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Abstract 

The power function is treated as the law relating response time to practice trials. However, the 

evidence for a Power Law is flawed because it is based on averaged data. We report a survey that 

assessed the form of the practice function for individual learners and learning conditions in 

paradigms that have shaped theories of skill acquisition. We fit power and exponential functions 

to 40 sets of data representing 7910 learning series from 475 subjects in 24 experiments. The 

exponential function fit better than the power in all the unaveraged data sets. Averaging produced 

a bias in favour of the power function.  A new practice function based on the exponential, the 

APEX function, fit better than a power function with an extra, pre-experimental practice, 

parameter. Clearly, the best candidate for the Law of Practice is the exponential or APEX 

function, not the generally accepted power function. Theoretical implications are discussed.  
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The Power Law repealed: The case for an Exponential Law of Practice. 

"Curve fitting without benefit of a model is notoriously a black art."  
(Newell & Rosenbloom, 1981, p.23) 

 
The benefits from practice follow a nonlinear function:  improvement is rapid at first but 

decreases as the practitioner becomes more skilled (e.g., Thorndike, 1913).  The idea that a 

simple nonlinear function might describe practice effects in a broad range of tasks was 

championed by Newell and Rosenbloom’s (1981) influential chapter entitled Mechanisms of Skill 

Acquisition and the Law of Practice.  The “Law of Practice” in the title concerns the relationship 

between response time (RT) and number of practice trials.  Newell and Rosenbloom examined 

data from a wide range of tasks.  When they compared power and exponential functions as 

possible forms for the Law of Practice, power functions provided better fits than exponential 

functions in every case.  

The power function is now treated as the law of practice.  In Anderson's (1982) words, 

"one aspect of skill acquisition ... distinguished ... by its ubiquity ... is the log-linear or power law 

for practice" (p. 397).  A decade later, Logan (1992) echoed the same conviction:  "The power 

law is ubiquitous.  It occurs in virtually every speeded task" (p. 883).  In accord with its status as 

a law, most research subsequent to the publication of Newell and Rosenbloom’s (1981) findings 

has assumed a power function rather than testing to determine if it provides a better description 

than other functions (e.g., Cohen, Dunbar, & McClelland, 1990; Kramer, Strayer, & Buckley, 

1990; Logan, 1988, 1992), or assumed that a power function holds for each component of 

performance (e.g., Delaney, Reder, Staszewski, & Ritter, 1998; Rickard, 1997).   

The power function’s status as a law has also made it a gold standard by which to judge 

the success of models of skilled performance, including:  ACT and related models (Anderson, 

1982; Anderson & Schooler, 1991), the Component Power Laws model (Rickard, 1997), network 

models (MacKay 1982; Cohen, et al., 1990), instance theories (Logan, 1988, 1992; Nosofsky & 
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Palmeri, 1997), and Newell and Rosenbloom's (1981) chunking model (see also Rosenbloom & 

Newell 1987a, 1987b).  Logan (1988) leaves no doubt about the importance of the form of the 

practice function for theories of skill acquisition:  "the power-function speedup [is] a benchmark 

prediction that theories of skill acquisition must make to be serious contenders." (p. 495; see also 

Cohen et al., 1990, and Palmeri, 1997, for similar views).  

However, we contend that the evidence supporting a Power Law of Practice is flawed. 

Although theories of skill acquisition model learning in individuals, the bulk of the evidence 

favouring the Power Law is based on fits to averaged data.  There is little empirical evidence 

from individual learners for individual learning conditions that a power function describes skill 

acquisition better than an exponential function.  Data from all but one of the tasks examined by 

Newell and Rosenbloom (1981), for example, were averaged over subjects, conditions, or 

practice blocks.  In the few published comparisons that report analysis of data from individual 

subjects, the exponential function fit better than the power function (Josephs, Silvera, & Giesler, 

1996; Rosenbloom & Newell, 1987a). 

The mismatch between theory and evidence is more than a minor technicality:  It has 

been known to the psychological literature for almost 50 years that average curves need not take 

the same form as the individual curves comprising the average (e.g., Estes, 1956; Kling, 1971; 

Sidman, 1952).  Hence, the form of the average practice function does not unambiguously 

indicate the form of the components of the average.  Moreover, recent work shows that linear 

averaging yields a composite that is systematically biased towards the power function when 

compared with the exponential function (e.g., Anderson & Tweney, 1997; Myung, Kim, & Pitt, 

1998).  Hence, evidence once thought to favour the Power Law may be artefactual.  

The form of the practice law may also seem to be an unsolvable technical issue rather 

than an important psychological question.  Estes (1997, personal communication) has indicated 

that the form of practice law does not constrain theory enough.  In his words, a  “generation of 

budding learning theorists (Bower, Bush, Estes, Greeno, Hunt, Restle) produced mountains of 
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analyses showing how easily the forms of particular performance curves can be mimicked by 

many alternative models”.   

Nevertheless, the form of the practice law does carry an important implication about the 

nature of learning.  As we will note more fully later, an exponential function implies a constant 

learning rate relative to the amount left to be learned.  By contrast, the power function implies “a 

learning process in which some mechanism is slowing down the rate of learning” (Newell & 

Rosenbloom, 1981, p. 18).  The question at issue, then, is whether the slowing implied by the 

power function is part of skill acquisition.  Repealing the Power Law of Practice in favor of an 

exponential (or other) law has serious implications for all theories of skill acquisition – 

particularly those developed in order to account for the Power Law.   

In light of the ambiguity concerning empirical support for the Power Law, we report the 

results of a survey that systematically assessed the form of the practice function for individual 

learners and learning conditions in paradigms that have shaped theories of skill acquisition (see 

Table 1 for a summary of the paradigms and data sets).  In the next section we review the 

properties of candidate practice functions and propose a new practice function, the APEX 

function, that expedites our analysis. Following sections describe our methods and results. 

Results can be easily apprehended from Table 2 (which tabulates the average fit of the candidate 

practice functions in each data set) and Figures 1, 3, and 4 (which present the percentage of cases 

in each data set that are best fit by a candidate practice function).  Finally, the discussion section 

examines the implications of our results for the measurement of practice functions and for 

theories of skill acquisition. 

Practice Functions 

Equations 1 and 2 are the power and exponential functions used by Newell and 

Rosenbloom (1981) to fit practice data.  E(RTN) is the expected value of RT on practice trial N.  

The bold notation indicates that RT is a random variable.  When referring to observed response 
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times (i.e., to samples from RT), we will use the notation RT.  AP and AE are the expected values 

of RT after learning has been completed for the power and exponential functions, respectively.  

An asymptote parameter is necessary when modeling response time, even in a highly skilled 

subject, because performance is limited by physical constraints, such as neural integration time 

and motor response time.  BP and BE are the change in the expected value of RT from the 

beginning of learning (N + E = 1 for the power function, or N = 0 for the exponential function) to 

the end of learning (the asymptote).  Hence, BP and BE indicate the range over which practice 

speeds responding.   

( )  )( β−++= ENBAE PPPNRT    (1) 

( ) N
EEEN eBAE α−+=RT     (2) 

The amount of nonlinearity displayed by the practice function is controlled by its rate 

parameter:  α for the exponential and β for the power.  The power function has one extra 

nonlinear parameter:  E.  It represents the subject's prior learning due to practice before 

experimental measurement (the rationale for the E parameter was first suggested by Seibel, 

1963).  Most subsequent researchers, however, have fit the simpler three-parameter version of the 

power function with E fixed at zero (e.g., Logan, 1988, 1992).  

An extension of the exponential function to include a parameter corresponding to E is 

redundant because the exponential function is translation invariant, i.e.,  

( ) N
E

NE
E

EN
E eBeeBeB αααα −−−+− == ''

 

where E
EE eBB α−= ' .  Hence, the effect of prior practice is incorporated into the estimate of BE for 

the three-parameter exponential function. 

Newell and Rosenbloom’s (1981) evidence for a Power Law of Practice was based on a 

comparison of the fit of the three-parameter exponential function with the fit of the four-
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parameter power function, which they call the general power function.  We will adopt the terms 

“general power function” and “power function” when referring to the four- and three-parameter 

(E fixed at zero) versions of Equation 1, respectively. 

Apart from the difficulties introduced by averaging, Newell and Rosenbloom’s (1981) 

analysis is open to criticism on two technical grounds: 

1. The first technical criticism concerns the number of parameters in the equations 

considered by Newell and Rosenbloom (1981).  They compared the three-parameter exponential 

function against the four-parameter general power function.  One might think that the latter 

function would be more flexible as it has an extra parameter.  In particular, the extra flexibility 

may allow a general power function to mimic an exponential function, making the general power 

function almost impossible to falsify by a comparison with the simpler exponential.  

The relationship between the general power and exponential functions is illuminated by 

expressing them as differential equations. 

( )( ) ( )( )PN
PN AE

ENN
E

−
+

−
= RT

RT β
∂

∂     (3) 

( )( ) ( )( )EN
EN AE

N
E

−−= RT
RT

α
∂

∂      (4) 

Equations 3 and 4 can be compared using their relative learning rate (RLR), defined as minus the 

rate of change of expected RT divided by the amount left to be learned (i.e., relative learning rate 

equals the multipliers of the bracketed terms on the right side of Equations 3 and 4).  The defining 

characteristic of an exponential function is a constant relative learning rate (α) at all levels of 

practice.  For the general power function, by contrast, relative learning rate is a hyperbolically 

decreasing function of practice trials (β/(N+E)).   

Strictly, the general power function can exactly mimic an exponential function only when 

α = 0 (i.e., a flat function).  However, for practice series of finite length, large values of E can 

make the relative learning rate almost constant, and any value of α can be approximated, 
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particularly smaller values.  In experimental measurement, practice trials vary over a limited 

range.  If the estimate of E is much larger than the range, the effective relative learning rate for 

the general power function is a constant, approximately equal to β/E.  Consequently, the general 

power function can mimic exponential data using large estimates of E, although such fits are 

invariably poorly behaved because the parameter estimates are highly correlated, i.e., large 

estimates of E are associated with large estimates of β and, particularly, of BP.  

Newell and Rosenbloom (1981) noted the association between large estimates of E and 

large estimates of BP when they fit the general power function to simulated exponential data.  We 

reported the same behavior in fits to several data sets from a visual-search paradigm (Heathcote, 

1990; Heathcote & Mewhort, 1995).  When E is large, large values of β will occur to allow the 

general power function to approximate a constant relative learning rate greater than zero. Very 

large values of BP allow the general power function to approximate the decrease in the expected 

value of RT from the beginning to the end of measurement. This counteracts the tendency of a 

general power function to become flat when it mimics exponential data. 

2. The second technical criticism concerns the way in which Newell and Rosenbloom 

(1981) fit practice functions.  To save computation, they fit by minimizing squared deviations in 

log(RT- PÂ ) and log(RT- EÂ ).  Given that AP and AE estimate expected values it would not be 

unusual to observe samples from RT which are less than these expected values; in such cases, the 

measures log(RT- PÂ ) and log(RT- EÂ ) are undefined.  It is difficult to know how to deal with 

undefined values without biasing or distorting fits (Newell and Rosenbloom did not describe their 

approach).  Undefined values will not occur, of course, if near-asymptotic performance is not 

measured or if the variability of RT shrinks to zero with practice.  The latter condition is unlikely 

as, even in very fast and simple tasks, response time remains variable (see Luce, 1986, for 

numerous examples).  Such problems are likely to be more pronounced in individual subject data 

as it is noisier than averaged data. 
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To check whether the fitting method biased their results, we obtained a subset of the data 

in Newell and Rosenbloom’s (1981) survey. We refit their data by minimising squared deviations 

in RT (i.e., the generally accepted method of ordinary least squares) instead of log(RT- PÂ ) and 

log(RT- EÂ ).  For the averaged data, the power function still fit better than the exponential 

function.  However, for the two data series that were not averaged (times to win and to loose the 

Stair card game), the exponential function provided a better fit than the power1.  In other words, 

the only evidence favouring the power function for unaveraged data in Newell and Rosenbloom’s 

survey turns on the adequacy of their fitting method.   

The two technical criticisms not only call Newell and Rosenbloom’s (1981) findings into 

question2 but also raise a dilemma.  The general power function is clearly a plausible extension of 

                                                 

1 For games won R2 for the Exponential was 0.339 and only 0.253 for the power. For games lost 

R2 was 0.183 and 0.173 for the exponential and power functions respectively. The fit of the 

general power function was somewhat better (R2 of 0.334 and 0.185) but it was still less than the 

exponential function for games won and less than the APEX function (with R2 of 0.339 and 0.186 

respectively) in both cases. We would especially like to thank Paul Rosenbloom for sending us 

these data sets. 

