul. 

We are now in a position to present two important results 
on the zero loci of the modulated system. These describe 
the behaviour of the zeros as wo + 0 and as wo t CO, 

respectively. 

Theorem IV.4 ( a )  Let w1 > 0 be chosen s.t. N,(s, wo) 
has degree M on (0 ,w l ) .  Let p be the number of 
singularities (i.e., poles or zeros of G(s))  at the origin, 

5‘ 

and let the sets of zeros andpoles of G(s) be denoted 
by 2~ and Pc. respectively. Also let 

2, = {Ci(0+) : ICi(0+)l # C0,i = I, ..., M }  
and 21 = {ro : N,(zo) = O},  (7) 

where N,(s) = #’(O+)N(s)D(s) - N’(s )D(s )  + 
N(s)D’(s).  Then 

2, U P,> 
21 3 

if p is even, 
if p is odd. E o =  { 

(b) Suppose that p is even, and a is a pole or zero (of 
G(s)) of multipliciry m,. Let <,(O+) = a for i = 
1, .._,ma. Then the following limits: 

lim C ( W 0 )  - , i = l , . . . ,  m, (8) 
wo-o+ WO 

are distinct and are given by 

f o r k  = 1, ..., mm. 

Remurk 2 Let the limit (8) be denoted by (I. Thm. IV.4(b) 
implies that mar ( p  even) or m, - 1 (p  odd) of the ( i ’ s  are 
real and non-zero. It follows that the angle of departure of 
each of these loci is 0 or R. If p is odd then there is exactly 
one value of k s.t. &(O+) = a and CL = 0. If a is real 
then G also has an angle of departure of 0 or R because 

0 complex zeros must occur in conjugate pairs. 

Next we consider the case wo t 03: 

Theorem 1x5 ( a )  Let qi(w0) = Ci(wo)/wo for WO > 0. As 
WO -+ M, 2m of the zeros of N,(s, W O )  tend to .zi + jwo 
and xi - jwo, i = 1 ,  ..., m. 
(b )  I f  r is even, then the remaining zeros satisfv the 

following condition: 

I f r  is odd, then r - 1 of the remaining zeros satisfv the 
following condition: 

lim qi(w0) = - t an  , k = 1 ,.._, r - 1, 
WO” 

and thejinal vi tends to w or -W. 

For almost all WO > 0, the zeros and poles of G,(s,wo) 
will be the same as the zeros of N,(s,wo) and D,(s, W O ) ,  

respectively. However, at isolated values of W O  we may have 
‘pole-zero’ cancellations as stated in the following lemma. 

Lemma 1x6 For each w1 > 0, N,(s,wl) andD,(s,wl) 
have a common zero iff  3 k ,  1 E 11, ..., n} s.t. 

pi = P* + 2 . h .  (10) 
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Let mi denote the multipliciry of p i  for i = 1, ..., n. I f w i  > 
0, and condition (IO) is satirfied, then N,(s,wl) has at 
least min{mk, ml} zeros at pk + jw ,  = p i  - $1. 

Remark 3 We have thus seen that the zeros of the transfer 
function G,(s,wo) are, in general, not simply related to the 
zeros of G(s). However, Thm. IV.5 shows that for large WO 

(relative to the location of the poles of G(s)), the zeros of 
G,(s,wo) approach the shifted forms of the zeros of G(s) 
together with some extra zeros which converge to specific 
asymptotes. 0 

Remark 4 The situation described in Remark 3, and for- 
malised by Thm. IV.5, is reminiscent of the zeros of 
unmodulated sampled data systems having zero order hold 
input. We recall that, when expressed in the equivalent 
delta domain [12], the zeros of these systems tend, as the 
sampling rate is increased, to the zeros of the underlying 
continuous time system, together with some extra zeros 
(sometimes called the sampling zeros) which converge to 
specific locations ([13], [IZ]). 0 

C. Delays 
We next consider the impact of delays in the base system. 

The following lemma states that if a linear system is 
modulated and demodulated, then the delay is preserved. 

