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Integrated minimum-time trajectory generation, fault detection, and
reconfiguration for a double-tank system using flatness and B-splines

Fajar Suryawan, José De Doná, and Marı́a Seron

Abstract— The main contribution of this paper is to provide a
unified treatment to the problems of constrained minimum-time
trajectory generation, fault detection and identification, and
(after a fault has been detected and identified) trajectory recon-
figuration, in an integrated scheme using a differential flatness
and B-splines parameterisation. Using the flatness/B-splines
parameterisation the problem of minimum-time constrained
trajectory planning is cast into a feasibility-search problem
in the splines control-points space, in which the constraint
region is characterised by a polytope. A close approximation
of the minimum-time trajectory is obtained by systematically
searching the end-time that makes the constraint polytope
to be minimally feasible. Fault detection is carried out by
using B-splines in an FIR filter implementation. Thus, the
three—traditionally dealt with separately—problems (namely,
trajectory generation, fault detection, and trajectory recon-
figuration) are solved in a unified manner, using the same
mathematical/computational tools. This, not only offers an
elegant solution, but also has the potential to simplify the
coding of the algorithms for the real-time application of the
strategy. All through the paper, a case-study consisting in an
input-constrained double-tank system is analysed in order to
illustrate the techniques in an intuitive manner.

I. INTRODUCTION

In control systems, a desirable strategy is often to per-
form a task as fast as possible, considering all constraints.
This problem, often referred to as time-optimal control or
minimum-time control, has been a long standing problem
in the systems and control literature, as well as in applied
mathematics. The problem can be traced back to, e.g., the
work of Bellman et. al. [1]. Despite the inherently interesting
nature of the problem, analytical solutions are often very
complex, even for low dimensional linear systems. In this
regard, there are only very few treatments in the literature
dealing with relatively complex problems.

The approach to minimum-time control illustrated here
stems from our previous work [2], [3], where, using dif-
ferential flatness and B-splines, every signal and constraint
are mapped to the control-point space of B-splines. The con-
straints form a polytope in this space whose shape changes
as the end-time of the parameterisation is varied. This fact is
exploited to search for a polytope that is minimally feasible,
at which point a minimum time is reached. A preliminary
version of this method (for SISO systems) can be found in
a recent conference paper by the authors [4].
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It is well known that for linear systems constrained only
on the input, the resulting time-optimal control solution is
bang-bang. For these systems, the method proposed here
is sub-optimal compared to bang-bang control. However,
advantages of the method include: 1) the ability to specify
initial and final conditions, including the derivatives, of the
inputs, states, and outputs, 2) the ability to naturally deal
with constraints on inputs, states, and outputs, including their
derivatives, 3) the ability to naturally deal with non-minimum
phase and unstable systems, 4) there are no intersampling
issues (since no discretisation is involved), 5) the signals
produced are smoother due to the use of splines, 6) the
method can be naturally extended to MIMO systems.

This paper also considers, in an integrated fashion with the
above mentioned minimum-time trajectory generation, the
use of differential flatness and B-splines for fault-detection.
For flat linear systems, all signals can be expressed as linear
combinations of the flat outputs and their derivatives [5]–
[7]. Hence, in normal conditions the actual signals and the
signals constructed from the flat outputs should be equal up
to the effect of noises and model uncertainties. To process the
flat outputs to estimate all the other signals, B-Spline tools
are used in this paper. This method has been successfully
applied to a laboratory-scale magnetic levitation system and
reported recently in [8].

After the occurrence of a significant fault, it is necessary
to accommodate the fault, either by gracefully shutting the
plant down, or by reconfiguring the control strategy. The
main contribution of this paper is that it provides a unified
treatment to the problems of constrained minimum-time
trajectory generation, fault detection and identification, and
trajectory reconfiguration, in an integrated scheme using
differential flatness and B-splines parameterisations. Thus
the three problems—traditionally dealt with separately—
are solved in a unified manner, using the same mathemat-
ical/computational tools. This, not only offers an elegant
solution, but also has the potential to simplify the coding of
the algorithms for the real-time application of the strategy.
This integrated scheme is applied to a case-study consisting
in the total loss of an actuator in a MIMO system; namely, a
double-tank system with input pumps in both tanks and the
tank levels as the outputs.