2 Analysis of relative learning rates also shows that Mazur and Hastie’s (1978) results, which 

Newell and Rosenbloom (1981) claim agree with their results in “rejecting exponentials” (p. 34), 

are not relevant for response time.  Mazur and Hastie (1978) fit power and exponential functions 

to rate of response data.  A nonlinear transform, the inverse, is required to convert rate to RT.  

The transform changes the relative learning rate of the exponential rate function to a relative 

learning rate on the RT scale (K/(ekN-1), where K and k are parameters greater than zero) that 

decreases more quickly than the power function’s relative learning rate on the RT scale.  Hence, 

Mazur and Hastie’s (1978) comparison does not test a true exponential function on the RT scale. 
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power function, at least when estimates of E are reasonable, but it cannot be fairly compared 

directly to the exponential function.  To escape the dilemma, we propose a new3 four-parameter 

practice function, the APEX function that nests (i.e., contains as special cases) both the power 

and exponential functions.  

( ) '' βα −−+= NBeAE N
NRT     (5) 

The APEX function has a relative learning rate that is the sum of the relative learning rates for the 

power and exponential functions: α’ + β’/N.  Consequently, its relative learning rate decreases 

like a power function early in practice but approaches an asymptotic value potentially greater than 

zero (α’) later in practice. 

We propose the APEX function for two reasons:   

1. The APEX function nests both the power and exponential functions.  Hence, fitting the 

APEX function to exponential data will likely be better behaved than fitting the general power 

function to exponential data.  Because the APEX function can exactly fit both power and 

exponential data, it can be used to adjudicate between the two alternatives:  If the APEX function 

provides a better fit than the power function, an exponential component is supported.  If the 

                                                 

3 A related function was proposed by Wickelgren (1975, p. 326) to model retention of memories. 

Note that a prior-practice parameter analogous to that in the general power function could also be 

added to the APEX function (i.e., substitute (N+E) for N).  This five-parameter function nests 

both the APEX and general power functions. It was not used because the general power function 

was over-parameterised for the practice data sets examined and often provided ill-conditioned 

objective functions that made minimisation difficult.  Hence, the five-parameter version of the 

APEX function could only be more problematic. 
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APEX function provides a better fit than the exponential function, a power component is 

supported.  If both conditions apply, the full APEX function is supported.  

Tests comparing the fit of APEX, power and exponential functions can be applied to 

individual subjects and conditions. This allows for the possibility that the form of the practice 

function might differ between individuals or conditions.  The significance of any improvement in 

fit can be assessed for each individual subject and condition by a straightforward nested-model 

change-of-R2 test.  Nested-model tests have an important advantage when dealing with nonlinear 

models; they need assume only a linear approximation to the intrinsic curvature of the function 

and are not effected by nonlinear effects of changes in parameters (see Bates & Watts, 1988).  

2. Comparison of the fit of APEX and general power functions not only provides a fair 

test but also illuminates a theoretically crucial point.  Many models of skill acquisition 

acknowledge that performance may be the result of a sum of component processes (e.g., Kirsner 

& Speelman, 1996) or the result of a mixture of processes, such as algorithmic and memory-

based processing (e.g., Logan, 1988, 1992; Rickard, 1997). 

In the case of a sum, processes with a relatively faster learning rate will approach their 

asymptote quickly and then will cease to affect the rate of change of RT; as a result, asymptotic 

learning will be dominated by the slower learning processes.  The transition should be evident as 

a decrease in the relative learning rate early in practice, even if all component processes are 

exponential (i.e., even if all have constant relative learning rates).  Asymptotic learning rates, 

however, will reveal the true relative learning rate function of (at least) the slow component 

processes.  A superior fit for the APEX function supports an asymptotic relative learning rate 

greater than zero, a finding inconsistent with component power functions.  A superior fit for the 

general power function supports an asymptotic relative learning rate that approaches zero, a 

finding inconsistent with component exponential functions.   
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A similar argument can be made for a mixture of memory and algorithmic processes.  

Even if each component learns exponentially, relative learning rate can decrease early in practice 

because of the transition from trials controlled by slow algorithmic processing to trials controlled 

by fast memory-based processing. After sufficient practice, however, learning should be 

dominated by the memory-based process.  If memory-based processing follows a power function, 

the asymptotic relative learning rate will approach zero, and the general power function will 

provide a superior fit to the APEX function.  If memory-based processing follows an exponential 

function, the APEX function will provide the superior fit with an estimate of α greater than zero.   

Several experiments in the survey required subjects to report their processing strategy as 

algorithmic or memory-based.  Hence, we were also able to test the function describing each 

component explicitly in these experiments (assuming, of course, that the subjects’ self report 

accurately describes their processing strategy).  

Method 

Analysis Techniques 

We fit power, exponential, general power, and APEX functions using ordinary least-

squares minimization on correct trial data.  The fits were obtained using a Simplex search 

algorithm (Press, Flannery, Teukolsky, & Vetterling, 1986) because it is robust when fitting is ill 

conditioned.  Fits were validated by comparison to the outputs of nonlinear regression programs 

provided in the SPSS and S+ statistical packages. 

When data are exponential, fits of the general power function tend to be ill conditioned.  

In particular, fitting is problematic because estimates of BP diverge to very large values that 

cannot be represented with accuracy, even in double precision.  To avoid the problem, estimates 

of BP were constrained to be less than 1010 ms (around 115 days).  Estimates of the asymptote 

parameters were constrained to be greater than zero for all fits in order to ensure that the 

estimates were plausible.  
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To ensure that the best fits of general power function were found, multiple fits were 

performed with starting estimates for E equal to 1%, 10%, 50% and 100% of the length of the 

series.  The best fit was then selected and compared to the fit of the power function for the same 

series.  Where the general power function fit was worse than the power function fit, as sometimes 

happened due to correlated parameters, the power fit was substituted for the general power fit.  Ill 

conditioned power, exponential, and APEX fits almost never occurred, and starting points for 

fitting were easy to obtain by heuristics.  Where the fit of an APEX function was worse than 

either the fit of the power or exponential for the same series, refits were performed using starting 

values close to both the exponential and power solutions.  The best fit among the refits and the 

power and exponential fits was selected.  

Experimenters often censor their data to delete outliers.  Whenever the experimenter 

censored their data, we followed the same procedure.  If an experimenter did not report censoring, 

we removed obvious outliers (see Table 1 for the criteria used).  Across all the data sets, however, 

very few observations were censored.  

Because RT can vary as a function of accuracy, we also calculated the main effect of 

practice on errors for each block of trials.  Most frequently, errors decreased with practice, but 

they also increased, or remain unaffected by practice in some data sets.  Hence, the results for RT 

are not correlated in any simple pattern to changes in accuracy, at least across different data sets.  

All fits used learning series broken down by subjects and by within-subject factors or 

learning examples.  Where strategy reports were available, the learning series were also broken 

down by strategy for supplementary analyses.  In some cases, data sets broken down by strategy 

produced series that were too short to obtain reliable fits.  Such data sets were excluded.  The data 

for production of key sequences were divided into trials on the first and subsequent days because 

new instructions that clearly influenced learning were given on the second day of practice (see 

Verwey, 1996, Figure 3, p. 548).  Exponential, power, APEX and general power functions were 

then fit to each learning series.   
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Several approaches were used to compare the overall performance of the different 

functions. The proportion of learning series for which an exponential function provided a better 

fit than a power function (on the basis of R²) was tallied for each data set (see Figure 1).  A 

similar comparison was made between the four-parameter functions (APEX and general power, 

see Figure 3).  Binomial confidence intervals were used to determine if preference for either 

member of each pair of functions was significant in each data set.  For all functions the average 

value of R2 for each data set was calculated and compared (see Table 2).  Additionally, the 

improvement in fit of the APEX function relative to both exponential and power functions was 

used to provide nested-model tests.  Table 2 reports the percentage of learning series for each data 

set where significant results for the nested model tests supported an exponential and/or power 

component.  

Data Sets 

We fit 40 sets of data; collectively, the data represent 7910 learning series from 475 

subjects in 24 experiments taken from 13 published and 3 unpublished sources. The unpublished 

data (Brown & Heathcote, 1997; Ringland & Heathcote, 1998; Smith & Mewhort, 1994) were 

collected in our laboratories and were analyzed to clarify and expand on results from published 

data sets.  

Table 1 summarizes the characteristics of the data sets used in the survey.  Each data set 

was given a unique acronym used to index the summaries of results.  For data sets that were 

broken down by strategy, the Length column indicates the criterion length used to exclude short 

series.  Table 1 also reports the results of tests on the effect of practice on error rates.  The 

following sections describe both the paradigms from which the data were drawn and the 

experimental factors used to produce separate series for each data set.   

Memory Search.  In the memory-search tasks, subjects studied a list of words and then 

were asked to indicate whether or not a probe word had appeared in the study list.  The words 

used in the list were selected to represent particular semantic categories, and semantic category 
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was mapped consistently to the word’s use as a target or distracter item.  Fits used series broken 

down by subjects and within-subject factors. 

 
Table 1. Summary of data sets fit in the survey.  

Source Name Na Lengthb Ss.c Errorsd Censor (ms)e 
MS1 36 606-711 6 Increase* 150<RT<1500 Strayer & Kramer (1994a, 

1994b) MS2 192 654-716 32 Increase 150<RT<1500 
Strayer & Kramer (1994c) MS3 132 625-860 22 Decrease 150<RT<1500 

Count1 120 175-208 4 Decrease* None 
Count2 288 125-160 4 Decrease* None 

 
Palmeri (1997) 

Count3 360 129-160 5 Decrease* None 
Rickard & Bourne (1996) Math1 384 63-90 24 Decrease* 200<RT<5000 

Math2 228 62-90 24 Decrease* None 
Math2a 125 > 9 - - None 

 
Rickard (1997) 

Math2m 228 > 9 - - None 
Math3 79 8-20 20 NA None 
Math3a 44 > 7 - - None 
Math3m 38 > 7 - - None 
Math4 63 8-20 16 NA 200<RT<18000 
Math4a 50 > 7 - - 200<RT<18000 

 
 
 
Reder & Ritter (1992) 

Math4m 14 > 7 - - 200<RT<18000 
Math5 65 8-28 22 NA None 
Math5a 57 > 7 - - None 

 
Schunn et al. (1997) 

Math5m 35 > 7 - - None 
AA1 504 25-84 21 Decrease 200<RT<10000 
AA1a 157 > 9 - - 200<RT<10000 

 
Rickard (1997) 

AA1m 489 > 9 - - 200<RT<10000 
Smith & Mewhort (1994) AA2 288 80 24 Decrease* None 
Heathcote & Mewhort (1993) VS1 192 200 24 Decrease* None 
Carrasco et al. (1998) VS2 120 63-88 10 Increase None 
Heathcote & Mewhort (1993) VS3 128 160 8 Decrease None 

Key1t 72 45-613 36 Increase* None 
Key1c 180 45-613 - - None 
Key1k 648 45-613 - - None 
Key2t 72 67-1353 36 Flat None 
Key2c 180 67-1353 - - None 

 
 
 
Verwey (1996) 

Key2k 648 67-1353 - - None 
Brown & Heathcote (1997) Key3 56 228-300 4 NA 200<RT<10000 

Rule1 26 32 26 Decrease* None 
Rule2 88 32 22 Decrease None 

 
Anderson et al. (1997) 

Rule3 180 32 45 Decrease* None 
MR1c 96 35 8 NA None Kail & Park (1990) 
MR1a 96 35 8 NA None 
MR2c 576 18-32 12 Decrease None Ringland & Heathcote (1998) 
MR2a 576 18-32 12 Decrease None 

aThe number of practice series in the data set.  
bThe range of lengths for practice series in each data set.  
cThe number of subjects in each data set.  
dThe results of tests on the main effect of practice on accuracy, with a * indicating significance at the 95% 
confidence level. Where results were not significant trends are indicated.  
eCriteria used, if any, to censor outliers from the data set. 
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The data in set MS1 are the consistently mapped trials from mixed consistent/varied 

mapping training blocks from Experiment 2 of Strayer and Kramer (1994a).  The data indexed by 

the label MS2 refer to the consistently mapped training blocks from Experiment 2 of Strayer and 

Kramer (1994a), Experiments 4, 6, and 7 from Strayer and Kramer (1994b), and to an 

unpublished two-alternative forced-choice version of the task.  The experiments in the MS2 data 

set came from very similar paradigms, and individually produced the same pattern of results as 

the overall data set, so were grouped together.  For both MS1 and MS2, two factors were 

manipulated within-subject:  target/distracter probe and memory load (2, 4, or 6 items).   

