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Abstract 

Global radiation is an important input for evaporation calculations; however, limited 

measurements exist. Current models for estimating global radiation are deterministic 

and do not give an estimate of the errors associated with the predicted radiation 

amounts. In this thesis, five stochastic models are developed to estimate the mean 

amount and associated uncertainty of global, direct and diffuse radiation from sunshine 

duration data. The modelled global radiation is used to estimate evaporation amounts 

using a variety of models, including the Penman-Monteith model, radiation-based 

models, and temperature-based models. Evaporation estimates are compared to 

determine the influence of uncertainty in the global radiation estimate on evaporation 

amounts. The second part of this thesis deals with the relationship between temperature 

and evaporation, with implications for anthropogenic climate change studies. The 

influence of temperature on evaporation amounts is analysed using a combination of 

empirical evaporation models and a more physically-based planetary boundary layer 

model. 

 

The results indicate that global radiation can be accurately estimated using all of the 

developed radiation models (average error = 9%), when compared with measured data. 

The variance of the errors is greater for cloudy days compared with clear days. The 

diffuse radiation component is best modelled using a quadratic model (average error = 

22%). The direct radiation component is best modelled using a linear model (average 

error = 23%). Two types of regional models are also developed to calculate radiation 

amounts at any location. These models have only a small loss of accuracy compared to 

the locally calibrated models. While the variance of the errors for the locally calibrated 

models is shown to be location dependent, these regional models allow for the model 

parameters and the error variance to be estimated at any location, as there is a 

statistically significant relationship between the model and error parameters and 

latitude. The regional models are also comparable in accuracy to satellite estimates of 

global radiation.  

 



 

It is also found that the uncertainty in global radiation leads to considerable uncertainty 

in evaporation rates, up to ±31% for the radiation-based models. The locations with 

greater uncertainty in the radiation estimate have an associated greater uncertainty in the 

evaporation estimate. 

 

Temperature increases are shown to have minor influences on evaporation rates. Soil 

moisture is the most dominant influence. Consequently, temperature-based models are 

shown to lead to unreasonable estimates of evaporation when temperatures are 

increased.  

 
 



Page 1 

 - Introduction Chapter 1

 General Background 1.1

Knowledge of evaporation amounts is necessary for many agricultural and hydrological 

applications; however, measurements of evaporation are limited. Further, there is a 

question about how anthropogenic climate change may affect evaporation, which 

requires a fundamental understanding of the interaction between temperature and 

evaporation. Many models, such as the Penman-Monteith model (Monteith, 1965, 

1981), have been developed to address the first issue and estimate evaporation. One of 

the dominant drivers of evaporation and a common input into evaporation models is 

global radiation. However, measured amounts of global radiation are often not available 

or have only recently become available. While more complex theoretical models for 

estimating global radiation are now more useable and satellite estimates are becoming 

more common, the data and technology has only recently become available. Therefore, 

empirical methods are still needed for historical analysis of climate states and trends, 

and for locations with no measured data. 

 
The simple and empirical Angstrom-Prescott equation is commonly used for calculating 

global radiation, for example in the Food and Agriculture Organisation of the United 

Nations Irrigation and Drainage Paper 56 (Allen et al., 1998). This equation, and other 

common empirical methods, calculates radiation amounts from sunshine hours data. 

These methods are deterministic and give no indication of the amount or nature of the 

uncertainty associated with radiation estimates. In this thesis, a stochastic model is 

developed to provide an estimate, and associated uncertainty, of global, direct, and 

diffuse radiation. While only global radiation amounts are necessary for estimating 

evaporation, estimates of direct and diffuse radiation are important for calculating 

radiation on sloped surfaces and for ecosystem modelling. 

 
The second part of this thesis examines the relationship between evaporation, soil 

moisture and temperature using well-known evaporation models and a more complex 

planetary boundary layer model. The fundamentals and causality of this relationship 
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have important implications in the context of anthropogenic climate change studies that 

investigate the impact of increased temperatures on evaporation. 

 Objectives and Scope 1.2

The thesis has two main foci, reflecting distinct research directions in the published 

literature. The first focus is on the development of a stochastic model to estimate global 

radiation and its components from sunshine hours data. Current models for estimating 

global radiation do not provide an estimate of the uncertainty in radiation estimates. The 

second focus is on the interaction between evaporation, temperature and soil moisture. 

 

The objectives of this thesis are to: 

 Develop a novel stochastic sunshine hour based model for estimating global, 

direct, and diffuse radiation, explicitly accounting for the uncertainty in the 

radiation estimates; 

 Apply the global radiation amounts to a variety of well-known evaporation 

models to determine the influence of the uncertainty in the global radiation 

estimate on evaporation estimates;  

 Examine the relationship and interaction between evaporation and temperature; 

and, 

 Examine the influence of soil moisture on the evolution of daytime 

temperatures. 

 Overview 1.3

A flow chart of the main thesis components is given in Figure 1.1. The above objectives 

are presented in the following manner. First, previous empirical approaches for 

calculating global, direct, and diffuse radiation, along with the models for evaporation 

and their uses, are critically reviewed in Chapter 2. This provides a rationale for 

developing a stochastic radiation model that explicitly accounts for the uncertainty in 

the radiation estimate and for assessing the interaction between evaporation, 

temperature, and soil moisture.  
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The stochastic radiation models are developed using measured sunshine hour and 

radiation data from a variety of locations around Australia. A description of the 

locations and their climatology is given in Chapter 3. Chapter 3 also details the 

development of the stochastic radiation models for estimating global, direct and diffuse 

radiation amounts, as well as the uncertainty in the estimates due to the timing of the 

bright hours and external influences. In Chapter 4 the stochastic models are used to 

estimate global, direct and diffuse radiation amounts. In Chapter 4 the stochastic models 

are calibrated at each of nine locations; however, local data often does not exist for 

calibration. Therefore, in Chapter 5 two different types of regional models are 

developed to calculate global, direct and diffuse radiation at any location in Australia. In 

Chapter 6 the global radiation estimates are used to determine the influence of the 

uncertainty in the radiation amounts on evaporation rates.  

 

The following two chapters focus on the interaction between evaporation, temperature, 

and soil moisture. Previous studies into the Murray-Darling Basin drought noted that 

temperatures were 2°C higher than average. These studies then erroneously suggested 

that this increase in temperature led to increased evaporation rates. In Chapter 7 the 

influence of a 2°C increase in temperature on evaporation rates is analysed using a 

selection of empirical evaporation models. However, the interaction between 

evaporation and temperature is complex and is influenced by feedback between the 

land-surface and the atmosphere. Therefore, in Chapter 8 a planetary boundary layer 

model, which accounts for land-surface-atmosphere interactions, is used to study the 

interaction between evaporation, temperature, and soil moisture. 