Lemma y.7 Suppose that G ( s )  = CSTG(s) ,  7 > 0. 
Then G,(s,wo) = e-S‘G,(s,wo). 

D. Summary 
In this section, we have shown that the poles of 

G,(s,wo) are given by pi i jwo. The behaviour of the 
loci of the zeros is more complex. It was found that the 
loci are continuous (on R+) except at points where I ~ ( w o ) ~  
crosses (or touches) ?I 12. At these points, one of the zeros 
‘vanishes’ and the rest are continuous. As WO + 0 the 
zeros tend to the poles and zeros of G(s) when G(s) 
has an even number of integrators (or differentiators), and 
the zeros of @(O+)N(s)D(s) - N‘(s)D(s) + N(s)D’(s)  
when the number of integrators is odd. At high modulation 
frequencies (relative to the location of the poles and zeros 
of G(s)), 2m of the zeros tend to zi + jwo and zi - j w ~  
and the remaining zeros tend to 00 or -00. Finally, it was 
shown that the delay of a system is invariant with respect 
to modulation and demodulation. 

V. IMPLICATIONS ON FEEDBACK PERFORMANCE 
TRADE-OFFS 

The results of the previous section relate the poles and 
zeros of a modulated system G,(s,wo) to the poles and 
zeros of its base system G(s). In this section, we discuss 
the implications of these results on the closed loop control 
of the modulated system when G(s) is nonminimum phase 
(NMP) or unstable (i.e., G(s) has (ORHP) zeros or poles). 
In particular, we consider the performance limitations of the 
feedback system shown in Fig. 3. We replace this system 
by the (approximate) modulated system shown in Fig. 4. 
Note that in this figure, r(t) is the reference signal and 

C(s) is the transfer function of a stable, proper, minimum 
phase controller. For each wo, the loop transfer function 
is L,,(s) = C(s)G,(s ,q)F(s) ,  and the sensitivity and 
complementary sensitivity functions are 

1 
and Ty0(s) = 1 - S,,(s), S,,(S) = ~ 1 + L(s)  

respectively. We note that, since G,(s,wo) and F ( s )  are 
strictly proper, the relative degree of L,, (s) is > 2. 

A .  Delays and Their Effect on the Closed Loop Bandwidth 
It is well known that plant delays imply constraints on the 

achievable closed loop bandwidth. In the case of modulated 
systems it is worthwhile to note that the delay limits the 
bandwidth of the system in Fig. 4 not the system in Fig. 3. 
In particular, the speed of the oscillation at y,(t) (or the 
modulation frequency) is not limited by the delay. However, 
the constraint on the closed loop response at yf implies 
that the speed of response of the envelope of y,(t) is 
constrained. 

Returning briefly to the gyroscope example in the intro- 
duction, we note that in [9], the implementation of the AGC 
scheme introduces a controller delay of the order of 1 ms. 
The above discussion provides an alternative explanation for 
the observation (originally made in [9]) that it is possible to 
regulate the oscillation at fi (= 4.5 kHz) despite the large 
delay. 

B. Impact of Zeros and Delays 
Suppose that G(s) has an NMP zero at Zk. If G(s) has an 

even number (possibly zero) of singularities at the origin, 
then Thm. IV.4(a) implies that G,(s, WO) will have an NMP 
zero near Zk for small WO. It folbws that Two (s) will have a 
zero close to Zk. If G(s) has an odd number of singulanties 
at the origin then these statements hold if the multiplicity 
of z k  is > 1. 