The data in set MS3 are consistently mapped trials from young subjects (ages 18-21) 

from Strayer and Kramer (1994c).  Two factors were manipulated within subject:  

target/distracter probe and memory load (2, 4, or 6 items), and one factor was manipulated 

between subjects:  speed versus accuracy instructions. 

Counting.  In the counting tasks, subjects were shown different patterns of six to 11 dots 

and a spelled-out number; they were asked verify whether the number of dots in the pattern 

matched the spelled-out number.  All data were taken from Palmeri (1997).  Each experiment 

used a number of unique patterns, and fits included series from each pattern.  Fits used data 

broken down by subjects and dot pattern. 

The data in set Count1 are the training series from Experiment 1.  The number of dots 

was manipulated within-subjects.  There were 30 patterns with 5 patterns of array size. 

The data in set Count2 are the training series from Experiment 2.  The number of dots 

and the similarity of dot patterns (no, low and moderate) was manipulated within-subjects.  There 

were 72 patterns with 4 patterns for each level of similarity per array size. 

The data in set Count3 are the training series from Experiment 3.  The number of the dots 

and similarity (similar to a same or different number pattern) was manipulated within-subjects.  

There were 72 patterns with 6 patterns for each level of similarity at each array size.   
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Mental arithmetic.  The mental arithmetic tasks included a diverse set of problem types.  

Fits used data broken down by subjects and problem examples. 

The data in set Math1 are from a single-digit multiplication task taken from Experiment 1 

of Rickard and Bourne (1996).  Either the subjects were shown 2 digits and asked to calculate the 

product, or they were shown a digit and a product and asked to divide the product to compute the 

dividend.  RT was recorded as the time between the presentation of the problem and the 

keystroke of the first digit of the answer.  There were 16 problem examples.  Problem type 

(compute product or compute dividend) and range of digits was manipulated within-subjects. 

The data in set Math2 are from a three-step arithmetic task (Experiment 1 of Rickard, 

1997).  Subjects were shown two numbers and asked to calculate their difference, to add 1 to the 

result, and, then, replacing one of the numbers with the result so far, to compute the sum of it 

with the remaining original number.  RT was recorded as the time between the presentation of the 

problem and the keystroke of the first digit of the answer.  Subjects reported using one of two 

strategies, recalling the answer from memory or computing the answer (algorithm) on every third 

trial.  We split the data into sets defined by the subject’s strategy using the logistic method 

described by Rickard (1997)4 and fit series with more than 9 trials.  

The data in set Math3 are from two-digit multiplication and addition tasks reported as 

Experiment 1 by Reder and Ritter (1992).  Subjects were shown two two-digit numbers and asked 

first to indicate which of two strategies, recall (which we label “memory”) or calculate (which we 

label “algorithm”), they intended to use.  They then answered the problem.  We fit only to data 

from the four problems (two addition and two multiplication) that were presented 20 times, and 

excluded one series because it had less than eight correct answers.  Also, we fit data for each 

strategy separately, again excluding the short series. 

                                                 

4 We also used a number of simpler schemes for partitioning trials with the similar results. 
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The data in set Math4 are from a multi-step multiplication task with an initial rapid 

strategy report as for the Math3 (Experiment 2 by Reder & Ritter, 1992).  We fit only data from 

the four problems that were presented 20 times, and excluded one series that had less than eight 

correct answers.  The data were also classified by strategy and fit separately, again excluding the 

short series.    

The data in set Math5 are from a two-digit task combining multiplication and addition, 

proceeded by a rapid strategy report, as for Math3 (Experiment 1 by Schunn, Reder, 

Nhouyvanisvong, Richards, & Stroffolino, 1997).  We fit only the three problems presented 28 

times and, again, excluded one series with length less than 8.  The data were also classified by 

strategy and fit separately, again excluding the short series.   

Alphabetic arithmetic.  Subjects were required to verify equations of the form A + 2 = C, 

or A + 3 = C, true and false equations respectively.  We broke down the data by subjects and by 

problem example. 

The data in set AA1 are from Experiment 2 of Rickard (1997).  Two factors were 

manipulated within subjects:  addend (3, 5, and 7) and trial type (true/false), with four examples 

of each type.  Data for each of the 24 problems were fit separately.  Subjects reported strategy as 

for the Math2 data set.  We also analyzed data for the two strategies separately, excluding series 

with less than 10 responses.   

The data in set AA2 are from an unpublished experiment by Smith and Mewhort (1994).  

Three factors were manipulated within subjects:  addend (2, 3, 4), arithmetic operator (+,-) and 

trial type (true/false), with one example of each type.  We fit the data from each of the 12 

examples separately. 

Visual search.  In the visual search tasks, subjects were required to indicate whether or 

not a target appeared in a visual display.  In VS1 and VS3, the target was defined by the relative 

position of two features; in VS2, the target was defined by a conjunction of colours.  Stimuli used 

for targets and distracters were consistently mapped over trials in VS1 and VS2.  Targets and 
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distracters were variably mapped in VS3, and a target cue was given before each trial.  Fits used 

data broken down by subjects and by within-subject factors. 

Data in set VS1 are from Experiment 1 of Heathcote and Mewhort (1993).  Two factors 

were manipulated between-subjects:  feature type (brightness or colour) and display area (small 

or large).  Two factors were manipulated within subjects:  display size (2, 4, 6 or 8 objects) and 

trial type (target/distracter).  

The data in set VS2 are from Experiment 3 of Carrasco, Ponte, Rechea, and Sampedro 

(1998).  Two factors were manipulated within subject:  display size (2, 6, or 10, 14, 18, 22 

objects) and trial type (target/distracter). 

The data in set VS3 are from Experiment 3 of Heathcote and Mewhort (1993).  Three 

factors were manipulated within subject:  display size (2, 4, 6 or 8 objects), target type, and trial 

type (target/distracter).  

Motor learning.  In the motor learning tasks, subjects were required to press combinations 

or sequences of keys in response to compatible stimulus displays.  All fits were broken down by 

subjects.  Fits for production of combinations of key presses used series broken down by 

combination.  Fits to sequence production used data broken down by within-subject factors but 

not sequence, as each subject used the same sequence. 

The data in sets Key1t, Key1c, Key1k, Key2t, Key2c and Key2k, were taken 

fromVerwey (1996).  Subjects executed the same 9-key sequence in response to a compatible 

display.  Only the data where all 9 key responses were correct were analyzed.  On most blocks of 

trials, the key sequences were divided into segments (calls chunks) by pauses between stimulus 

onset.  The segment structure was manipulated between subjects:  The 9 keystrokes were divided 

into 3 equal segments (3:3:3) or into 2 unequal segments (3:6).  For the remaining blocks there 

was no pause between segments.  Otherwise the next stimulus occurred immediately after the 

preceding key press. Subjects were instructed at the beginning of the second day of practice to 

use the pauses to group their responses temporally.  
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Trials from Day 1 and from later days, and trials from blocks with and without pauses, 

were fit separately.  Fits were performed for the time to complete each key press (Key1k and 

Key2k), to complete each chunk (Ket1c and Key2c), and to complete the total sequence (Key1t 

and Key2t). 

The data in set Key3 were taken from an unpublished experiment by Brown and 

Heathcote (1997).   Subjects pressed combinations of 1 to 3 keys from a set of four keys in 

response to a compatible visual display (bright rectangle presented on a screen above the response 

keys).  All 14 possible combinations were practiced in random order.  

Learning rules from examples.  The data were taken from the three experiments reported 

by Anderson, Fincham, and Douglass (1997).  Subjects studied examples of the form “Skydiving 

was practiced on Saturday at 5 p.m. and Monday at 4 p.m.”, with the underlying rule being that 

the second practice occurred 2 days later and one hour earlier.  Subjects then indicated the 

missing parts of similar examples by clicking on one of a set of choices using a mouse.   

The data in sets Rule1, Rule2, and Rule3 are from Experiments 1, 2, and 3 respectively.  

All experiments started with blocks using 8 different rules and required the same part (first or 

second) to be filled in for each rule.  Over groups of blocks, examples were introduced that 

required the other part to be filled in.  The manipulation defined the within-subject factor 

practiced/unpracticed rule direction.  The data for the unpracticed rule direction came from the 

rules in each group of blocks that had not previously been seen in the unpracticed direction.  

Experiment 2 introduced a second within-subject factor:  Rules could either have unique or 

repeated examples.  Experiment 3 made the example repetition a between-subjects factor, with 

either 0, 1, or 2 repeated examples per block.  

For fitting, the data were broken down by all within-subject factors.  However, data were 

averaged over rules, and over examples of rules, for groups of four, eight and eight blocks for 

Experiments 1, 2, and 3 respectively. 
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Mental Rotation.  Subjects were presented with one of four letters (F, G, P, R) either in 

their normal or mirror-image form and rotated by 0, 30, 60, 90, 120, or 150 degrees.  The 

subjects’ task was to indicate whether the letter was normal or a mirror-image form.  Letter type, 

letter orientation and normal- versus mirror-image were manipulated within-subject.  Participant 

age (child or adult) was a between-subjects factor.  

Data in sets MR1c and MR1a, child and adult subjects, respectively, were taken from 

Kail and Park (1990).  The data were averaged over letter and block (two examples per block); 

otherwise, we broke down the series by within-subject factors.  Data in sets MR2c and MR2a 

were from child and adult subjects, respectively, and came from an unpublished replication of 

Kail and Park (Ringland & Heathcote, 1998).  The latter data were not averaged:  Letter type was 

used to break down the series, and we fit individual trial data rather than block averages.  

Results 

Note that where we report a statistic averaged over data sets, the average was calculated 

weighted by the number of series in each data set (see Table 1 for the number of series in each 

data set). Table 2 and Figures 1, 3, and 4 give statistics for individual data sets.  

The Shape of the Practice Function  

Comparing power and exponential functions.  Figure 1 reports the percentage of series in 

each published5 and unaveraged data set that were better fit by the exponential function than by 

the power.  Power and exponential functions provided an equally good fit in 2.5% of series, and 

these series were excluded from the calculation of the percentages shown in Figure 1.  Of the 

remaining series, the exponential function provided a better fit than the power in 82.2% of cases, 

ranging from a minimum of 64% for the MS2 data set to a maximum of 93% for the Count3 data 

                                                 

5 The single exception is the unpublished two alternative forced choice experiment included in the 

MS2 data set.  These data were included, as they are very similar to all others in MS2. 
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set.  In every case, we could reject, at the 95% confidence level, the null hypothesis that power 

and exponential functions were equally likely to win.  

Figure 1. Percentages of cases where the exponential function provided a better fit than the power 
function (solid circles) and exact binomial 95% confidence intervals for the published and 
unaveraged data sets in the survey. 
 
 Table 2 gives the average across all learning series of the proportion of variance (R2) 

accounted for by the power and exponential functions.  In every data set, the exponential function 

accounted for more variance than the power function. Overall, the average R2 was 0.498 for the 

exponential and 0.426 for the power.  The exponential fits provided, on average, a 17% 

improvement relative to the power function, ranging from 3.7% for the Key1t data set to 28.6% 

for the Count2 data set.  In many cases, the absolute increase in R2 was quite large; that is, the 

improvement in fit provided by the exponential was not trivial.  Figure 2 reports one such case. 

Note that the power function’s decreasing relative learning rate forces it to approach asymptote 

very quickly at first and then very slowly, so that it briefly over estimates then under estimates 

data in early practice trials. For later practice trials, it over estimates the data. Beyond the range of 
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practice trials measured, it makes a clearly implausible under estimate, that response time reduces 

to zero. 

 

Figure 2. A learning series from the Count3 data set (subject number 2, stimulus number 39, 
“enemies” trials).  Also shown are the best fitting exponential (solid line, AE = 840.56, BE = 3800, 
α = 0.00142, R2 = 0.576) and power (dashed line, AP = 0.00, BP = 17037, β = 0.33922, R2 = 
0.472) functions. 
 