II. PLANT DESCRIPTION

A. Two-inputs, two-outputs model

Consider the following linearised model of a two-inputs,
two-outputs, double-tank system around an equilibrium point
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Fig. 1. Diagram of the double tank system.
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and z1 and z2 are the tank level heights in centimeters, u1

and u2 are the input voltages to the pumps, in decivolts.
The time units are in minutes. The numerical values of the
constants are: r12 = 4.2, r2 = 18, β1 = 0.066, β2 = 0.063.
We assume that the linearised model is valid for all the state
and input variations under consideration.

This system is differentially flat (see [6], [7]) with z1 and
z2 as the flat outputs. The inputs can be described in terms
of these flat outputs and their derivatives. Overall, we obtain
the following invertible-matrix relationship
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The initial equilibrium point is

u0
1 = 30, u0

2 = 20, z01 = 60, z02 = 50. (4)

Hence we have

ū1 = u1 + u0
1, ū2 = u2 + u0

2

z̄1 = z1 + z01 , z̄2 = z2 + z02
(5)

where ū1 is the absolute (non-linearised) value of the first
input (and similarly for the other signals).

The actual inputs are constrained as

0 ≤ ū1 ≤ 80, and 0 ≤ ū2 ≤ 40, (6)

so that, for the linearised model,

−30 ≤ u1 ≤ 50, and − 20 ≤ u2 ≤ 20. (7)

B. One-input, two-outputs model

In this paper we also consider (for illustration purposes
and without loss of generality) the possibility of a fault in
the system consisting in the total outage of the second pump.
In order to detect a fault and reconfigure the trajectories
properly we derive here the relevant model consisting of the
same system with a single pump on the first tank. This model

can be obtained from the first model (1) by setting ū2 = 0,
that is, u2 = −u0

2 (we assume the linearised model is still
valid in this new situation) as follows[
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ż2

]
= A

[
z1
z2

]
+
[
B1 B2

] [ u1

−u0
2

]
. (8)

The loss of an actuator (i.e., u2 being fixed at the value
u2=−u0

2, since ū2 = 0) has rendered the model (8) nonlinear.
We then linearise model (8) to obtain:[
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Note that the equilibrium point for pump 1 does not change
(i.e., u0

1 = 30) and

w1 = z1 + z01 − w0
1 and w2 = z2 + z02 − w0

2. (11)

The system (9) is also differentially flat, with w2 as the flat
output. The tank 1 level, w1, and the [only] input, u1, can be
described in terms of w2 and its derivatives, and conversely,
w2, ẇ2, and ẅ2 can be described in terms of the states and
input. This can be written using the invertible-matrix relationu1
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III. MINIMUM-TIME TRAJECTORY GENERATION

A. Brief summary of the procedure

From the flatness notion, we have that, for a controllable
LTI system, every state and input can be expressed linearly
in terms of the flat outputs and their derivatives. Conversely,
the flat outputs and their derivatives are a linear combination
of the states and the inputs. For the double tank system under
healthy operation, this is given by (3).

With the B-splines concept [9], [10], one can finitely
parameterise a continuous-time signal y(t) using a number
of basis function and their corresponding multipliers (control
points):

y(t) = Λd(t)P, t ∈ [t0, tf ], (13)

where Λd(t) is a basis functions matrix of degree d, and P
is the control points vector. Using a simple transformation (a
matrix multiplication), derivatives of the signal y(t) can also
be parameterised by the same basis functions and control
points, and thus, for example, an expression such as

u(t) = a0 y(t) + a1 ẏ(t) + a2 ÿ(t), t ∈ [t0, tf ] (14)

can be written as

u(t) = Λd(t)U P, t ∈ [t0, tf ] (15)

where U is a combined transformation matrix, given in this
case by:

U = a0 I + a1Ld,d−1Md,d−1 + a2Ld,d−2Md,d−2, (16)



where Ld,d−1Md,d−1 and Ld,d−2Md,d−2 are matrices that
translate control points of a signal to the signal’s first and
second derivative spaces, respectively, see [2], [3] for a
more detailed explanation. (Expression (14)—and equiv-
alently (15)— corresponds, for example, to the first row
of equation (12) with u = u1, y = w2, a0 = 1

β1r2
,

a1 = 2
β1

+ r12
β1r2

and a2 = r12
β1

; note that any other signal in
(3) or in (12) can be treated in a similar way, including the
case—as in (3)—with multiple flat outputs.). A useful feature
of this parameterisation is that it results from properties of
B-splines that the signal u(t) is confined to be in the convex
hull of UP . This means that constraining the control points
implies constraining the whole signal in the interval [t0, tf ].
In other words, every signal and constraint can be mapped
to the control points space of the B-splines parameterisation.
This way, the problem of constrained trajectory generation
can be cast into a standard quadratic programming problem
in the splines control-points P -space (see [2], [3]).

In our approach to minimum-time control, it can be shown
that the constraints form a polytope in the P -space whose
shape changes as the end-time of the parameterisation is var-
ied. This fact is exploited to iteratively search for a polytope
that is minimally feasible, at which point a minimum time
is reached. See [4] for a detailed exposition of the method,
and [11] for an application to a real experimental plant.

B. Application to the double-tank system

Consider the healthy system (1). The tanks’ levels are
required to change, from the current equilibrium point to
another equilibrium point (that is, rest-to-rest) as fast as
possible; from z̄1(t0) = 60, z̄2(t0) = 50 to z̄1(tf ) = 68,
z̄2(tf ) = 60 with tf − t0 as small as possible. The trajectory
requirement for the flat outputs is then

z1(t0) = 0, ż1(t0) = 0, z2(t0) = 0, ż2(t0) = 0

z1(tf ) = 8, ż1(tf ) = 0, z2(tf ) = 10, ż2(tf ) = 0.
(17)

(Note that, from (3), the requirement of rest-to-rest trajec-
tories imposes the first derivatives of both flat outputs to
be zero at the end-points.) To compute the minimum-time
trajectory for this system, using the procedure outlined in
Subsection III-A we used Matlab with the cvx optimisation
toolbox [12], and B-splines of degree 4, 39 control points
for each flat output, and 17 iterations. The result is depicted
in Fig. 2. Note that most of the time the input signals hit the
constraints, which is a characteristic of time-optimal control
(bang-bang). At the end of the trajectories, the inputs reach
the new equilibrium values. The final time is tf = 7.1785
mins.

IV. ALGEBRAIC ESTIMATION AND RESIDUAL-BASED
FAULT DETECTION

In the proposed algebraic estimation method, we want to
extract the control points that best fit a given measured signal.
In turn, we can then utilise these control points to obtain all
the other signals using the flatness parameterisation.
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Fig. 2. Rest-to-rest trajectory. It can be seen that the input signals hit the
constraints most of the time, which is characteristic of bang-bang control.
The final time is tf = 7.1785 mins.

A. B-spline regression

Common in statistics, this procedure will produce a trend
curve of a given set of time-series data, or, in our case,
samples of a signal corrupted with noise. This can be done
by projecting the signal onto the column space of the basis
functions.