 

To conclude, the major findings of this thesis are summarized in Chapter 9.  
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Figure 1.1 Summary of thesis components 

 

As a result of the research work undertaken during the course of this thesis, four journal 

articles and conference papers have been published.  

 

Lockart, N., D. Kavetski, and S. W. Franks (2009), On the recent warming in the 

Murray-Darling Basin: Land surface interactions misunderstood. Geophysical 

Research Letters, 36, L24405, doi:10.1029/2009GL040598. 

 

Lockart, N., D. Kavetski and S. W. Franks (2009), Misattribution of Climate Trends in 

the Murray Darling Basin. H2009: 32nd Hydrology and Water Resources 

Symposium, Newcastle: Adapting to Change. Institution of Engineers Australia, 

1332-1340. 
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Lockart, N., D. Kavetski, and S. W. Franks (2011), Hydro-climatological variability in 

the Murray-Darling Basin. Hydro-Climatology: Variability and Change, S. W. 

Franks, E. Boegh, E. Blyth, D. M. Hannah, and K. K. Yilmaz, Eds., 344:105-111. 

 

Lockart, N., D. Kavetski and S. W. Franks (2012), On the role of soil moisture in 

daytime evolution of temperatures. Hydrological Processes, doi: 10.1002/hyp.9525 
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 - Background  Chapter 2

Overview  

Models of evaporation and global radiation, and uncertainty estimates in their 

predictions, are of significant importance for agricultural applications such as irrigation 

scheduling and reservoir design. The following is a review of the current literature 

surrounding methods for estimating evaporation and approaches for estimating global 

radiation. This review supports the need to develop a stochastic model for estimating 

global radiation from sunshine hours, for application to evaporation modelling. This 

review also clarifies important aspects of the interaction and causality of temperature 

and evaporation. 

 Evaporation 2.1

Evapotranspiration is an important component of the hydrologic cycle and 

measurements are needed for water balance modelling, rainfall-runoff models, 

agricultural and urban planning, irrigation scheduling and reservoir design. 

 

Evaporation occurs when water in the liquid state gains sufficient energy (usually from 

solar radiation) to pass into the gaseous state (Allen et al., 1998). Water will evaporate 

from bare and vegetated soil, trees, impervious surfaces, open water, and flowing 

streams and rivers. Transpiration is the process where water is used by vegetation to 

support growth. In this process, water moves from the ground, through the roots to the 

stem or trunk of a plant, and to the leafy part where it is transpired into the atmosphere 

(Jensen et al., 1990). In field conditions it is hard to differentiate between evaporation 

and transpiration, so they are commonly linked together as evapotranspiration (ET).  

 

Factors affecting ET include solar radiation, wind, relative humidity, and temperature. 

Solar radiation provides the energy necessary for water molecules to move from liquid 

to vapour. Clouds reduce the amount of solar radiation and slow ET. ET requires a 

vapour-pressure gradient between the evaporating surface and the surrounding air. Wind 

is necessary to ensure the saturated air at the boundary between the water surface and 
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the atmosphere is replaced by drier air, allowing ET to proceed. Relative humidity 

determines the ability of air to absorb more water vapour, affecting the rate of ET. And 

finally, temperature affects the water holding capacity of air. As air temperature 

increases so does the capacity of air to absorb water vapour. Temperature can also 

provide the heat energy required for ET. ET is also influenced by topography, soil 

properties, irrigation, precipitation, and available soil and subsoil moisture. 

 

Solar radiation is considered the primary climatic factor controlling ET when water is 

not limiting (Jensen et al., 1990). Solar radiation is the primary source of heat energy 

for ET. It is the most significant parameter for all combination and radiation–based ET 

models (Amatya et al., 1995). According to Samani (2000) the most important variables 

for estimating reference crop ET are temperature and solar radiation, although 

Hargreaves (1974) found relative humidity to be an important factor for ET in areas of 

high relative humidity. 

 

Xu and Singh (1998) evaluated the role of solar radiation, vapour pressure deficit, 

relative humidity, wind speed, and air temperatures in controlling ET at hourly, daily, 

ten-day, and monthly timescales. Using data from one location in Switzerland, the 

variables were compared with measured pan ET. They found that the influence of the 

variables on ET varied with the time-scale used. At all timescales the vapour pressure 

deficit was best correlated with the pan ET. The wind speed was found to be a 

controlling factor for the hourly data, but the degree of dependence of ET on wind speed 

decreased with the increase in time interval. For time steps longer than a day the wind 

speed was not a significant influence on ET. Relative humidity was found to be well 

correlated with ET in general; however the importance of the variable decreased with 

increasing time-scale. Radiation was also found to compare well with ET on all 

timescales, though the daily timescale had the best agreement. Temperature was found 

to have a good agreement at the hourly and daily timescales, but at the monthly 

timescale there was a lag between the temperature and ET.  

 

Pan ET has declined in many regions over the last several decades. Roderick et al. 

(2007) used a physical model to attribute the changes in pan ET at 41 sites in Australia 

to changes in radiation, temperature, humidity and wind speed. The decrease in pan ET 
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was attributed mainly to decreasing wind speed with some regional contributions from 

decreasing solar irradiance. Air temperature, as well as the vapour pressure deficit, was 

found to play only a minor role in the changes in pan ET. The trend in the vapour 

pressure deficit, as assessed at 41 sites from 1975-2004 was only -0.2Pa a-1 compared to 

a background average of 1205Pa (less than 1% over the 30 years). 

 Evapotranspiration measurements 2.1.1

There are two ET measurements: potential and actual. ET rates are influenced by the 

amount of water available. Therefore, potential ET is different to the actual ET that 

takes place. Potential ET is “the rate at which water, if available, would be removed 

from wet soil and plant surfaces expressed as the rate of latent heat transfer per unit 

area, or as a depth of water per unit time” (Jensen et al., 1990, p. 42). The amount of 

actual ET is determined by the available moisture supply, which in turn varies with 

rainfall and soil characteristics.  

 

To provide a standard potential ET, reference crop ET has been established. Reference 

crop ET (ET0) is “the rate of evapotranspiration from an extensive surface of 8 to 15cm 

tall, green grass cover of uniform height, actively growing, completely shading the 

ground and not short of water” (Doorenbos & Pruitt, 1977, p. 1). The reference crop is 

often alfalfa or grass (Jensen et al., 1990). 