Sometimes, however, the advantage for the exponential over the power was small, and, in 

most of such cases, the R2 values themselves were also small.  Interpretation of small R2 values 

for nonlinear regression is tricky, however. The expected value of the nonlinear R2 can depend on 

the length of the series.  Specifically, the nonlinear R2 should decrease as series length increases 

because extra trials at asymptote add noise but do not add additional signal to the correlation 

(here, signal means a change in the expected value due to learning).  In the memory-search 

experiments, for example, the practice series were very long, and the absolute values of R2 were 

relatively small.  Nevertheless, learning, especially early in practice, was quite strong.   

Over all data sets, the difference between R2 for the power and exponential functions was 

highly correlated with their average value (r = 0.752), indicating that the magnitude of the 

difference was an increasing function of the variance accounted for by learning.  Consequently, it 

appears that smaller advantages for the exponential function are associated with higher levels of 

noise, rather than being due to a systematic difference between data sets. Taken together with the 
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cautionary note, the correlation shows that the relative increase in R2 afforded by the exponential 

function was important in all data sets.   

Table 2. Results for published and unaveraged data sets. E, P, APEX, and GP refer to the 
exponential, power, APEX and general power functions respectively. Significance is assessed at 
the 95% confidence level.  

R2 % Â <150ms % Significant Data 
Set E P APEX GP E P APEX GP Overall 'α̂    'β̂   APEX 

MS1 0.051 0.047 0.054 0.053 13.9 80.1 47.2 44.4 97.2 41.7 8.3 2.8 
MS2 0.124 0.119 0.130 0.128 11.5 61.5 24.0 31.3 93.2 48.4 27.1 5.7 
MS3 0.055 0.048 0.056 0.055 19.0 72.0 39.4 37.1 81.1 50.0 9.1 0.0 
Count1 0.647 0.507 0.651 0.637 18.3 91.7 23.3 30.0 100 95.0 20.8 16.7 
Count2 0.607 0.472 0.613 0.601 11.1 88.9 18.1 30.2 100 91.3 13.5 8.0 
Count3 0.592 0.489 0.599 0.590 5.0 88.3 14.7 25.8 100 86.4 18.6 11.7 
Math1 0.166 0.154 0.173 0.166 19.0 39.1 21.6 21.1 47.9 16.7 9.1 0.3 
Math2 0.658 0.577 0.679 0.669 19.2 45.7 48.7 54.4 99.6 82.5 32.0 21.5 
Math3 0.394 0.377 0.419 0.411 36.6 51.2 41.7 38.0 40.5 6.3 2.5 0.0 
Math4 0.236 0.219 0.253 0.251 23.4 45.3 28.6 38.1 25.4 6.3 3.2 0.0 
Math5 0.540 0.485 0.546 0.530 33.7 51.1 49.2 49.2 69.2 30.8 0.0 0.0 
AA1 0.619 0.497 0.628 0.615 18.1 64.0 30.0 44.8 99.4 84.9 11.1 5.6 
VS1 0.277 0.221 0.282 0.280 19.8 93.2 31.3 48.4 98.4 81.3 10.4 5.2 
VS2 0.261 0.218 0.265 0.262 7.8 51.6 24.2 29.2 100.0 96.4 17.9 14.3 
VS3 0.305 0.265 0.313 0.312 7.0 86.7 14.1 28.9 97.7 68.8 13.3 3.9 
Key1t 0.624 0.602 0.633 0.624 1.4 52.8 8.3 13.9 95.8 52.8 36.1 36.1 
Key2t 0.185 0.176 0.187 0.179 45.8 63.9 56.9 52.8 88.9 31.9 6.9 1.4 
 
 To assess the strength of learning, we tested each series using the null hypothesis that the 

series had a constant mean across practice.  Table 2 shows the percentage of series in which 

learning was significant.  For most data sets, the majority of series show significant learning.  

Importantly, the two data sets that showed the least significant preference for the exponential 

(Math 3 and Math4) also showed the weakest learning.  Across data sets, the correlation between 

the percent of exponential winners and percentage of significant practice effects was r = 0.646.  

The strong positive correlation again indicates that the weaker advantage for the exponential 

shown by some data sets in Figure 1 reflects noise rather than the form of the underlying learning 

function6.  

                                                 

6 In the limit of no learning, power and exponential functions will both win about 50% of the 

series each. Hence, a 50% result means either that the true shape of the practice function falls 

between the shapes of the power and exponential functions, or that learning is very weak. 
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Comparing APEX and general power functions.  Although our analyses, so far, strongly 

support the exponential function over the power, the comparison may have been confounded by 

the effect of pre-experimental practice.  The power function assumes pre-experimental practice 

has not occurred, whereas the exponential does not.  When pre-experimental practice is 

important, the power function is forced to estimate a too-large decrease in relative learning rate 

early in practice, and, as a result, the exponential might dominate.  The general power function 

takes pre-experimental practice into account.  Hence, to consider a role for pre-experimental 

practice, we compared the fit of the general power function against the fit of the APEX function.   

The APEX function can estimate an asymptotic relative learning rate greater than zero, 

whereas the general power function requires relative learning rate to decrease to zero across 

practice.  Consequently, better fits for the APEX than the general power function indicate that 

relative learning rate does not decrease to zero (i.e., the function is asymptotically exponential).  

Conversely, better fits for the general power function indicate that relative learning rate does 

decrease to zero (i.e., the function is asymptotically power).     

Figure 3 shows the percentage of series that were better fit by the APEX function than by 

the general power.  In the few cases where APEX and general power functions provided equally 

good fits, the general power function was classified as the winner because these cases 

corresponded to a power function solution (i.e, the estimate of α’ = 0 for the APEX function). 

Overall, the APEX function won in 84.1% of series, ranging from a minimum of 70% for 

Math3 up to a maximum of 94% for Key2t.  Importantly, all of the cases in which the exponential 

function was weakest in Figure 1 were more strongly won by the APEX function in Figure 2.  

Hence, many of the cases won by the power function in Figure 1 (reflecting a decrease in relative 

learning rate early in practice) do not support a further decrease to an asymptotic value of zero 

later in practice.  These results suggest that the fundamental assumption of the power function – 

asymptotically negligible relative learning rates – is not supported by any of the data sets in this 

survey and that accounting for prior practice is not sufficient to rescue the power law of practice.  
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Figure 3. Percentages of cases where the APEX function provided a better fit than the general 
power function (solid circles) and exact binomial 95% confidence intervals for the published and 
unaveraged data sets in the survey. 
 

Table 2 gives the average R2 values for APEX and general power functions for each data 

set.  In every data set, the APEX function accounted for more variance than the general power 

function.  Overall, the average R2 was 0.507 for the APEX and 0.498 for the general power.  The 

APEX fits provided, on average, only a 2% improvement relative to the general power function. 

The small difference is to be expected, as the APEX function and the general power functions are 

quite flexible and hence able to imitate each other. However the advantage for the APEX function  

is very reliable, being evident in both the mean R2 values and number of individual learning 

series winners for every data set. Further, on average, the general power function provided no 

improvement in fit over the exponential, despite its extra parameter and ability to mimic 

exponential data.  These results suggest that the better fit of the general power function over the 
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power function is due to its ability to mimic the exponential function rather than due to the effect 

of pre-experimental practice. 

Across data sets, the correlation between the percent of APEX winners and percentage of 

significant practice effects was r = 0.405.  The value was reduced somewhat by ceiling effects 

reflecting a very strong preference for the APEX function in some data sets.  The difference 

between R2 for the general power and APEX functions was also highly correlated with their 

average value (r = 0.81).  Taken together, the results support the argument that the weaker 

advantage for the APEX function shown by some data sets in Figure 3 and Table 2 reflects noise, 

not the form of the underlying learning function.  

 Assessing asymptotic performance.  As documented in Table 2, the power function 

tended to predict implausibly fast asymptotic performance.  By implausibly fast, we mean an 

estimate of asymptotic expected RT ( PÂ  or EÂ ) less than 150 ms.  Luce (1986), notes that “... 

minimal [simple] visual reaction times are of the order of 180 msec” (p. 63) and that “... choice 

reaction times ... are slower than the comparable simple ones by 100 to 150 msec” (p. 208).  

Hence, a criterion of 150 ms is a conservative estimate of plausible expected RT after extensive 

practice.  Nevertheless, 87.7% of the estimates of asymptotic performance derived from the 

power function were less than 150 ms, compared to only 16.1% from the exponential.  

Under prediction of asymptotic performance can be anticipated in a few cases, either 

because of noise associated with individual subject and condition series or because the series 

were too short to measure asymptotic performance adequately.  The power function’s systematic 

tendency towards under prediction, however, is a symptom of serious misfit.  The reason is 

straightforward: The power function requires a large decrease in relative learning rate from the 

beginning to the end of practice.  Apparently the power function cannot both match the relative 

learning rate occurring early in practice and maintain a large enough learning rate late in practice 

to predict plausible asymptotic performance. Figure 2 illustrates such a case. Note that the power 
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function’s slow approach to its (implausibly fast) asymptote means that the under prediction is 

not evident in the range of practice trials measured. 

Allowing for pre-experimental practice greatly improves the frequency of plausible 

asymptotic performance estimates. Overall, the general power function predicted asymptotic 

performance less than 150 ms in only 35.3% of series.  Unlike the power function, the general 

power function does not have to predict a large decrease in relative learning rate from the 

beginning to the end of practice, although is does still predict that relative learning rate eventually 

decreases to zero.  The improvement, however, required large estimates of the effect of pre-

experimental practice.  Overall, the estimates of pre-experimental practice were 90.4% of the 

length of practice series, indicating that almost half of the learning relevant to the experimental 

tasks occurred prior to the experiment. 

Allowing for a constant relative learning rate greater than zero later in practice, but a 

decreasing relative learning rate early in practice, increased the frequency of implausible 

asymptotic performance estimates. Overall, the APEX function predicted asymptotic performance 

less than 150 ms in 27.4% of series.  The result raises the possibility that an exponential function 

is biased to over predict asymptotic performance, at least when the relative learning rate 

decreases early in practice.  Because the exponential function must predict that the relative 

learning rate is constant throughout practice, a decrease in relative learning rate early in practice 

causes over prediction of the relative learning rate later in practice and, hence, larger asymptote 

estimates.  As noted earlier, under prediction of the asymptote may occur because of noise and 

because practice was not carried on sufficiently to obtain an accurate estimate of asymptotic 

performance.  The results for the APEX function suggest that this may have been the case in 

about a quarter of the series contained in the published data sets. 

Three parameters or four?  Parsimony suggests that we should prefer a simpler model to a 

more complex model if the complex model does not provide a better explanation of the data. As 

noted previously, the general power function provides, on average, no improvement in R2 
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compared to the simpler exponential function.  Hence, parsimony suggests that we should prefer 

the exponential function to the general power function as the Law of Practice.  

The simple three-parameter exponential function also fits almost as well as the more 

flexible four-parameter APEX function.  Indeed, in 49% of the data series, the fits of APEX and 

exponential functions were equal, because the estimate of β’ for the APEX function was zero.  

However, the APEX function did provide, on average, a 2.4% improvement in R2, relative to the 

R2 for the exponential function, with values ranging from 0.6% for the Count1 data set to 7.2% 

for the Math4 data set.  

The latter results indicate that relative learning rate is either constant throughout practice 

or decreases slightly early in practice but then remains constant.  Over data sets, the difference 

between R2 for the exponential and APEX functions was positively correlated with their average 

value (r = 0.334).  The correlation suggests that weaker improvements of the APEX function are 

due to noise rather than the underlying shape of the practice function.  However, the association is 

much less than for comparison of the exponential function with the power function, and 

comparison of the APEX function with the general power function.  Hence, other factors may be 

at work. The data sets that show the largest improvements in R2 for the APEX function (Math2, 

Math3, and Math4) all come from experiments designed to examine a mixture of algorithmic and 

memory-based processes.  Consequently, a decrease in relative learning rate early in practice—

hence, the need for an APEX Law of Practice rather than an Exponential Law of Practice—may 

often reflect a mixture of strategies. 

Individual significance tests.  For each series, we compared the fit of the APEX function 

against that of the power and exponential functions using change-of-R2 tests (see Table 2).  

Overall, goodness-of-fit decreased significantly when the exponential parameter (α’) was fixed at 

zero in 65.7% of series, ranging from 6.3% for the Math3 and Math4 data sets to 96.4% for the 

VS2 data set.  By contrast, goodness-of-fit decreased significantly for only 15% of series when 
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the power (β’) parameter was fixed at zero, ranging from no significant decreases for the Math5 

data set to 36.1% for the Key1t data set.  The difference in rates supports the previous evidence 

favouring an exponential function over a power function.  