As wo + 03, two of the zeros of G,(s, wo) will tend to 
Zk+jWO and zk-jwo (Thm. IV.5). It follows that G,(s, WO) 
has two NMP zeros when wo is large. If the relative degree 
of G(s) is > 1 then G,(s,wo) will also have at least one 
large NMP zero on the positive real axis. We recall that, if 
&, (wo), i = 1, ..., n, are the NMP zeros of G,(s, WO) and 
7 is the delay of the system, then the right hand side (RHS) 
of the Bode integral for Tw,(s) is given by [Z, Eq. 3.171 

It has been shown that as wo + m, G,(s,wo) will be 
NMP if G(s) is NMP or G(s) has a relative degree > 1. 
However, we note that as wo + m, IC;(wo)l -+ m, and 
so the Bode integral constraint tends to that of a minimum 
phase system. 

C. Impact of Poles 
The poles of G(s)  affect both the poles and the zeros 

of G,(s,wo). We first ohserve that the real parts of the 
poles of G,(s,wo) and G(s) are the same. Hence, if G(s) 
is unstable, then G,(s,wo) is also unstable (unless all 
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Fig. 3. Feedback w " I  loop 

Fig. 4. Equivalent feedback control loop (ignoring high harmonics) 

of the unstable poles of l/D,(s,wo) are cancelled by 
zeros of Nm(s,w0)). Let pi, i = 1, ..., np be the ORHP 
poles of G(s). We note that in the absence of pole zero 
cancellations, the sum of the unstable poles of G,(s, WO) 
is given by 2 x:Zl pi. Since the loop transfer function has 
relative degree > 2, this implies that the RHS of the Bode 
Integral for S,,(s) [Z, Eq. 3.141 is given by 2?r pi. We 
note that this expression is independent of the modulation 
frequency. 

Suppose that G(s) has an unstable pole at p k .  Thm. IV.4 
implies that, for small wo, the effect of p k  on the zeros 
of Nm(s,wo) is identical to that of an NMP zero. Hence 
the remarks on the effect NMP zeros at low modulation 
frequencies also hold for unstable poles. 

If G(s)  has an even number (# 0) of integrators (or dif- 
ferentiators) then Thm. IV.4(b) also implies that G,(s, WO) 
will have a small nonminimum phase zero for small w0. 

D. Pole-Zero Interactiom 
Unstable poles of G(s) may also cause approximate pole- 

zero cancellations (in the ORHP) in the modulated system. 
In particular, an approximate cancellation will occur when 
WO is small and c;(O+) = pk'for some i, or when wo is 
close to the resonant frequency of a conjugate pair of poles 
of G(s) (Lem. IV.6). Thus, in these cases, large peaks in the 
closed loop sensitivity functions will be unavoidable as the 
RHS of the Poisson Integrals for S,,(s) and T,,(s) will 
be large [Z, Thms. 3.3.1 and 3.3.21. This implies that if 
the modulation frequency is 'small' relative to the unstable 
poles, then there will be large peaks in the sensitivity 
functions [Z, Con. 3.3.3 and 3.3.41. Since the bandwidth 
of the closed loop is limited by the modulation frequency, 
this is consistent with the known result that the bandwidth 
should be large relative to the open loop poles. 

We observe that as WO --t 03, the poles and zeros of 
G,(s,wo) are the poles and zeros of G(s) shifted by j w o  
and -jq. G,(s, WO) also has T additional zeros which tend 
to 03 or -03 along the real axis (Thm. IV.5). Now suppose 

that q(w0) is a zero of G,(s, WO) and that q(w0) + zt-jwo 
or q(w0) + 03. Then 

(Pk +jWO) - duo) = 1. 
(pk - jW0) + q(W0) 

iim I 
On the other hand, if q(w0) + Zk + jwo, then 

It follows that as WO + 03 

log lB~~o((Q(wO))l  + logIBil(Zk)lr 

where Bs,,(s) and Bs(s) are the Blaschke products [Z, 
Eq. (3.26)] for the modulated system and the base system, 
respectively. This implies that the RHS of the Poisson 
integral for S,,(s) tends to that of the base system. Since it 
is also true that log lB;:o (pk  +jw0)1 + log IB;'(pk)l, and 
the real parts of the poles and the delay of G,(s,  WO) are 
the same as those of G(s), the RHS of the Poisson integral 
for Two (s) also tends to that of the base system. 