 

Evapotranspiration can be measured using a lysimeter, although measurements are very 

difficult and, therefore, not very common. However, a multitude of models exist for 

estimating potential ET from a range of meteorological variables. These models have 

been developed by relating ET to climatological data, based on experimental data. Some 

models relate ET to just one meteorological variable, such as temperature (e.g., 

Thornthwaite, 1948), while other models use a combination of some or all of the driving 

variables. These models fall into several categories such as combination; mass transfer; 

radiation; temperature; and water budget. Most of these models were developed for use 

in specific climates and land use conditions. 

 

The Penman-Monteith (PM) model is recommended by many authors as the best 

performing model for estimating ET (e.g., Jensen et al., 1990; McKenney & Rosenberg, 
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1993; Allen et al., 1998). This is because it is physically derived, incorporates all the 

driving variables, and has been shown to perform well in a variety of climates. The 

Food and Agriculture Organisation of the United Nations (FAO) (Allen et al., 1998) 

have proposed using the FAO-56-PM model as the standard model for estimating 

reference ET. However, when there is insufficient weather data for the application of 

the PM model, models based on temperature or radiation are often used to estimate 

reference ET. The choice of model is usually based on the time step required, the type 

and accuracy of climatic data available, the aridity of the area, and the accuracy required 

(Hargreaves & Allen, 2003). 

 

McMahon et al. (2013) present a comprehensive summary of the different techniques 

for estimating actual and potential ET, reference crop ET and pan evaporation, and 

detail the more common potential ET equations and their data requirements. Their paper 

also outlines the estimation of ET for non-vegetated crop areas such as bare soil, 

groundwater, shallow and deep lakes, which is not considered in this study. Wang and 

Dickinson (2012) also summarise different methods for estimating or measuring ET, 

such as the Bowen ratio and Eddy covariance methods and remote sensing methods, 

which are beyond the scope of this study. They also summarise the different factors 

influencing ET for different land cover types (e.g. forests and wetlands). 

 Potential evapotranspiration models 2.1.2

The PM model is generally considered as the most physically realistic model, and is the 

recommended method by the FAO, as well as Shuttleworth (1992) and Hargreaves and 

Allen (2003). The following section details the PM model as well as common radiation-

based models, as solar radiation is one of the dominant drivers of ET. Six temperature-

based models are also presented as these are also commonly used due to their simplicity 

and the ready availability of temperature data.  
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2.1.2.1 Combination models 

2.1.2.1.1 Penman-Monteith model 

The PM model (Monteith, 1965, 1981) is: 
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where λ is the latent heat of vaporization (MJ kg-1), Rn is the net radiation (MJ m-2 d-1), 

Gh is the soil heat flux (MJ m-2 d-1), Δ is the slope of the saturated specific humidity 

temperature curve (kPa °C -1), (es – ea) is the specific humidity deficit (kPa), ρ is the 

density of air (kg m-3), cp is the specific heat of air at constant pressure (KJ kg-1 °C -1), γ 

is the psychrometric constant (kPa °C-1), rs is the surface resistance (s m-1) and ra is the 

aerodynamic resistance (s m-1). The surface resistance parameter is a function of soil 

moisture availability, solar radiation, temperature, CO2 etc. This parameter deals with 

the physiological resistance that crops impose on water transfer from within to their 

outer surfaces. These estimates can be used on a daily scale (Jensen et al. 1990). 

2.1.2.1.2 FAO-56-PM model for reference crop evapotranspiration 

The FAO propose the adoption of the FAO-56-PM combination model as the sole 

method for determining reference ET (Allen et al., 1998). The equation was derived 

with the reference crop defined as a hypothetical crop with a height of 0.12m, a surface 

resistance of 70 sm-1, and an albedo of 0.23, which resembles ET from green grass with 

a uniform height, actively growing, and adequately watered. The FAO-56 formulation 

of the PM equation for a reference crop is: 
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where u2 is the wind speed (m s-1) at height 2m.  
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2.1.2.1.3 Penman model 

The Penman model (Penman, 1948), also known as the Penman combination equation, 

can be considered an implementation of the Penman-Monteith model with specific 

values of surface resistance (set to zero) and aerodynamic resistance (Shuttleworth, 

2012): 
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 (2.3) 

where ET is in mm day-1. 

2.1.2.2 Radiation-based models 

2.1.2.2.1 Makkink (1957) 

Makkink (1957) developed a method for estimating ET (mm day-1) for grassed lands 

under cool climatic conditions in the Netherlands for ten-day periods: 
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where Rs is the solar radiation in MJ m-2 d-1. 

2.1.2.2.2 Turc (1961) 

Turc (1961) developed a simplified estimate of ET0 for Western Europe for ten-day 

periods: 
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where T is the air temperature (°C) and RH is the daily mean relative humidity (%).  
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2.1.2.2.3 Jensen-Haise (1963) 

Jensen and Haise (1963) evaluated 3000 observations of ET and proposed for a crop 

like alfalfa: 
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where CT and Tx are coefficients. Jensen (1966) later defined CT as: 
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where e2 and e1 are the saturation vapour pressures in kPa at the mean maximum and 

mean minimum temperatures, respectively, for the warmest month of the year, and Tx, 

C1 and C2 are constants (C2 = 7.3°C). 

 

Jensen et al. (1970) further defined: 

  305/2381 zC   (2.10)  

   550/4.15.2 12 zeeTX   (2.11)  

where z is the elevation in m. The recommended minimum time period for use as given 

by Jensen et al. (1990) is five days. 

2.1.2.2.4 Priestley-Taylor (1972) 

Priestley and Taylor (1972) developed a simplified version of the Penman combination 

equation (Penman, 1948) for estimating potential evaporation, where the mass transfer 

effects are represented by a constant value:  

 


 nR

PTET



  (2.12)   

where αPT = 1.26 for humid conditions (RH>60) and αPT = 1.74 for arid conditions 

(RH<60) (Shuttleworth, 1992). 
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The model was developed for saturated land surfaces (αPT = 1.26). However, αPT is 

known to vary with climate. Jensen et al. (1990) recommend using the higher αPT value 

for arid locations to account for the advection of sensible heat energy to an irrigated 

crop. The recommended minimum time period for use as given by Jensen et al. (1990) 

is ten days, although it has been used for daily estimates. 

2.1.2.2.5 Hargreaves (1975) 

Hargreaves (1975) formed an equation for estimating grass related reference crop ET.  

This was derived from eight years of cool season Alta fescue grass lysimeter data. The 

Hargreaves equation was developed primarily for the purposes of irrigation planning 

and design (Hargreaves and Allen, 2003). This method was developed for the dry 

California climate. For a five-day time step: 

 )8.17(0135.00  TRET S  (2.13) 

where ETo and Rs are in the same units of water evaporation. 