A very strong positive correlation was found between the percentage of significant 

practice effects and the percentage of significant α’ parameters, r = 0.85.  The correlation 

suggests that cases where α’ was not significant were due to higher noise levels.  The correlation 

between the percentage of significant practice effects and the percentage of significant β’ 

parameters, r = 0.566, was weaker.  The weaker correlation suggests some cases where β’ was not 

significant were due to noise, but that in many other cases β’ was not significant because the 

underlying practice function did not have a power component.  

Only 7.8% of series had both α’ and β’ estimates significantly greater than zero (i.e., 

required the full APEX function).  The data set that provided the strongest evidence for a power 

component (Key1t) also provided the strongest evidence for the full APEX function.  The percent 

of series with significant β’ estimates was highly correlated (r = 0.879) with the percent of series 

in which both α’ and β’ estimates were significant; hence, even when relative learning rate 

decreased early in practice, asymptotic relative learning rate did not decrease to zero.  The one 

exception was the Math2 data set; here, 21.4% of the series with a significant β’ estimate did not 

have a significant α’ estimate.  Even in the Math2 data set, however, significant α’ estimates 

predominated over significant β’ estimates.  

The individual significance tests support results reported earlier in suggesting that the 

exponential function provides a parsimonious model of the Law of Practice in most cases.  Strong 

evidence for the full APEX function was obtained in only a minority of series and paradigms. 

Where evidence existed for a power component, it was usually associated with simultaneous 

evidence for an exponential component.  Hence, a power function alone does not provide a good 
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model of the Law of Practice because it wrongly predicts that the relative learning rate decreases 

to zero with practice.  

The Effect of Aggregation 

 The analyses presented so far used data sets from individual learners and learning 

conditions to avoid confounding the shape of the function with the effects of aggregation over 

series with different learning rates.  However, some level of aggregation could still have 

occurred, due either to a mixture of strategies or to summation of times for a series of responses.  

In the following sections, we examine the effects of such aggregation in detail.  We then examine 

the effects of aggregation in data sets that were only available as an average across within-subject 

conditions. 

Mixed strategies?  Rickard (1997) has recently suggested that the Power Law of Practice 

fails because subjects use a mixture of algorithmic and memory-based processes, particularly 

early in practice.  Although he maintains that both algorithmic and memory-based processes 

individually follow a power function, he argues that the mixture does not follow a power 

function.  He has also speculated that an advantage for an exponential function over a power 

function might reflect the mixing of algorithmic and memory based processing, both of which 

separately follow a power function (Rickard, 1996, personal communication). 

We tested his suggestions using data sets from Rickard (1997), Reder and Ritter (1992), 

and Schunn et al. (1997).  In all three studies, subjects reported their processing strategy.  For our 

analysis, the data sets from the latter two papers (Math3, Math4, and Math5) were combined, as 

each data set by itself had few series.    

 The results of fits, subdivided by processing strategy, are presented in Figure 4 (in the 

sections labelled Math and AA).  Both algorithm (75.1%) and memory (79.2%) series were better 

fit by the exponential than power function (77.8% overall).  An advantage for the APEX function 

over the general power was even stronger:  86.1% overall, with 86.4% of the algorithm series and 

85.9% of the memory series won by the APEX function.  As indicated by the 95% confidence  
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Figure 4. Percentages of cases (solid circles) where (a) the exponential function provided a better 
fit than the power function, and (b) the APEX function provided a better fit than the general 
power function, and exact binomial 95% confidence intervals, for data sets in the survey not 
presented in Figures 1 and 2. 
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intervals in Figure 4, the preference for exponential and APEX functions was highly significant.  

We conclude that the better fit for the exponential function is not due to a mixture of component 

power functions.  

The results for the series separated by processing strategy, are almost identical to the data 

for the same data sets in Figures 1 and 3, where no distinction was made between processing 

strategy (83.4% exponential and 84.0% APEX overall).  We take comfort from the similarity 

because it argues that mixtures of processing that might have taken place elsewhere in the survey 

did not distort the tests that we have reported.  

Figure 4 also shows the results for a data set from an unpublished alphabet-arithmetic 

task (AA2) similar to Rickard’s (1997) task, except that the subjects were not asked to report their 

strategy.  The results for AA2 also clearly favour the exponential and APEX functions, 

confirming their dominance in the alphabet-arithmetic paradigm when strategy reports are not 

required. 

 Sequential responses.  Figure 4 summarises the effect of a second type of aggregation:  

summing times from a sequence of responses.  In the analyses of Verwey’s (1996) data shown 

earlier, we examined the total time to perform nine sequential key presses.  Because summing 

across individual key presses may have distorted the form of the practice function, we looked at 

the separate responses.   

As Figure 4 shows, the time to produce individual chunks and the time to produce 

individual key presses were both fit better by the exponential and APEX functions than by the 

power and general power functions respectively.  Combining over data sets from Day 1 and later 

days, there was a slight reduction in the preference for the exponential for individual key press 

(80.7%) and chunk (79.1%) compared to the total series (84.7%).  There was also a slight 

reduction in the preference for APEX for individual key press (88.6%) and chunks (88.6%) 

compared to the total series (89.6%).  The small reductions likely reflect greater noise in the key-
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press and chunk compared to the total series.  In any case, the results indicate that summing times 

to perform individual responses did little to distort the form of the practice function in these data.  

Averaging across conditions.  Seibel (1963) studied subjects who practiced production of 

all 1023 possible combinations of 10 key presses in response to a compatible visual display.  

Newell and Rosenbloom (1981) re-analysed the data from one of Seibel’s subjects, JK, from the 

first 75 blocks of practice.  The data were averaged over the 1023 different combinations of key 

presses and blocks.  When we re-analysed the data using ordinary least squares fitting, the power 

function (R2 = 0.9858) provided a better fit than the exponential (R2 = 0.9584) but the APEX 

function (R2 = 0.9902) provided a better fit than the general power function (R2 = 0.9895).   

Some combinations of key strokes are harder than others and, as a result, may have been 

learned at different rates.  If so, the shape of the practice function may have been distorted by 

averaging over conditions with different learning rates.  The effect of averaging over conditions 

with different learning rates is the same as the effect of summing over components of 

performance with different learning rates; conditions with fast learning rates will dominate the 

relative learning rate early in practice but will soon approach their asymptote.  Hence, late in 

practice, conditions with slow learning rates will control the relative learning rate.  The transition 

will decrease the relative learning rate of the average function and could yield a better fit for the 

power than the exponential. However, if learning is exponential for the combinations with slower 

learning rates, the relative learning rate later in practice will be a constant greater than zero, and, 

as we found, the APEX function will fit better than the general power function. Further evidence 

against the general power function in this paradigm is reported by Rosenbloom and Newell 

(1987a). They found that that the exponential function fit better than both the power and general 

power functions for a single subject performing Seibel’s (1963) task.   

Because evidence on the form of the practice function for learning key combinations is 

both scant and used relatively short series for each combination, Brown and Heathcote (1997) 

examined learning key combinations in a larger sample of subjects with a larger number of trials 
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per combination.  Simplifying Seibel’s (1963) paradigm, they used only four response keys and 

the 14 possible keystroke combinations that involve 1 to 3 key presses.  By reducing the number 

of combinations (relative to Seibel’s 1023), they were able to increase the length of the series for 

each combination.   

As shown in Figure 4, 76.4% of series were better fit by the exponential than power 

function.  The result suggests that the power function fit better than the exponential function for 

Seibel’s (1963) subject JK because of averaging.  In Brown and Heathcote’s (1997) data, 78.6% 

of the series were better fit by the APEX function than the general power function.  The pattern 

suggests that the asymptotic relative learning rate did not decrease to zero and is consistent with 

the results for Seibel’s subject JK and Newell and Rosenbloom’s (1987a) subject.  Hence, results 

for key combinations are consistent with results for other tasks in suggesting that relative learning 

rate is constant within experimental conditions.  

 The final analyses presented in Figure 4 concern data sets that were available only as 

averages across conditions.  The first three data sets were from Anderson, Fincham, and Douglass 

(1997); subjects practiced the application of a number of different rules learned from examples. 

The data were averaged over the different rules and over groups of practice blocks.  As shown in 

Figure 3a, only one data set produced significantly more exponential than power fits, and one 

data set displayed a (non-significant) preference for the power function.  

As shown in Figure 4b, however, all data sets were fit significantly better by the APEX 

function than by the general power.  Overall, the APEX function won in 76.4% of the series from 

these data sets.  The advantage for the APEX indicates that power components to learning were 

largely restricted to the early part of practice and that asymptotic learning was exponential.  We 

suspect that the rules differed in difficulty and, hence, in learning rate.  Certainly, the pattern 

reported in Figures 4a and 4b is consistent with the effects of averaging across conditions with 

different learning rates.   
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  The final averaged data set is from a developmental study of mental rotation of letters 

performed by Kail and Park (1990).  The data were averaged over the four types of letter stimuli 

and the two presentations of the letters in each practice block.  Figure 4 presents the results of 

analyses separately for children and adults. They show a strong preference for the power function 

over the exponential.  However, like the other data that included averaging, the APEX function 

provided a better fit than the general power function, with preference for both children and adults 

being significant and on average 73.4%.  As before, the advantage for the APEX indicates that 

power components to learning were largely restricted to the early part of practice and that 

asymptotic learning was exponential.  

 Because the mental rotation data provide the strongest evidence for the Power Law of 

Practice of any data set in the survey, Ringland and Heathcote (1998) replicated Kail and Park’s 

(1990) study.  As shown in Figure 4, when analyzed without averaging (MR2c and MR2a), 

mental rotation too significantly favored the exponential function over the power function for 

both ages.  Figure 4 also shows Ringland and Heathcote’s data averaged in the same way that 

Kail and Park’s data had been averaged (MR2ca and MR2aa).  Although a strong preference for 

power was not obtained, averaging reduced the number of exponential wins.  Moreover, as 

before, the APEX function provided a better fit significantly more often than the general power 

function, for both averaged and unaveraged series.  In other words, averaging pushes the results 

towards the power function.  We suspect that the remaining differences between the Kail and 

Park’s data and Ringland and Heathcote’s data reflect differences in learning rates induced by 

differences in the font in which the stimuli were displayed.   

Individual Differences 

Over almost all of the data sets analysed, both exponential and APEX functions dominate 

power and general power functions, but the dominance is not complete.  Between 15-20% of 

learning series were better described by power and general power functions.  One explanation is 

noise.  We have provided evidence for this possibility by showing that preference for the 
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exponential and APEX functions increases as noise decreases.  Nevertheless, the possibility 

remains that the power or general power functions might provide a better description of practice 

effects in at least some data sets for a minority of conditions or subjects. 

We calculated Φ coefficients to quantify the relationship between a preference for 

exponential and APEX functions and (a) all of the between- and within-subject factors used in the 

various tasks in the survey, and (b) individual subjects.  The Φ coefficient is a non-parametric 

correlation that ranges between zero and one.  It is a linear transformation of the χ2 statistic used 

to test the contingency between frequencies in a two-way classification.  Larger values of Φ 

indicate a stronger contingency or association.  If the power or general power functions provide a 

better description of learning for a subset of subjects or a subset of conditions, preference should 

be systematically related to those subjects and conditions, the corresponding Φ coefficients 

should be large, and their corresponding p-values should be small.  By contrast, if preference for 

the power or general power functions reflects noise, it should not be systematically related to any 

experimental factor or to particular subjects, and all Φ coefficients should be small.  Small values 

of Φ and correspondingly large p-values indicate that the null model (i.e., no systematic 

relationship between factors and preference for a function) provides a good description of the 

data. 

Table 3 presents both estimated Φ coefficients and the significance levels of the 

associated χ2 tests7.  The values of the Φ coefficients were very small in most cases, with a mean 

value of 0.11 and a median of only 0.07.  Table 3 reports just the cases, out of more than 200, 

with Φ estimates greater than 0.2.  All but three of these estimates were associated with subjects 

                                                 

7 The significance of each Φ coefficient was tested with the corresponding χ2 test.  The 

significance levels for these tests must be treated with some caution, especially for the subjects 

factor, as they assume independence.  
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(i.e., individual differences), despite the larger number of other types of factors.  Two of the three 

experimental factors with Φ coefficients greater than 0.2 are between-subjects, and so may be due 

to individual differences. The only within-subjects factor in Table 3 has a Φ coefficient only 

slightly greater than 0.2.  Only two of over 200 tests indicated significant systematic contingency 

between function preference and an experimental factor, and in both cases, the experimental 

factor was a between subjects factor. 