For Λd(t) defined over t ∈ [t0, tf ], define Λ̂d as its
sampled version, sampled at least d + 1 times. Denote the
sampling instant ki, i = 0, . . . ,M , and k0 = t0, kM = tf .
Now, given a set of time-series data (or noise-corrupted
signal) y(t), we construct the trend curve (or the smoothed
signal) by using least-squares:

ȳ , Λ̂d(Λ̂d)
+ŷ = Λ̂d(Λ̂

T
d Λ̂d)

−1Λ̂T
d ŷ , Λ̂dP̂ , (18)

where ŷ = [y(k0) . . . y(kM )]T (in real applications the
sampling time is usually uniform, so ki+1−ki = ∆). Figure 3
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Fig. 3. An example of regression/noise filtering with B-Splines. The blue
circles are the data to be regressed. The red solid lines are the B-Spline
trend curve. The black squares are the control points corresponding to each
basis function.

shows an example of the B-Spline regression described here.
Hence we have that

P̂ , (Λ̂d)
+ŷ (19)

defines the control points in the projected space. Once these
estimated control points are obtained, they can be used to
estimate other continuous-time signals. For example, we can
readily have the following derivative estimation

˙̄y(t) = Λd(t)Ld,d−1Md,d−1P̂ . (20)

where Ld,d−1Md,d−1 is a matrix that translates control points
of a signal to the signal’s derivative space. (See [2], [3] for
the complete details).

B. Real-time noise filtering and derivative estimation

Here we extend the idea of B-Spline regression to real-
time signal processing. The idea is similar to that of the pre-
vious subsection; however, since the signal is only available
for past and current time instants, the technique described
above cannot be applied in real time.

The technique we propose then is to use a sliding-window
approach. The portion of the signal currently in the window
is then regressed as explained above. The last sample is taken
as the value of the filtered signal. The derivative signal, or
any other signal, is then computed similarly. Figure 4 shows
an example.

Note that if the signal being processed is the system’s flat
output, then using, for example, Eq. (3), one can obtain every
other signal in one step. This procedure to obtain another
signal in a flat linear system given the flat outputs, can be
shown to be a process of FIR filtering.

C. Application to the double-tank system

Using the derivative estimation method described above,
we compute the following estimation of the inputs (see (3))
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r12β1
z1 −

1

r12β1
z2 +

1

β1

ˆ̇z1 (21)

û2 , − 1
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z1 +

1

β2

(
1

r12
+

1

r2

)
z2 +

1

β2

ˆ̇z2. (22)

Using the above estimations and the measured voltages sent
to the pumps we define the residuals

R1 , u1 − û1 (23)
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Fig. 4. (a) An example of noise filtering and derivative estimation with
B-Splines. (b) Zoom. The dashed “noiseless” lines are obtained from full-
window B-Spline regression (hence non-causal). The red line and purple
line are, respectively, the filtered signal and its estimated derivative, all
using a sliding-window scheme. Here we used B-Splines of order one with
two control points, with 0.1 seconds sliding window. The sampling time is
0.001 second.

R2 , u2 − û2. (24)

We also use the single-input model (see (12)) to obtain

ŵ1 ,
(
1 +

r12
r2

)
w2 + r12 ˆ̇w2, (25)

that is, the estimation of the first tank’s level from the second
tank’s measured level w2 as seen from model (9). From this,
we define the residual

R3 , w1 − ŵ1. (26)

Remark 1:

Under the total loss of the second actuator (and no other
fault), it is expected that

1) û1 will correctly estimate u1 and hence R1 will stay
unaffected.

2) û2 will estimate the real value of the second input,
which will differ from the voltage sent to the second
pump, and hence R2 will be affected.

3) ŵ1 will now correctly estimate w1 (the first tank level
from the point of view of model (9)), and hence R3

will be zero. Note that this only happens if the (effective
‘non-linearised’ value of the) second input is zero. Thus,
if the intended input to the second pump is non-zero,
having R3 zero indicates total loss of the second pump.
This can be thought of as “model matching” of the plant
under total loss of the second actuator.
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Fig. 5. (a) Inputs and (b) Outputs. The second pump fails at 5.8 mins.
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Fig. 6. Estimation of (a) the first input (from (21)) and (b) the second
input (from (22)) corresponding to Fig. 5.