2.1.2.2.6 Doorenbos and Pruitt (1977) 

The method developed by Doorenbos and Pruitt (1977) is an adaptation of the Makkink 

(1957) method. It is recommended over the Penman method when wind and humidity 

data are not available (Jensen et al., 1990): 
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where a is a constant equal to -0.3 and b is given by: 

 22 0011.00000315.0 0002.0045.00013.0066.1 ddd URHURHURHb   (2.15) 

where Ud is the mean daytime wind speed (m s-1). The recommended minimum time 

period for use as given by Jensen et al. (1990) is five days. 
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2.1.2.2.7 Abtew (1996)  

Abtew (1996), using data from three lysimeters, derived a simple model based solely on 

solar radiation data: 
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ET 53.0  (2.16) 

2.1.2.3 Temperature-based models  

2.1.2.3.1 Thornthwaite (1948) 

Many empirical formulae relate ET to temperature. Thornthwaite (1948) devised the 

following formula for calculating ET on a monthly basis:  

 
a

m
mm I

T
NET 










10
16  (2.17) 

where m is the months (1…12), Nm is the monthly adjustment factor related to the hours 

of daylight, Tm is the monthly mean temperature (°C), I is the heat index for the year: 
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and a (to 2 significant figures) is: 

 49.0108.1107.7107.6 22537   IIIa  (2.19) 

The unadjusted monthly ET values are adjusted depending on the number of days (Nd) 

in a month (1≤Nd≤31) and the duration of average monthly or daily daylight (d, in 

hours), which is a function of season and latitude: 
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This model has been widely used throughout the world (Shaw, 1994), but is strictly only 

valid for climates similar to the area for which it was developed (eastern USA), which is 

a humid environment. When compared with estimates from the Penman formula, the 

Thornthwaite model tends to exaggerate the ET, particularly in summer months when 

the high temperatures have a dominant effect in the Thornthwaite computation, whereas 

the Penman model considers other meteorological factors (Shaw, 1994). 
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This model should not be used in arid and semiarid areas. However, because of its 

limited data needs, Jensen et al. (1990) report that this model has been one of the most 

misused empirical equations in arid and semiarid irrigated regions. 

 

The Thornthwaite model is used in the traditional calculation of the Palmer Drought 

Severity Index (PDSI) (Palmer, 1965). The PDSI is a measure of dryness based on 

precipitation and temperature and is routinely used in the US to assess developing 

drought conditions. 

2.1.2.3.2 Blaney-Criddle (1950) 

One of the most well-known and widely-used of the temperature-based models is the 

Blaney-Criddle model (Jensen et al., 1990). This model was developed by Blaney and 

Criddle (1950) and utilises temperature and day length data. The model was designed to 

provide daily estimates of evaporation averaged over a period. The usual form, 

converted to metric units is: 

 )13.846.0(0  TkpET  (2.21) 

where p is the mean daily percentage of total annual daytime hours for a given month 

and altitude, and k is a monthly consumptive use factor, depending on relative humidity, 

sunshine duration, and day time wind. 

 

Doorenbos and Pruitt (1977) recommend the Blaney-Criddle model only be used for 

periods of one month or longer. 

 

The Blaney-Criddle model has been considerably modified over the years. The FAO-24 

version (Doorenbos & Pruitt, 1977) is a major modification as it includes climatic 

information in addition to air temperature data (Jensen et al., 1990). The climatic 

information includes minimum humidity, sunshine, and daytime wind movement, which 

can be gained from subjective knowledge rather than actual measurements. However, if 

there are actual measurements, a combination model such as the Penman model is 

usually regarded as being superior. The FAO-24 model is only recommended for use 

when air temperature is the only climatic data available (Doorenbos & Pruitt, 1977). 
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The FAO-24 Blaney-Criddle model is (mm d-1): 

 bfaET 0  (2.22) 

  13.846.0  Tpf  (2.23) 
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where n/N is the ratio of actual to possible sunshine hours. The recommended minimum 

time period for use as given by Jensen et al. (1990) is five days. 

2.1.2.3.3 Hamon (1961) 

Hamon (1961) derived the following equation (as given in Federer et al., 1996): 
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where D is the hours of daylight for a given day (in units of 12 h). 

2.1.2.3.4 Romanenko (1961) 

Romanenko (1961) derived the following equation using mean temperature and relative 

humidity: 

    RHTET  100250018.0 2  (2.27) 

This model has also been considered a humidity-based model (Xu & Singh, 1998). 

2.1.2.3.5 Hargreaves and Samani (1982, 1985) 

The original Hargreaves model is considered a radiation model. However, due to the 

lack of readily available solar radiation data, the model was subsequently modified by 

Hargreaves and Samani (1982, 1985). Hargreaves and Samani (1982, 1985) 

recommended estimating ET from extraterrestrial radiation, RA, and the difference 

between mean monthly maximum and minimum temperatures, TD (°C). This form of 

the equation is:  

  8.170023.0 2/1  TTDRET A  (2.28) 
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where RA is expressed in equivalent evaporation units. As the only variable for a given 

location and time period is air temperature, the Hargreaves method has become a 

temperature-based method (Jensen et al., 1990). 

 

This method implicitly accounts for relative humidity through the difference between 

the maximum and minimum temperature, as the temperature difference is linearly 

related to relative humidity (Hargreaves & Samani, 1982; Hargreaves & Allen, 2003). 

The temperature difference also implicitly accounts for the effects of cloudiness as the 

temperature range generally decreases with increasing cloudiness (Hargreaves & Allen, 

2003). 

 

The Hargreaves model is only recommended for use for five-day or longer time 

intervals (Hargreaves & Allen, 2003). This is because the influence of the temperature 

range, caused by the movement of weather fronts and by large variations in wind speed 

or cloud cover, causes errors for daily estimates.  

 

According to Hargreaves and Allen (2003), the 1985 method has often been used to 

provide reference crop ET predictions for weekly or longer periods for many uses, 

including regional planning; reservoir operation studies; regional requirements for 

irrigation; and canal design capacities. The simplicity, reliability, minimum data 

requirements, and ease of computation make it an attractive method. 