Table 3. Φ coefficients greater than 0.2 for all data sets in the survey. Probability (p) refers to a 
test of the χ2 value corresponding to each Φ.  

Exponential vs. Power APEX vs. General Power 
Data Set Factor Φ  p Data Set Factor Φ  p 
Rule1 Subjects 0.664 0.638 Rule1 Subjects 0.470 0.994 
MR1 Subjects 0.489 0.000 Key1t 3:3:3/3:6 0.281 1.000 
Rule3 Subjects 0.440 0.861 MR1 Subjects 0.280 0.449 
Math4 Subjects 0.434 0.674 Rule3 Subjects 0.274 1.000 
Math1 Subjects 0.329 0.011 Math3 Subjects 0.263 0.999 
Key1t 3:3:3/3:6* 0.307 1.000 Math4 Subjects 0.255 0.997 
MS3 Subjects 0.279 0.975 MS2 Subjects 0.254 0.999 
VS2 Subjects 0.261 0.275 VS2 Subjects 0.252 0.802 
Key1c Subjects 0.244 1.000 MS3 Subjects 0.235 0.997 
AA2 Subjects 0.231 0.881 Key1c Subjects 0.230 1.000 
Math5 Subjects 0.224 1.000     
Key2t Subjects 0.220 1.000     
Math4 Problem† 0.220 0.263     
*Between subjects factor for chunk size.   
†Within subjects factor for problems. 

The largest estimates of Φ occurred in the averaged data sets, suggesting that they may 

reflect individual differences in exponential learning rates across averaged conditions, rather than 

true power practice effects.  The only significant associations were obtained for exponential 

compared to power fits.  In the MR1 data set, a single child had exponential wins in all 12 

conditions, and two adults had 8/12 exponential wins, whereas the majority of series were power 

wins.  For the Math1 data set, subjects ranged from all exponential to all power across the 16 

within-subject conditions.  

The results suggest that deviation from the general finding of exponential practice is 

more likely to be associated with individual subjects than with particular within-subject 
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conditions.  The finding reinforces our earlier caution that practice functions from different 

subjects should not be averaged, not only because variation of learning rates can distort the shape 

of the average function, but also because individual subject’s learning may occasionally follow a 

function other than the usual exponential form. 

Discussion 

Our results can be summarized as follows: The three-parameter exponential function 

provided a better description of learning than the three-parameter power function in more than 

80% of cases.  The four-parameter APEX function provided a better description than the four-

parameter general power function in about 85% of cases. Hence, a mixture or sum of power-

function processes early in practice cannot explain the power function’s loss, as learning was 

exponential later in practice, when a single process should predominate.  In experiments that 

identified algorithmic and memory based components, learning in both components was better 

described by the exponential and APEX functions than by the power and general power 

functions, respectively. The four-parameter general power function provided no improvement 

over the simpler three-parameter exponential function. Hence, the power function did not lose to 

the exponential function because of the effects of pre-experimental practice.  

In about half of the cases considered, the four-parameter APEX function provided no 

measurable improvement over the three-parameter exponential function, indicating that the extra 

flexibility implied by a fourth parameter was not needed.  Where the fit was improved, the 

improvement largely reflected a decrease in relative learning rate early in practice.  Later in 

practice, learning was exponential, as indicated by the dominance of the APEX function over the 

general power function.  Hence, the most parsimonious assumption appears to be that practice 

produces a simple exponential improvement and a constant relative learning rate, with the caveat 

that some change in the relative learning rate may occur early in practice.  



In Press, Psychonomic Bulletin and Review                          The Power Law of Practice: Repealed 

 40

Despite the ability of nonlinear practice functions to imitate each other, determining the 

form of the practice function, at least to a first approximation, has not proved to be an insoluble 

technical issue.  For the theoretically important comparison of exponential and power functions, 

preference for the exponential function was clear and significant in all paradigms.  The 

improvement in fit provided by the exponential function relative to the power was in many cases 

quite large, with an average value of 17%.  Consequently, the description of practice effects by a 

power function is often substantially in error (e.g., Figure 2).  

The estimated parameters of the power function are also misleading because of the 

problem of imitation.  We have shown that at least one parameter of fitted power functions, the 

asymptote, is usually an under estimate. Under estimation of the asymptote likely reflects 

imitation of a constant relative learning rate, particularly later in practice.  Because parameter 

estimates tend to be correlated, underestimation of the asymptote is likely to distort estimates of 

the other parameters of the power function. In short, parameter estimates from the power function 

are likely to be unrelated to the psychological processes underlying learning or, at best, related in 

a complex way determined by the best imitation that a fitting algorithm can find. 

The minority of cases in which the exponential function was not the best description 

appear largely to be due to random variation.  Preference for the exponential function was larger 

in paradigms with higher signal to noise ratios, and the frequency of exceptions to the exponential 

rule was not systematically related to within subject conditions.  However, a small minority of 

individual subjects did show systematic deviation from the exponential rule.  

Overturning an empirical law requires a high standard of evidence.  Our results are clear 

that the most parsimonious Law of Practice is the exponential function.  Nevertheless, it would be 

unwise to accept the exponential function without question.  Instead, it should form a baseline for 

comparison with other possible forms, and comparison should be carried out using individual 

subjects’ data via nested-model tests.  Testing should not be carried out on averaged data, as 

averaging distorts the form of the practice function (Brown & Heathcote, in preparation;  
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Anderson & Tweney, 1997; Myung et al. 1998).  The following sections examine these 

techniques in more detail.  We then consider the implications of an Exponential Law of Practice 

for theories of skill acquisition. 

Measuring Practice Functions 

Averaging and practice functions. Averaging usually distorts the form of the practice 

function.  Our analyses for individual subjects and conditions stand in marked contrast to Newell 

and Rosenbloom’s (1981) results for averages over subjects and conditions.  Empirically, we 

found that averaging over within-subject conditions can produce a bias in favour of the power 

function.  We also found that practice curves for a small minority of subjects may differ from the 

usual exponential form.  Consequently, as Newell remarked, averaging “… conceals, rather than 

reveals.  You get garbage or, even worse, spurious regularity.” (1973, p. 295).  

Our findings reinforce long standing analytic results that the learning curve for an 

arithmetic average need not have the same form as the functions contributing to the average (e.g., 

Estes, 1956; Sidman, 1952).  They also confirm that these results are not a mathematical nicety: 

Arithmetic averages can be biased in favour of a power function and against an exponential 

function in real data.  Myung, Kim, and Pitt (1998) have explored why arithmetic averaging of 

nonlinear functions distorts the average curve and have shown that other averaging techniques are 

required when dealing with nonlinear models; the appropriate average depends on the nature of 

the functions to be averaged.  Our empirical results and the analytic results converge on the same 

conclusion: averaging cannot succeed without first taking into account the form of the functions 

to be averaged.  Research workers can no longer afford to ignore, or worse to dismiss, the effect 

of averaging as irrelevant to real data from paradigms used in the study of learning.  

Some variability among component learning rates is necessary for distortion of power 

and exponential function averages.  When component learning rates are exactly equal, the 

average has the same functional form, and its parameters equal the average of the component’s 

parameters, at least for purely deterministic functions.  When the component learning rates vary, 
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neither condition need apply (see Myung et al., 1998).  The degree of distortion is proportional to 

the degree of learning rate variability.  In particular, for averages over exponential functions, a 

power-like decrease in the relative learning rate will occur if the sample contains fast and slow 

learners.  

Rickard (1997) suggested that averages do not distort practice functions because the 

parameters of learning functions “do not have extremely large variance (a condition that probably 

holds in most real data sets)” (p. 295).  Our experience, both with real data sets and with 

numerical simulations, differs.  Most data sets in the survey contained both fast and slow learners 

and sometimes fast and slow learning conditions, with learning rates often varying over several 

orders of magnitude.  Subjects or conditions that showed a substantial improvement with practice, 

but at a slow learning rate, were particularly likely to bias the fit toward the power function in the 

average. Not only were large variations in learning rates regularly observed in the survey data, 

but also simulations (Brown & Heathcote, in preparation) show that the amount of variation in 

learning rates required to produce significant bias is often as little as one order of magnitude.  

Hence, we think it is dangerous to assume that the parameters of learning functions are 

sufficiently homogenous to avoid substantial averaging distortion. 

Geometric averaging (averaging on a logarithmic scale) has been widely suggested as a 

solution to the problem of distortion (e.g., Anderson & Tweney, 1997; Rickard, 1997).  However, 

geometric averaging preserves the form of averages of power functions and averages of 

exponential functions only if the asymptote is negligible.  It is unreasonable to assume a 

negligible (near zero) asymptote for practice functions because performance is limited by 

physical constraints, such as neural integration time and motor response time.  Geometric 

averaging, therefore, will still distort the form of the average practice function.  While the 

distortion may be less than for arithmetic averages (although Brown & Heathcote, in preparation, 

found that the benefits were negligible for the data typically collected in practice paradigms), its 
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effect may differ across experimental conditions or groups of subjects, potentially confounding 

comparisons.   

In general the scale on which averaging should take place is data-dependent. With 

geometric averaging the scale depends on the (usually unknown) asymptote parameter, which 

must be subtracted from the data before logarithmic transformation. Consequently, practice 

functions must be fit to individual data to estimate the asymptote before averaging can be safely 

performed. Even then, averaging is problematic because the asymptote is an expected value, and 

hence will be greater than some data points, at least when a sufficiently long practice series is 

measured to produce a reliable estimate of the asymptote (cf. our critique of Newell & 

Rosenbloom’s, 1981, fitting methods). Subtracting the asymptote estimate from such data points 

produces a negative number for which the logarithmic transformation is undefined.  Hence, even 

when the appropriate transformation is known or can be estimated, averaging raw data, which is 

always contaminated by noise, will not be useful when fitting power and exponential functions. 

The only case in which averaging is safe is when learning rates vary little between the 

components of the average. Given that individual analysis is needed to determine when averaging 

is safe (i.e., to determine the individual learning rates) analysis of the averaged data adds little of 

value.  The survey, however, is encouraging for the study of individual learning.  Individual 

learning effects were often very large, so that averaging was not needed to minimise the effects of 

trial-to-trial variability.  In paradigms with large learning effects, nested-model tests on individual 

curves were usually decisive.  Typically, they indicated the need for an exponential component 

only, but in a small number of cases, they implicated a power component or both components 

simultaneously.  Such nested-model tests not only provide an inferential basis for conclusions 

about the form of individual learning curves but also provide a method of identifying unusual 

cases. 

Despite these problems, most researchers would agree that “average data are useful 

because they often reveal general trends” (Anderson, 1999, personal communication).  Given its 
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utility, averaging is not likely to surrender its place in data analysis – and nor should it.  

Averaging itself is not intrinsically problematic; biases are only introduced when the scale on 

which data are averaged does not match either the data or the analyses.  Because of noise, 

averaging of raw practice data is unlikely ever to be useful. However, analysis of average 

parameter estimates, such as performing ANOVA on the parameters of the best fitting practice 

functions as determined by individual analysis, remains viable (e.g., Heathcote & Mewhort, 

1995). Such analyses maintain the beneficial effects of averaging, such as reducing noise and 

revealing general trends, without introducing the systematic distortions produced by averaging 

raw data.  Representations of average performance can be obtained by plotting the practice 

function with parameters equal to the average of parameters for individual practice functions.  

Nested models and relative learning rates. Detailed consideration of nested-model testing 

is beyond the scope of the present work (we recommend Bates & Watts, 1987, for further 

reading).  However, a few points of clarification are in order.  The benefits of nested-model tests 

are not limited to practice functions, and useful higher-order nesting functions are not limited to 

the APEX function.  Commenting on the form of the forgetting function, for example, Wickens 

(1998) suggested the use of higher-order functions that isolate theoretically important 

characteristics in separate parameters.  The idea is that theories can then be tested by measuring 

the effect of experimental manipulations on parameter estimates.  We chose the APEX function 

because tests of the α’ and β’ parameters determined the contributions of theoretically important 

power and exponential components.  Other functions such as the Weibull, favored by Wickens8, 

or perhaps a sum or mixture of exponential functions, may prove useful in other applications.  