The trajectories in Fig. 2 are now implemented in a simula-
tion plant with a state feedback controller. For the derivative
estimation, the signals are sampled every 0.2 seconds, the
filter window is of 40 samples (= 8 seconds), and B-splines
of degree 2 are used. In order to simulate a realistic situation,
noise of magnitude 0.0017 was added to the output sensors
of model (1) and model (9).

In the simulated scenario, the second pump is lost at 5.8
mins. The situation for the inputs and outputs is depicted in
Fig. 5. Figure 6 shows the estimated value ˆ̄u1 = û1+u0

1 and
ˆ̄u2 = û2+u0

2. It can be seen that the estimated values reflect
the true inputs. Hence, the residuals behave as expected (see
Remark 1 above), as depicted in Fig. 7.

Note that in a very similar way one can define other
residuals that will indicate other faults in different system
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Fig. 7. Residuals R1, R2 and R3 corresponding to Fig. 5.

components. Due to space limitations, we have restricted
ourselves to only illustrate the case of total outage of pump
number 2.

V. TRAJECTORY RECONFIGURATION

We apply the following thresholds for the residuals: for
R1 and R2, if the signal’s mean (moving average) is beyond
±1.0, it is considered “nonzero”; for R3, if the signal’s mean
(moving average) is within ±0.5, then it is considered “zero”.
Using these thresholds, the loss of actuator 2 is detected
and isolated 40 samples (or 8 seconds, the filter window)
after the fault occurrence. The reconfiguration algorithm is
required to recompute the new minimum-time trajectory in
12 seconds. This is done from the perspective of the one-
input model (9). From Fig. 5(b) and 6(a), the initial states
and input for reconfiguration are w1 = 32.21, w2 = 31.46,
u1 = −26. Since we lose one degree of freedom, we can
only steer one output to a desired new target equilibrium
value (the other output’s target equilibrium value cannot be
independently chosen). The objective is then chosen so as to
keep the second tank’s level original target equilibrium value
of z̄2 = 60, or w2 = 32.68. Using (12), all the requirements
can be translated into the [single] flat output w2 and its
derivatives:

w2(t0) = 31.46, ẇ2(t0) = −1.57, ẅ2(t0) = 0.0097,

w2(tf ) = 32.68, ẇ2(tf ) = 0, ẅ2(tf ) = 0,
(27)
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Fig. 8. Reconfigured trajectory. The final end-time is tf = 8.69 minutes.
See Fig. 9 for the overall trajectory.

where the values of ẇ2(t0) and ẅ2(t0) are obtained from the
measured u(t0), w1(t0) and w2(t0) by inverting the matrix
in (12). Applying the procedure to compute the minimum-
time trajectory under the new circumstances, the reconfigured
trajectories are depicted in Fig. 8. The final end-time is
tf = 8.69 minutes. It can be seen that, to achieve the new
equilibrium point, pump 1 has to go from a small value
(due to its value at the particular moment the fault occurred
in the initial trajectory) to the maximum value before it
switches back and finally it reaches the target equilibrium
value. Again, this is a typical bang-bang control solution.

The overall scenario can be seen in Fig. 9. In these figures,
at 5.8 minutes the second pump is lost. At 5.9333 minutes,
the fault is isolated. At 6.133 minutes, the remedy trajectory
is executed. At 14.82 minutes the new equilibrium point is
reached. These four time instants are indicated in Fig. 9(b)
with vertical dashed lines.

VI. CONCLUSIONS

In this paper we have provided a unified treatment to
the problems of constrained minimum-time trajectory gen-
eration, fault detection and identification, and trajectory
reconfiguration. The integrated scheme that was presented
allows to solve the three problems—traditionally dealt with
separately—in a unified manner, using the same mathemati-
cal/computational tools; namely, differential flatness and B-
splines. This, not only offers an elegant solution, but also
has the potential to simplify the coding of the algorithms
for the real-time application of the strategy. A case-study
consisting of an input-constrained double-tank system has
been analysed throughout the paper in order to illustrate the
techniques in an intuitive manner.
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