2.1.2.3.6 Kharrufa (1985) 

Kharrufa (1985) derived an equation through correlation of ET/p and T:  

 3.134.0 pTET   (2.29) 

where ET is in mm month-1, and p is the percentage of total daytime hours for the period 

used (daily or monthly) out of the total daytime hours of the year (365×12). 
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 Use and comparison of models in evapotranspiration 2.1.3

investigations 

Many authors have compared the performance of the different ET models. Some 

authors compared the ET estimates against measured ET values, while others compared 

the models using the PM ET as a benchmark. A review of these comparison studies has 

led to two main conclusions: (1) the PM model is generally accepted as a benchmark for 

comparing ET estimates from the different models, and, (2) when calibrated to local 

conditions, all models perform reasonably well, although the combination and radiation-

based models tend to perform better than the temperature-based models. 

 

The PM model, in either its original form or the FAO-56 reference form, is commonly 

used and accepted as a benchmark for comparing ET0 models (Jensen et al., 1990; 

Amatya et al., 1995; Hargreaves & Allen, 2003). It is generally considered to be one of 

the more physically sound methods. Doorenbos and Pruitt (1977) recommend using 

combination models when measurements of humidity, temperature, wind, and radiation 

are available. Where data quality issues prevent the use of the full PM model, 

Hargreaves and Allen (2003) recommend using the FAO-56-PM model or the 1985 

Hargreaves model. These two models have been shown to perform similarly over a 

wide range of climates. 

 

Jensen et al. (1990) state that models that only use temperature as an input are generally 

inadequate for arid or semi-arid regions. They also reiterate that all existing models for 

estimating crop ET from climatic data involve some empiricism and, therefore, some 

validation or calibration to local or regional conditions is advisable with any selected 

model. This should be done using simultaneous measurements of crop ET and 

corresponding climatic data. However, where local crop ET measurements do not exist 

for calibration or validation, many authors use either pan evaporation or the FAO-56-

PM model as the reference ET. 

 

Jensen et al. (1990) compared nineteen models for evaluating ET on a monthly basis 

and thirteen models for evaluating ET on a daily basis, for a variety of locations and 

climates. These models included the PM model, Jensen-Haise, Doorenbos and Pruitt, 
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Priestley-Taylor, Turc, FAO-24 Blaney-Criddle, Hargreaves, Thornthwaite and pan 

models. The models were compared with lysimeter data. They were also adjusted using 

a coefficient based on a linear regression, between the estimated and measured data, 

though the origin. The radiation-based models were found to perform well in the humid 

locations but tended to underestimate the peak and seasonal ET in the arid climates. The 

air temperature models tended not to perform as well as the other methods. However, 

the Hargreaves and FAO-24 Blaney-Criddle models performed better than the 

Thornthwaite model due to the addition of other parameters such as solar radiation. The 

Thornthwaite model also had a lag in the peak ET estimate, as temperature tends to lag 

seasonally behind solar radiation. 

 

On a monthly basis for arid locations, Jensen et al. (1990) found that the combination 

models performed the best, followed by the Doorenbos and Pruitt model. The FAO-24 

Blaney-Criddle model ranked the highest of the temperature models. The Turc, 

Priestley-Taylor, and Thornthwaite models ranked the lowest. For humid locations the 

Turc and the Priestley-Taylor models compared very favourably with the combination 

models. For all locations the PM model ranked the highest. Following the combination 

models the Doorenbos and Pruitt, the FAO-24 Blaney-Criddle and the Jensen-Haise 

models ranked the next highest. The worst performing model was the Thornthwaite 

model, followed by the Priestley-Taylor and the Turc models. For the daily ET 

estimates, for all locations, the PM model ranked the highest, followed by the FAO-24 

Blaney-Criddle model. The Priestley-Taylor model had the worst performance, 

followed by the Hargreaves and the Jensen-Haise models. 

 

Amatya et al. (1995) compared the PM, Makkink, Priestley-Taylor, Turc, Hargreaves-

Samani, and Thornthwaite models for estimating daily reference ET at three sites in 

eastern North Carolina. The PM model was used as the standard of comparison for 

evaluating the other models. A good correlation was found with all the models. In 

general, they found that the daily and mean monthly radiation-based models correlated 

well with the PM ET at all three locations. Overall the Turc model had the greatest 

comparison with the monthly and annual PM ET. All the other models were found to 

under predict the annual ET by as much as 16%, except the Hargreaves model, which 
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over predicted by an average of 15%. Their recommendation was to calibrate the 

models for each location. 

 

Federer et al. (1996) compared a selection of temperature- and radiation-based models 

with combination ET models. Results were compared in terms of annual potential ET 

amounts. Similar to Jensen et al. (1990), they found the Hamon and Thornthwaite 

models exhibited a lag in ET as temperature lags seasonally behind solar radiation. In 

general all models were found to compare reasonably well, however, at a given location 

the differences in annual ET between the models were frequently hundreds of 

millimetres. 

 

Following Federer et al. (1996), Vorosmarty et al. (1998) compared eleven ET estimates 

in a global-scale water balance model. The range in ET over all models varied 

considerably. They showed that the water balance model used was sensitive to the ET 

estimates and this affected the estimated actual ET and streamflow. Due to the influence 

of soil-moisture, the variation in actual ET was not as great as that in the potential ET.  

 

Xu and Singh (1998) compared a temperature-based model (Thornthwaite), a humidity-

based model (Romanenko), a radiation-based model (Turc) and a mass transfer model 

(Penman) to investigate their suitability for estimating ET. Monthly estimates were 

compared with monthly corrected pan evaporation values. The Penman model gave the 

best mean annual, seasonal and monthly ET estimates, while the Thornthwaite model 

followed by the Turc model gave the worst.  

 

In a further study, Xu and Singh (2000) compared eight radiation-based models for 

estimating ET. The models were compared with pan evaporation, which was only 

measured at one location in Switzerland. Large errors resulted when using the original 

model constant values, but, when the recalibrated constants were used, all models 

performed well for determining the mean annual ET. The more physically based 

Makkink and modified Priestley-Taylor models compared most favourably with the pan 

data on a monthly scale.  
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Xu and Singh (2001) then compared seven temperature-based models for estimating 

ET. The models were compared with measured pan data. The models performed better 

when the constants of the models were recalibrated for the local conditions. All the 

models were found to produce reasonable mean seasonal values. For monthly ET 

values, the Blaney-Criddle, Hargreaves, and Thornthwaite models produced the least 

error for all months, with the Blaney-Criddle model having the best performance. This 

study again showed that using the original constant values of the models for other 

climatic areas led to large biases in estimating monthly evaporation. 

 

Lu et al. (2005) compared three temperature-based ET models (Thornthwaite, Hamon, 

and Hargreaves-Samani) and three radiation-based models (Turc, Makkink, and 

Priestley-Taylor) using a monthly time step. The ET estimates were more variable 

among the temperature-based models than the radiation-based models. The ET 

estimates from the different models were highly correlated. Similar to Federer et al. 