                                                 

8 The Weibull function is a power transformation of the exponential function. With an exponent 
of one it equals an exponential function and so has a constant relative learning rate.  Exponents 
greater than or less than one produce increasing and decreasing relative learning rates 
respectively. Wickens (1998) also used the Parto II function. The Parto II function is a special 
case of the general power function. Our evidence suggests that the general power function is 
inferior to the APEX function and plagued by ill-conditioned fitting for practice curves. 



In Press, Psychonomic Bulletin and Review                          The Power Law of Practice: Repealed 

 45

Again, nested-model tests provide an inferential basis for determining a parsimonious form for 

the function and for testing theories.  

An important feature of our work is the use of relative learning to compare practice 

functions with different mathematical forms.  Wickens (1998) used the hazard rate for forgetting 

functions in much the same way that we use relative learning rate.  Relative learning rates and 

hazard rates are defined on different measures, expected RT and probability of forgetting, 

respectively, but are otherwise identical.  

The importance of the relative learning and hazard rates suggests the desirability of a 

direct estimate that does not assume a parametric function.  However, as Wickens (1998) notes 

“Although the use of empirical estimates of the hazard function to select among candidate 

functions or explanations is attractive, adequate precision is hard to obtain …” (p.382).  Non-

parametric relative learning rates can be obtained by dividing estimates of the derivative, such as 

the difference between RT for adjacent practice trials, by an estimate of the expected value of 

RT.  Like other researchers (e.g., Luce, 1986, p. 60-63), we have found such methods to be 

inefficient for response time measures.  The problem is that such estimates of the derivative tend 

to be unacceptably noisy, especially with data that are not averaged. Because of these problems, 

the approach we have taken is fitting simple parametric models with different relative learning 

rate functions. 

Recent advances in non-parametric regression may provide an alternative approach.  

These techniques reduce the effects of noise by local smoothing with kernels or splines. By 

estimating the regression function using local polynomial regression, for example, direct 

estimates of the derivative are obtainable at every point.  These methods have been shown to 

often provide reliable estimates of differential metrics (Wand & Jones, 1995), such as the relative 

learning rate. 
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However, simple parametric functions, particularly the exponential function, provide an 

important advantage for empirical investigations: They allow the estimation of a single learning 

rate parameter that applies for all levels of practice. Because the practice function’s slope changes 

with practice, slope cannot provide a single parameter summary of learning rate.  The exponential 

function’s α parameter does provide such a summary by assuming that slope is proportional to 

the amount left to be learned. The β parameter of the power function also provides a single 

parameter summary by assuming that slope is hyperbolically related to the amount left to be 

learned. However, the results of our survey suggest that the power function does not provide an 

accurate model of practice effects, and so inferences based on estimates of β may be misleading. 

Fitting methods and RT distribution. Least-squares fitting, as used in the survey, assumes 

normally and independently distributed residuals around the expected value function (i.e. the 

practice function). This assumption is violated by response time data.  Response time 

distributions are usually positively skewed and their means and variances are often positively 

correlated across conditions (Luce, 1986).  Changes in the residual distribution with practice have 

been analysed previously (e.g., Logan, 1988; Rickard, 1997) and large decreases in standard 

deviation with practice observed.  

These violations of the assumptions of least-squares fitting may have biased our results.  

To check for such bias, we developed a more sophisticated regression technique (APEXL) and 

applied it to the survey data.  Space restrictions do not allow a full explication of the APEXL 

technique, or the results of its application. Briefly, APEXL fitting uses a special case of Box and 

Cox’s (1964) two-parameter transformation family and implements Carroll and Ruppert’s (1988) 

“transform both sides” approach to regression. It simultaneously estimates both the expected 

value function’s parameters and a data-dependent transformation parameter.  The transformation 

is a shifted logarithm, ln(RT-λ), where the transformation parameter, λ, is an estimate of the 
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lower bound of RT distribution.  APEXL fitting iteratively re-weights residuals during fitting to 

maximise normal distribution and homogeneity of variance on the transformed scale.   

The model underlying APEXL fitting is that RT follows a Lognormal distribution. The 

Lognormal distribution is positively skewed and has been found to provide a good account of 

response time data (Ratcliff & Murdock, 1976).  The APEXL model assumes that Lognormal 

distribution is combined multiplicatively with the expected value function, so that response time 

mean and variance are positively correlated.  A detailed analysis by Heathcote and Mewhort 

(1995) found that the model provided a good description of response time distribution for 

Heathcote and Mewhort’s (1993) visual search practice data. When we applied APEXL fitting to 

the unaveraged data sets9 in the survey, 79.0% of practice series were better fit by exponential 

than power functions. Hence, the APEXL analysis supports the conclusion from the least-squares 

analyses that the exponential function is the best simple candidate for the Law of Practice.  We 

are confident, therefore, that our results were not biased by violations of the assumptions 

underlying least squares fitting.  

While the results of APEXL and least squares fitting are consistent in their selection of 

the best practice function, APEXL fitting has a number of advantages over the ordinary least 

squares approach.  APEXL fits simultaneously estimates the median function along with the 

expected value function (the two are identical on the transformed scale as residuals are normally 

distributed). It provides not only estimates of the expected value function’s parameters but also 

characteristics of variability around the expected value function, such as the variance and lower 

bound of the Lognormal distribution. When its assumptions hold, APEXL fitting is more efficient 

than ordinary least squares fitting, a critical advantage when fitting noisy individual data. The 

assumptions of nested model tests are better fulfilled on the transformed scale and so Type 1 error 

                                                 

9 The averaged data sets were not analysed using the APEXL technique because the central limit 
theorem implies that averages tend to be normally distributed. 
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probability is better estimated.  Finally, the form of the expected value function is the same on the 

transformed and natural scale, a property that is not true of the more commonly used power 

transformations (Miller, 1984). Heathcote, Brown and Mewhort (in preparation) examine the 

performance of the APEXL technique in detail, both for data from the survey and for simulated 

data. 

Approaches such as APEXL fitting help to illuminate interesting properties of practice 

data sets beyond the expected value function, such as the change in response time variance as a 

function of practice. Such properties can provide useful constraint for theories of skill acquisition 

(Logan, 1992; Rickard, 1987). Proper measurement of variance, however, relies on prior 

estimation of the expected value function.  Previous attempts to measure variance as a function of 

practice, for example, used variance estimates calculated from successive blocks of raw data 

(Kramer, Strayer & Buckley, 1990; Logan, 1988).  Block variance has two components, variance 

around the expectation function and variance caused by a decrease in expected values across the 

block.  The contribution to block variance from the change in expected value function is unequal 

in different practice blocks.  Early in practice, the expected value function changes rapidly, and, 

as a result, block variance is greatly inflated by it.  After extensive practice, however, the function 

is relatively flat, so block variance is an almost pure measure of variance around the expected 

value function.   

Predictions from skill acquisition theories have been derived for pure variance around the 

expected value function (e.g. Logan, 1988, 1992). Consequently, these theoretical predictions 

cannot be tested by measurement of block variance, which does not purely measure variance 

around the expected value function. The problem can be remedied, by analysing residuals 

obtained by subtracting the expected value function from the raw data, but the correct expected 

value function must be determined first. A similar procedure is required for measurement of other 

                                                                                                                                                 

 



In Press, Psychonomic Bulletin and Review                          The Power Law of Practice: Repealed 

 49

interesting properties of practice data sets, such as autocorrelation between responses. Hence, the 

results of our survey, which bear on the form of the expectation function, provide the first step in 

the proper assessment of these other interesting measures. 

Before closing this section we wish to caution against a widely used technique for fitting 

practice functions: log~log and log~linear plots.  In detail, the goodness of fit of power and 

exponential functions are determined by comparing the linearity of data in log(RT)~log(N) and 

log(RT)~N plots respectively.  Such fits implicitly assumes that the asymptote of the practice 

function is zero.  The assumption is not only wrong, but also produces a bias in favor of the 

power function.  The power function approaches its asymptotic value more slowly than the 

exponential function and, so, its fit is less effected by an underestimated asymptote.  In the survey 

data, small estimates of the asymptote were more commonly associated with the best fits for the 

power function than the best fits for the exponential function.  Hence, our results show that 

assuming a zero asymptote will likely hurt the fit of the exponential function more than the fit of 

the power function. Misspecification of the asymptote is also likely to make estimates of other 

practice function parameters, such as learning rates, at best difficult to interpret and at worst 

misleading, because parameter estimates are usually correlated.  

Theoretical Implications 

Our results repeal the Power Law in favour of an Exponential Law of Practice.  Many of 

the data sets included in the survey were collected in order to test specific theories of skill 

acquisition. We will now consider the implications of an Exponential Law of Practice for these 

theories.  Some of the theories are tied to the power function more tightly than other theories. 

Although it is possible for some theories to retain their fundamental assumptions, all require at 

least some modification in the way these assumptions are applied.  The mathematical details of 

the required modifications are beyond the scope of the present work. In the following we provide 

only heuristic details in order to illuminate the theoretical implications of an Exponential Law of 

Practice. 
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Chunking theory. The first response to Newell and Rosenbloom’s (1981) Power Law of 

Practice was their chunking theory, which was later elaborated by Rosenbloom and Newell 

(1987a, 1987b).  The theory does not exactly predict a Power Law of Practice, but it does predict 

that relative learning rate decreases to zero with practice.  To obtain a decreasing relative learning 

rate, Newell and Rosenbloom assume (a) chunks are learnt hierarchically, (b) that larger chunks 

necessarily practice their smaller components every time the larger chunk is practiced, and (c) 

that no larger span chunk is acquired until all chunks of smaller span are acquired, at least in 

combinatorial learning environments.  A combinatorial learning environment is one in which 

larger chunks are encountered less often than smaller chunks. The prototypic example is Siebel’s 

(1963) key-press combination task. 

Newell and Rosenbloom’s (1981) assumptions can be replaced by a single simple 

assumption to achieve an exponential practice function: Chunks are executed as a single unit and, 

so, practice only themselves, not their constituents.  Newell and Rosenbloom implicitly make a 

similar assumption by claiming that the execution time for a chunk is independent of its size.  

Neves and Anderson (1981) also note that such a chunking mechanism, which they call 

composition, produces an exponential practice function.  

Even if Newell and Rosenbloom’s (1981) theory is not modified, it predicts a decreasing 

relative learning rate only with practice in a combinatorial learning environment.  Arguably, in 

most of the paradigms examined in the survey, the learning environment was not combinatorial.  

Hence, chunking theory predicts the observed exponential practice functions.  The only data from 

clearly combinatorial environments come from Siebel’s (1963) subject JK, Rosenbloom and 

Newell’s (1987a) single subject, and Brown and Heathcote’s (1998) subjects.  Brown and 

Heathcote’s data strongly favoured an exponential function, but their paradigm used a smaller set 

of combinations than the other experiments; hence, the effect of the combinatorial environment 

was likely attenuated.  Verwey’s (1996) paradigm is also likely to be only weakly combinatorial 

as subjects practiced exactly the same sequence on all trials and chunk structure was consistently 
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defined by cues.  For simple environments our results are unambiguous that the relative learning 

rate does not change much with practice, a pattern predicted by a simple chunking mechanism.  

Clearly, more work is required to determine if complex combinatorial environments yield 

a decreasing relative learning rate.  At present, however, the weight of evidence favours a 

constant relative learning rate and, hence, the assumption that chunks are seamless units that do 

not practice their constituents.  More work is also required on Newell and Rosenbloom’s (1981) 

derivation of a decreasing relative learning rate (it is not exact).  In contradiction of the 

derivation, several of the simulations of their model presented in Rosenbloom and Newell 

(1987a) were better fit by an exponential function than a power function. 

Aggregated component theories.  Neves and Anderson (1981) suggested a second 

mechanism based on chunking that produces a decreasing relative learning rate with practice: The 

summation of many components that learn exponentially. The mechanism is a generic one.  For 

example, Rickard (1997) suggests that response strength for memory based processing is the sum 

of strengths of a collection of neural connections that individually learn exponentially, so that the 

sum is a power function.  At a coarser scale, Kirsner and Speelman (1996) argue that many tasks 

rely on several components and so a sum of component learning functions provides a superior 

model of practice effects. 