We note that if q(w0) = Zk+jwO, then as WO is increased, 
the peak in the weighting function in the Poisson Integral 
for S,,(s) shifts to a higher frequency. This implies that, 
at high modulation frequencies, if log li3F:o (Zk + jwo)l % 

log IB;'(zk)l, then the lower bound on the peak sensitivity 
(given in Cor. 3.3.3 of [Z]) decreases as wo is increased. 
In a similar manner, it can be shown that the lower hound 
on the peak complementary sensitivity increases as wo is 
increased. 

We illustrate these ideas by a simple example, 

Example 1 
Let 

s - 5  
G(s) = 

( s  - 0.2 + 0.2j)(s - 0.2 - 0 . 2 j )  ' 

In this case, G,(s,wo) has four poles for wo > 0 and for 
WO # wz = 0.29 it has three zeros. At WO = w., G,(s,wo) 
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has only two zeros. All of the poles are unstable, and two 
of the zeros are NMP. The third zero is NMP for wo < wz 
and minimum phase for WO > wZ. At WO = 0.2, there is 
an unstable (ORHP) pole-zero cancellation at s = 0.2. The 
RHS of the Poisson integrals for S,,(s) and T,,(S) are 
plotted against WO in Figs. 5 and 6, respectively. We note 
that in Fig. 5 the number of curves changes from three to 
two at WO = wz. Fig. I contains plots of the lower bounds 
on ~/S,,,~~m and llTw,lIm (where / I  ‘ 1 1  denotes the 03 norm). 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . .  

. .  . . . .  . .  

(L 

0 0.5 1 1.5 2 2.5 3 

00 

Fig. 5 .  
each NMP zero 

Example 3 - RHS of Poisson integral for S,,(s) evaluated at 

I .  ..:. . . . . . . .  . . : .  . .  .........I .x - 1  

. . . .  . . . . .  

v1 
I 
(L 

0 0.5 1 1.5 2 2.5 3 

4 

Fig. 6. 
each unstable pale 

Example 3 - RHS of Poisson integral for Tyo(s) evaluated at 

’” 0 1 2 3 4 5 
00 

Fig. 7. Example 3 Lower bounds an the peak sensitivities. 

These bounds are obtained by letting al = a2 = 1/2 and 
w1 = w2 = 4 in Cors. 3.3.3 and 3.3.4 of [2]. In Figs. 5 to 7, 
the effect of the approximate pole-zero cancellations near 
WO = 0 and WO = 0.2 is clearly visible. It can also be seen 
that for large WO, the lower bound on the peak sensitivity is 
decreasing whilst that of the complementary sensitivity is 
increasing. By plotting over a larger range of WO, it is also 
possible to verify that as WO i M, two of the curves in 
Fig. 5 approach IrlogIB;’(5)1 = 0.5 and all four curves 
in Fig. 6 approach lrlog 1B;’(O.2 i 0.2j)l = 0.25. 

VI. CONCLUSION 
In this paper, the poles, zeros and delays of modulated 

and demodulated systems have been analysed. It has been 
shown that the poles of the modulated system (G,) are 
those of the base system (G) shifted by i j w o  and that the 
delay is preserved. Several results on the continuity and 
asymptotic behaviour of the zero loci have also been given. 
The closed loop performance limitations of modulated sys- 
tems whose base systems have ORHP poles or zeros were 
then discussed. It has been observed that G, is unstable if 
(and only io G is unstable. Also, if G has NMF’ zeros, then 
G, has NMP zeros when the modulation frequency is very 
low or very high (relative to the location of the poles and 
zeros of the base system). Unstable poles of G also result in 
NMP zeros at low modulation frequencies. These zeros are 
particularly problematic as they may result in approximate 
ORHP pole-zero cancellations, and hence large peaks in the 
sensitivity functions will be unavoidable. 
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