(1996), they found that the magnitude of the ET estimates by the different models could 

vary by as much as 500mm/yr. In general, the Priestley-Taylor, Turc, and Hamon 

models performed better than the other ET models.	

 

Trajkovic and Kolakovic (2009) compared the Hargreaves, Thornthwaite, Turc, 

Priestley–Taylor, and Jensen–Haise ET models against the FAO-56-PM model for 

seven humid locations using average monthly data. The Turc model was found to 

perform the best at the humid locations followed by the Priestley–Taylor, Jensen–Haise, 

Thornthwaite, and Hargreaves models. These results are similar to those reported by 

Jensen et al. (1990) and Lu et al. (2005). 

 

Tabari et al. (2011) evaluated thirty-one reference ET models against the FAO-56-PM 

model in the humid climate of Iran. The radiation models all performed well with 

coefficients of determination all above 0.93. Of the temperature-based models the 

Blaney-Criddle model performed the best. The Blaney-Criddle, Jensen-Haise and 

Hargreaves models slightly overestimated the FAO-56-PM ET, while the Thornthwaite 

model underestimated it. 
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 Evapotranspiration models and climate change 2.1.4

Several authors have compared the estimates of ET given by different models in 

response to climate change. The main conclusion of these studies is that different ET 

models can produce vastly different responses to climate change. The models that 

incorporate a greater number of the driving variables give the most realistic estimates of 

ET (e.g., McKenney & Rosenberg, 1993; Kingston et al., 2009; Donohue et al., 2010). 

Additionally, the differences in the ET estimated by different models can lead to large 

uncertainty in future water projections under climate change, and the different ET 

models can produce different climate change signals (e.g., Kay & Davies, 2008; 

Hobbins et al., 2008).  

 

In an early study, McKenney and Rosenberg (1993) investigated the sensitivity of eight 

ET models to an increase in temperature of 2, 4 and 6°C. They found the Blaney-

Criddle, Jensen-Haise, and Thornthwaite models to be most sensitive to an increase in 

temperature. The Hargreaves-Samani, Priestley-Taylor, PM and Penman models all had 

similar and mostly linear responses to an increase in temperature. In contrast the 

Thornthwaite model had a non-linear response with a greater rate of change at higher 

temperatures. They also concluded that the different ET models and the locations used 

lead to very different conclusions regarding the effect of a temperature increase on ET. 

The input data type for the models was also found to not be consistent with the trends in 

ET. The Blaney-Criddle model (temperature) and Jensen-Haise model (radiation) were 

both relatively sensitive to temperature change while the Hargreaves-Samani model 

(temperature) and combination models had a similar temperature response. They also 

examined the response of the ET models to general circulation model (GCM) derived 

scenarios of climate change using the change in temperature only, and also the change 

in all variables. For the temperature-based models, the ET always increased. However, 

for the PM model, when only temperature was changed the ET increased, but when the 

change in all variables was considered the ET decreased. They concluded that 

temperature models, which do not account for the influence of climate change on other 

climate elements, may give unreliable estimates of ET. 

 
Kay and Davies (2008) compared the PM model against a temperature-based model for 

calculating ET from climate model data in Britain. The two models gave very different 
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ET estimates, which affect the modelled hydrological impacts. The GCM outputs 

always led to an increase in annual ET, which tended to be larger with the temperature-

based ET. The PM ET was sometimes negative throughout the year. For the regional 

climate model output, the annual change in temperature-based ET was always positive 

but the PM ET was sometimes negative throughout the year. For some catchments the 

annual change in ET was of a different sign for the two ET estimates. 

 

Hobbins et al. (2008) examined how two different parameterisations for ET influence 

long-term trends in soil moisture, evaporative flux, and runoff simulated by the water 

balance model which underlies the PDSI. The first parameterisation was based solely on 

air temperature, while the second was derived from observations of ET from class-A 

pans. The two different parameterisations led to trends in ET of opposite sign in almost 

half the locations tested in Australia and New Zealand. The choice of parameterisation 

was found to be most influential in energy-limited regions.  

 

Kingston et al. (2009) investigated the response of six ET models to a 2°C increase in 

global mean temperature simulated using five different GCMs. The ET models used 

were the PM, Hamon, Hargreaves, Priestley-Taylor, Blaney-Criddle and Jensen-Haise 

models and the ET was calculated on a monthly basis. They assessed the impacts of the 

ET models using an aridity index (precipitation/ET) and regional precipitation minus 

ET water surplus. With the increase in temperature the ET increased at all latitudes for 

all models and all GCMs. However, the magnitude of the ET differed greatly between 

the models. At most latitudes the Hamon model produced the largest climate change 

signal followed by the Jensen-Haise model. The Hargreaves, PM and Priestley-Taylor 

models had similar responses. They found that the different ET models led to both 

positive and negative projections of future water resources. The change in aridity was 

also very different between the models. It was clearly shown that the choice of ET 

model leads to considerable uncertainty in the climate change signal.  

 

Donohue et al. (2010) examined the Penman, Priestley-Taylor, Morton point, Morton 

areal and Thornthwaite ET models to assess their ability to capture the dynamics in 

evaporative demand in a changing climate in Australia. The ET dynamics were assessed 

by comparing the long-term trends against trends in precipitation, as ET and 
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precipitation are inversely related. The Penman model was found to be the most suitable 

model. An attribution analysis, using the Penman model, was performed to assess how 

each input variable contributed to the overall trend in ET. Temperature was found to 

lead to a large increase in ET, but this influence was outweighed and compensated for 

by the change in the other variables, which led to an overall decrease in ET. Changes in 

wind speed and albedo also played important roles in the dynamics of Penman ET. They 

concluded that under conditions of climate change all four variables may have different, 

even opposing, trends on ET. Therefore, ET models that only use one variable could 

give quite misleading results. 

 

Liu and McVicar (2012) further showed for the Yellow River Basin, China, that the 

four driving meteorological variables could have different influences on ET and, 

therefore, fully physically-based ET formulations should be used as these account for 

the combined influence of all four key meteorological variables. 