The critical factor for producing a decreasing relative learning rate in the sum of 

exponential components is that some components learn more quickly than others. A decreasing 

relative learning rate occurs for the same reason that averaging across subjects with different 

learning rates produces a decreasing relative learning rate.  Fast learning components produce a 

large overall relative learning rate early in practice but soon reach asymptote; hence, learning 

later in practice is controlled by slow learning processes with smaller relative learning rates.  

A modified assumption—that the variation amongst learning rates is small—is required if 

theories based on summed exponential components are to predict the exponential practice 

functions found in the survey.  Where all components of the sum have exactly the same learning 
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rate, the sum is exactly exponential.  Where learning rates vary, the sum will not be exactly 

exponential, but if the variation is small, it will approximate an exponential function.  Such a 

model can also accommodate APEX practice functions if learning rates vary but the smallest 

learning rates are appreciably greater than zero.  Later in practice, the smallest learning rate 

component or components control learning, so that relative learning rate is asymptotically greater 

than zero, as in the APEX function.  This may account for the evidence for an APEX function 

that was found in the survey.  

It is also possible that a sum of components that learn according to power functions can 

approximate an exponential or APEX practice function.  It is well known that the sum of an 

infinite number of power functions (i.e., a Taylor series) can approximate nearly any function.  

However, an infinite number of components is not plausible for psychological processes. For 

finite sums, approximating an exponential function by the sum of power components also 

requires assumptions about the weight for each component in the sum. In particular, the weights 

must vary over at least as many orders of magnitude as there are components. Consequently, 

power components require justification for the change in weights across many orders of 

magnitude.  

The assumption of power components itself also needs justification.  Exponential 

components can be naturally derived from simple mechanisms.  For continuous mechanisms, one 

need only assume that learning is proportional to the time taken to execute the component.  That 

is, a component that takes longer to execute presents more opportunity for learning.  As learning 

proceeds, the time to execute the component decreases; hence, the learning rate decreases, 

resulting in exponential learning.  For discrete mechanisms, such as chunking, exponential 

learning occurs for similar reasons.  As responses are produced by larger and larger chunks, fewer 

opportunities for further composition are available. Similar justifications are needed if power 

components are to be plausible.  
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Rickard’s (1997) Component Power Laws theory also claims that the practice function is 

the result of an aggregate of component functions.  Aggregation occurs through a mixture, rather 

than by summation, and only two component processes, algorithmic and memory based 

processing, are assumed.  Our analysis of Rickard’s data, combined with analyses of other data 

sets in which subjects were required to identify responses controlled by algorithmic and memory 

based processes, suggest that each component learns exponentially. As already discussed, the 

exponential nature of learning for memory based processing could result from homogenous 

learning rates amongst its component processes. 

The mixture assumption in Rickard’s (1997) theory can result in a complex change in the 

relative learning rate with practice, depending on the form of the mixture function.  In particular, 

Rickard’s assumption of a logistic mixture usually results in a non-monotonic change in the 

relative learning rate of the aggregate, first increasing and then decreasing.  This occurs because 

the change in mixture proportions first accelerates then decelerates with practice.  Rickard’s 

Math2 data set did provide reasonably strong evidence for an APEX function and, hence, a 

decrease in relative learning rate early in practice.  Explicit fits of the mixture model based on 

exponential components, and consideration of a range of possible mixture functions, are required 

to clarify this issue.  

Sums of decaying traces and the forgetting function. Anderson’s (1982) ACT model 

added a second mechanism based on strength of learning to the composition or chunking 

mechanism already discussed.  This mechanism assumes that response time is a linear function of 

the reciprocal of learning strength.  Learning strength equals the sum traces from each practice 

trial, and the strength of each trace is assumed to decay as a power function of time.  The sum of 

the decaying traces increases approximately as a power function of practice trials, and hence the 

model predicts an approximately power decrease in response time with practice.  Anderson, 

Fincham, and Douglass (in press) develop these ideas more fully and use them to explain slowed 

performance after a break in practice.      
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There has been much recent debate on the form of trace-decay functions, as measured by 

forgetting of memorized items at a range of study-test delays.  Many of the quantitative issues in 

this debate reflect the issues we have discussed for practice functions.  As we previously noted, 

Wickens (1998) promotes the use of hazard rates, which are similar to relative learning rates, to 

compare and interpret different forms for the forgetting function. His analyses of short-term 

memory data supported a relatively constant hazard rate and hence an exponential function. Most 

analyses of long-term memory data favour a power function (Wixted & Ebbesen, 1991) or a 

Weibull function (Rubin & Wenzel, 1996), both of which have decreasing hazard rates. Anderson 

and Tweney (1997) suggested that previous analyses of forgetting functions might have been 

confounded by averaging over subjects.  However, Wixted and Ebbesen (1997) presented a re-

analysis of their 1991 data that showed that the power function also applied for individuals.  

Recently, Rubin, Hinton and Wenzel (in press) reported recall and recognition 

experiments that were specifically designed to determine the form of the forgetting function using 

more trials and delays than in previous data sets. Their analysis supported an exponential function 

for both long- and short-term forgetting, with the rate of short-term forgetting more than an order 

of magnitude greater than the rate for long-term forgetting. It is possible, therefore, that 

decreasing hazard functions for forgetting data are due to a transition between a large hazard rate 

due to a short-term exponential component and a smaller hazard rate due to long-term exponential 

forgetting. Clearly, however, further work is needed to check this speculation. 

Given the present uncertainties, the mechanism suggested by ACT to explain the form of 

the practice function, a sum of decaying memory traces, cannot be ruled out.  Indeed, it is an 

attractive mechanism because it can potentially unify results for forgetting and practice functions. 

However, if ACT is to explain the exponential practice functions found in our survey, and 

particularly the constant relative learning rate found later in practice, it must modify its 

assumptions about the trace decay function. 
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Instance theories.  The theory most closely tied to a power practice function is Logan’s 

(1988, 1992) theory based on the minimum time for race among instance retrievals.  As Logan 

(1995) has acknowledged,  “A major goal in developing the theory was to account for the power 

function speedup.” (p.751).  Logan’s theory uses a weak learning mechanism in comparison to 

other theories of skill acquisition.  Each new learning trial speeds performance only because of 

random variation amongst retrieval time for traces.  Hence, it is suited to predicting the power 

function’s decreasing relative learning rate.  Our survey included two of the tasks that Logan’s 

theory was directly developed to account for, alphabet arithmetic and counting patterns of dots.  

These tasks provided some of the strongest evidence for an exponential function in the survey, 

with an average improvement in fit of almost 25% relative to the power function. 

Logan (1988) originally claimed that a power practice function could be derived by 

asymptotic arguments for racing instances with any retrieval time distribution.  However, 

Colonius (1995) showed that the asymptotic argument is flawed, because the asymptotic 

distribution of minimum times is degenerate except under linear rescaling that is not justified by 

Logan’s theory.  Although Colonius’s point reduces the generality of the theory, Logan (1995) 

countered that a power function is still predicted using non-asymptotic arguments combined with 

the extra assumption that instance retrieval times have a Weibull distribution. 

To accommodate our results, Logan’s (1988, 1992) theory must either assume a different 

instance retrieval-time distribution or add auxiliary mechanisms.  One such mechanism could be a 

race between algorithmic and retrieval processes.  However, Logan’s (1988) simulations of such 

a race mechanism did not deviate much from a power function.  Secondly, a race between 

algorithm and retrieval cannot predict exponential learning later in practice, a clear finding of our 

survey, unless a substantial proportion of responses continue to be algorithmic throughout 

practice.  Further, we found that that both algorithmic and retrieval processes were exponential in 

paradigms in which subjects indicated the type of processing that they used.  It remains an open 
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question as to whether an alternative retrieval-time distribution or other auxiliary mechanisms can 

allow Logan’s theory to predict an exponential practice function.   

Logan’s (1988, 1992) theory suggests that learning is quite specific, and so should benefit 

from pre-experimental practice only if that practice is on a very similar task.  Pre-experimental 

practice is unlikely to be a strong influence on performance in most of the tasks examined in the 

survey, because the tasks were probably quite unique in the subject’s experience.  Logan 

implicitly assumes a negligible pre-experimental practice effect because he fits the power 

function rather than the general power function.  Hence, his instance theory cannot take 

advantage of the improved fit of the general power function.  In any case, the general power 

function achieved no better fit than the simpler exponential function and required average 

estimates of pre-experimental practice almost equal to the amount of experimental practice. 

EBRW (Nosofsky & Palmeri, 1997) is also based on an instance race, but it includes 

extra mechanisms, specifically mechanisms reflecting similarity between instances and the 

accumulation of information via a random walk.  The similarity mechanisms make larger 

estimates of pre-experimental practice, and hence the general power function, more plausible than 

for Logan’s (1988, 1992) theory.  

The extra mechanisms may also be able to accommodate an exponential practice 

function.  For example, when similarity is negligible, EBRW’s predictions follow Logan’s (1988, 

1992) theory, but the predictions may diverge as similarity increases.  Detailed investigation of 

this issue is beyond the scope of the present work.  However, we note that in Palmeri’s (1997) 

Experiment 2, which used three levels of similarity between stimuli, overall preference for the 

exponential and APEX function was high (91.3% and 89.6%) and decreased slightly with 

increasing similarity (96%, 90%, and 88% for exponential preference and 93%, 92% and 84% for 

APEX preference).  If similarity effects explain exponential practice functions, the power 

function should be preferred more often with low similarity stimuli, not with high similarity 

stimuli. 
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Final Word 

We do not claim that the practice function is exactly exponential, or that theories of skill 

acquisition must exactly predict an exponential function to be taken seriously.  The flexible 

nature of nonlinear functions means that it is difficult to determine the exact form of the practice 

function.  However, our results indicate that the ability of nonlinear functions to imitate each 

other does not make the form of the practice function an insoluble technical issue.  Further, our 

results indicate that the form of the practice function can provide a useful constraint for theories 

of skill acquisition. 

The most important characteristic of the exponential function is that it has a constant 

relative learning rate.  Any theory that predicts an approximately constant relative learning rate is 

supported by the results of our survey.  The exponential function defines a baseline against which 

more subtle theoretical predictions can be tested.  It provides a single parameter for the rate of 

learning that can be used to test hypotheses about factors effecting the efficiency of learning.  It 

also provides plausible estimates of asymptotic performance that can indicate the extent to which 

learning can improve performance. 

If a more flexible practice function is required, our results support the APEX function. 

The APEX function has the added advantage that it contains the power and exponential functions 

as special cases, so examination of its parameter estimates and nested-model testing can indicate 

if either simpler function provides a more parsimonious model.  The consistently superior fit 

provided by the APEX function also suggests that non-exponential theories will likely provide the 

best fit to data if they predict a relative learning rate that decreases only early in practice then 

remains constant at a value greater than zero later in practice.  

The difficult nature of discriminating the correct form may have discouraged others from 

attempting work in this field: many researchers seem to agree with Anderson (1999, personal 

communication) that “the exact nature of the practice function will never be resolved.”  However, 

the results of the present survey are encouraging – they allow a clear discrimination between 
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exponential and power functions as candidates for the Law of Practice. Clear results were made 

possible by the willingness of researchers to share their data and recent advances in the theory of 

nonlinear regression (Bates & Watts, 1988; Carroll & Ruppert, 1988). Future research using new 

techniques such as APEXL fitting (Heathcote & Mewhort, in preparation) and non-parametric 

regression (Wand & Jones, 1995) coupled with resampling analyses (e.g., Azzalini, Bowman & 

Hardle, 1989) promise to take these results further and may allow the form of practice functions 

to be identified with even greater precision. In order to facilitate this enterprise we will make 

practice data used in this survey available on the World Wide Web10. At the time of publication, 

most survey contributors have agreed to make their data available. 

Despite its difficulties, we believe that determination of the mathematical form of 

empirical laws in psychology is a worthwhile enterprise. Mathematically specified empirical laws 

both expedite scientific inquiry and guide the development of theory.  When we embarked on our 

survey of the practice function for individual subjects and conditions, we anticipated that the most 

likely outcome, if the least desirable, would be a variety of function forms for different paradigms 

and subjects.  We were agreeably surprised, therefore, with the consistency of results across the 

experimental paradigms.  The consistency supports Newell and Rosenbloom’s (1981) contention 

that a simple nonlinear function can describe practice effects in a broad range of tasks.  However, 

our survey clearly indicates that best candidate for a parsimonious Law of Practice is the 

exponential function rather than the power function.  

 

 

 

 

                                                 

10 From http://psychology.newcastle.edu.au/ follow the links to the first author’s home page. 
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