 Interaction of evapotranspiration, soil moisture and temperature 2.1.5

The relationship between soil moisture, temperature, and precipitation has been well 

studied using both observational analysis (e.g., Vautard et al., 2007; Hirschi et al., 2011) 

and coupled land surface atmosphere models (e.g., Manabe, 1969; D’Andrea et al., 

2006; van Heerwaarden et al., 2010). The relationship between temperature and 

evaporation is driven by interactions between the land surface and the lowest part of the 

atmosphere, known as the planetary boundary layer (PBL). It is well established that 

soil moisture can have a strong influence on the surrounding air temperature (e.g., 

Manabe, 1969; Durre et al., 2000; Vautard et al., 2007; Zhang et al., 2009; Seneviratne 

et al., 2010; Hirschi et al., 2011; Alexander, 2011). The land surface and PBL are a 

tightly coupled system (Santanello et al., 2005). The characteristics of the landscape 

(predominantly soil moisture) influence the atmosphere by controlling the division of 

net radiation into latent and sensible heat fluxes (Stensrud, 2007). Conversely, the 

atmosphere forces the land surface through precipitation, radiative, and momentum 

fluxes. 

 

The relationships and feedbacks between temperature and evaporation are increasingly 

forming the basis of climatological analyses and projections (Milly and Dunne, 2011). 
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For example, several recent studies of the drought in the Murray-Darling basin (MDB) 

in Australia have linearly correlated maximum temperatures with rainfall and examined 

the residual temperature time series (e.g., Nicholls, 2004). The 2002 MDB drought had 

higher temperatures than expected from the fitted linear trend alone, which was 

interpreted as increased temperatures leading to increased evaporation and an 

exacerbation of the 2002 drought. In particular, Karoly et al. (2003) noted that whilst 

monthly rainfall totals were at extreme lows during the 2002 drought, the monthly 

average maximum temperatures were much higher than in previous droughts. This led 

the authors to state that “…the higher temperatures caused a marked increase in 

evaporation rates, which sped up the loss of soil moisture and the drying of vegetation 

and watercourses. This is the first drought in Australia where the impact of human-

induced global warming can be clearly observed…” (p. 1). 

 

Similarly, Nicholls (2004) investigated the anomalously high air temperatures that 

occurred during the 2002 cool season (May-October) in the MDB. This was achieved 

through a comparison to an identified negative correlation between average monthly 

temperature and average monthly rainfall between 1952 and 2002. Nicholls (2004) then 

examined the residual timeseries of the correlation, which demonstrated a statistically 

significant monotonic increase toward higher air temperatures over the period of the 

regression data. It was speculated that this was due to the increasing trend in 

atmospheric carbon dioxide and other greenhouse gases, and that “the warming has 

meant that the severity and impacts of the most recent drought have been exacerbated 

by enhanced evaporation and evapotranspiration” (p. 334). 

 

Further studies have proposed that increased temperatures are the cause of reduced 

inflows into the MDB (Cai & Cowan, 2008), and that increased temperatures have led 

to decreased soil moisture in the MDB (Cai et al., 2009). These propositions would 

imply that increased evaporation is primarily a consequence of higher temperatures. 

However, in terms of physical mechanisms, it is the amount of evaporation that plays a 

major role in controlling the temperatures reached in the daytime, rather than vice versa 

(e.g., Dai et al., 1999; Lockart et al., 2009). The advantages of physically-based energy 

balance models have been noted by many authors, including Milly and Dunne (2011). 
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More precisely, the evolution of daytime temperatures are affected by numerous 

processes, including clouds, soil moisture, and land surface characteristics. Soil 

moisture is important as it controls the division of net radiation into latent and sensible 

heat. Clouds can also greatly reduce the diurnal temperature range by decreasing surface 

solar radiation. Passing synoptic systems can rapidly change surface air temperatures, 

although this generally only occurs on small timescales (days). Diurnal variations in 

surface wind direction can also influence the diurnal temperature range through 

advection of air mass with different humidity and temperatures (Dai et al., 1999). 

 

Seneviratne et al. (2010) presented a comprehensive review of the interactions between 

soil moisture and climate. Soil moisture has its strongest influence on ET and 

temperature in soil-moisture limited environments, between a dry and a wet climate. 

Dry soil leads to less ET, which results in more sensible heat and higher temperatures. 

D’Andrea et al. (2006) used a coupled surface-PBL model to show that initial soil 

moisture conditions play a key role in determining if European summers will be dry or 

wet. Similarly, Hirschi et al. (2011), using observational analysis in Europe, showed 

that for locations where ET is limited by soil moisture, drier surface conditions led to 

hot extremes, particularly a higher number of hot days and longer heat wave durations. 

For the contiguous United States, Durre et al. (2000) showed that the distribution of 

summertime daily maximum temperatures, particularly near-record high temperatures, 

was shifted toward higher temperatures when the soil was dry.  

 Evapotranspiration summary 2.1.6

Evapotranspiration is an important component of many hydrological studies and is 

becoming increasingly important for estimates of future climate states. The drivers of 

ET include solar radiation, humidity, wind speed, soil moisture, and temperature. ET 

has a complex interaction with soil moisture and temperature. This interaction is often 

misunderstood, leading to potentially erroneous conclusions regarding the influence of 

temperatures on ET during drought conditions.  

 

Whilst clearly important for climate studies, ET is very difficult to measure directly. 

There are, however, numerous models for estimating potential ET rates. These models 

vary in complexity and data requirements. In studies comparing the different models, 
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the combination and radiation-based models tend to perform better than the 

temperature-based models. The models also perform better when calibrated to local 

conditions. In studies investigating the influence of increased temperatures on ET, a 

common finding is that the different empirical models give vastly different changes in 

ET, even of different sign. 

 

An important data requirement of the radiation-based ET models and the more 

physically based combination models is solar radiation. However, solar radiation 

measurements are also quite scarce. Methods for estimating solar radiation and its 

components is the focus of the next section of this review. 

 Solar Radiation 2.2

The sun is the primary source of energy for most natural processes, such as 

photosynthesis and evaporation. Knowledge of the radiation amounts reaching the 

earth’s surface is therefore important for many applications such as hydrological 

modelling and agricultural management. The amount of radiation reaching the earth’s 

surface is influenced by latitude and time of year, as well as the atmospheric properties 

of the region including absorption and scattering by gases, aerosols, and clouds.  

 

The radiation from the sun has several components as shown in Figure 2.1.  

 

Extra-terrestrial radiation (ETR) is the radiation from the sun before losses by 

atmospheric absorption. It is the radiation onto a horizontal plane, parallel to the 

ground, at the top of the atmosphere. It depends on the solar constant, the time of year 

and latitude (i.e., the orientation of the ground to the sun). 

 

Net radiation is important for ET calculations. It is the balance between incoming and 

outgoing shortwave and longwave radiation. Net radiation is influenced by the sun’s 

elevation, cloudiness, turbidity, albedo, temperature, the dryness of the atmosphere and 

altitude (Allen et al., 1998). 

 



Chapter 2 - Background 

Page 28 

 

 

Figure 2.1 Components of solar radiation 

 

Shortwave radiation, also known as solar radiation or global radiation, is the total 

incoming radiation and is composed of direct and diffuse radiation. The direct radiation, 

also known as beam radiation, is the unaffected shortwave radiation reaching the land 

surface. Interception of direct radiation is indicated by shadows on the ground. The 

diffuse radiation is the scattered shortwave radiation, for example radiation intercepted 

and scattered by aerosols, dust, or clouds. Diffuse radiation provides whatever 

illumination is present in a shadow. The outgoing shortwave radiation is that part 

reflected by the earth’s surface and is dependent on the surface albedo.  

 

Part of the energy absorbed by the earth’s surface is radiated from the surface as 

terrestrial longwave radiation. This longwave radiation can subsequently be absorbed by 

atmospheric gases and emitted in all directions. The component that is emitted back to 

the surface is known as the downward longwave radiation. 

 

Of all the radiation components, the direct shortwave is the main contributor to net 

radiation. 
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 Global radiation 2.2.1

Direct measurements of global radiation exist, but these records are limited and in some 

countries have only recently begun. In contrast, many indirect methods are available 

that can be used to estimate global radiation, using readily accessible data such as 

temperature, humidity, and sunshine hours (SSH) data (Bristow & Campbell, 1984; 

Bakirci, 2009). Global radiation can be estimated by models that have a strong 

theoretical basis, by models based on empirical relationships, or a mix of the two. Often 

the approach used is dependent on data availability and computational requirements 

(Hay, 1993a).   

 
Along with SSH, global radiation can be estimated from many climatic parameters 

including mean temperature, maximum temperature, relative humidity, number of rainy 

days, altitude, latitude, total precipitation, cloudiness, and evaporation. However, SSH 

is the most commonly used parameter for estimating global radiation, as SSH can be 

easily measured and data are widely available (Jain, 1990; Bakirci, 2009). 

2.2.1.1 Theoretical/physical models 

Theoretical approaches account for the physical influence of atmospheric components 

such as molecular gases, aerosols, and water vapour on the incoming global radiation. 

These generally include terms for the scattering of radiation by gases and aerosols, 

absorption by gases, and the scattering and absorption by clouds and the underlying 

surface. 

 

The theoretical approach uses measurable atmospheric parameters such as optical 

density, surface reflectivity, amount of ozone and precipitable water (e.g., Hay, 1993a), 

type of cloud, cloud amount, thickness and number of cloud layers (Wong & Chow, 

2001). This data is used in physically derived equations for scattering (e.g., Rayleigh 

and Mie scattering), transmission, and absorption by ozone and aerosols.  

 

The most dominant influence on the intensity of global radiation at the earth’s surface is 

the seasonal and diurnal variations in the ETR, which can be calculated using latitude, 

time of year, and time of day. In contrast, the processes of scattering and absorption in 

the atmosphere are not easily calculated and require some approximation due to the 
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uncertainty of the influence of clouds and the composition of the atmosphere (Hay, 

1993a). 

 

The processes of scattering and absorption of radiation in the atmosphere are explicitly 

treated in the radiative transfer equation, as given by Hay (1993a): 
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where Iλ is the spectral radiation intensity at wavelength λ, µ is the cosine of the solar 

zenith angle, τλ is the atmospheric optical depth, p(τλ,ý,y) is the scattering distribution or 

phase function from direction ý into the direction y, ω0 is the single scattering albedo, 

and ω is the solid angle.  

 

When solved, the radiative transfer equation will give the total solar irradiance at the 

earth’s surface after integration over azimuth and zenith angles, and then over the 

wavelengths of the solar spectrum. However, exact solutions are computationally 

intensive. The more usual approach is to simplify the radiative transfer equation and to 

separately account for cloudless and cloudy sky conditions (Hay, 1993a). Cloudy 

conditions often result in less accurate estimations than cloudless conditions due to the 

lack of data on the type, distribution, and properties of clouds. 

 

For cloudless skies, Davies and Hay (1980) solve the radiative transfer equation for 

direct radiation where the spectral transmittance at normal incidence is expressed by 

Beer’s law: 
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The τλ term includes the principle scatter and absorption components. It is the 

aggregation of the optical depths due to absorption by ozone and water vapour, 

scattering by dry air molecules (Rayleigh), and absorption and scattering by aerosols. 

Numerical evaluation requires detailed knowledge of the spectral optical properties. 
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For cloudy conditions the approach given by Hay (1993a) as having the strongest 

physical basis is cloud layer models where the cloud is treated as occurring in 

distinctive layers, with each layer having its own characteristic transmissivity. In these 

models the cloud transmittances are usually calculated from: 

  bmait  exp  (2.32) 

where a and b are parameters that depend on cloud type (Davies & McKay, 1982; Hay, 

1993a). 

 

Davies and McKay (1982, 1989) give the general form of global radiation from layer 

models as: 

   


n
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where Gclear is the cloudless sky irradiance, Ψi is the ith cloud layer transmittance, and 

f(α,β) is a function of surface albedo (α) and the atmospheric reflectivity for surface 

reflected irradiation (β) to calculate multiple reflections between the ground and 

atmosphere. 

 

For cloud layer models using cloud amount the general form is: 
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where Ci is the cloud amount and ti is the transmissivity of an individual layer. 

2.2.1.2 Empirical models 

Due to the complexity and data requirements of the theoretical approach, many 

empirical methods for calculating global radiation have been developed. The empirical 

approach relates global, diffuse, and direct radiation to the ETR, and uses 

meteorological parameters such as SSH, relative humidity, and temperature. Empirical 

methods for calculating global radiation are simpler to use than theoretical models; 

however, the values of the empirical coefficients, usually determined by a regression 

analysis, tend to vary with location and season and thus are not easily transferred in 

time and space (Hay, 1993b). The values of the empirical coefficients can also change 
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depending on the averaging length of the data, i.e. different values are expected for 

daily versus monthly input data. 

2.2.1.2.1 Angstrom-Prescott equation 

From the many correlations that have been used for estimating global radiation, the 

most well-known is the Angstrom-Prescott equation (Angstrom, 1924), which estimates 

monthly mean daily global radiation from SSH data (n), scaled by the daylength (N) and 

the ETR. The SSH data is a measure of the amount of time the direct radiation from the 

sun is above a certain threshold.  

 

The original model (Angstrom, 1924) is an empirical linear relationship between global 

radiation on a horizontal surface (G) (MJ m-2 d-1) scaled by clear sky global radiation 

(Gclear) (MJ m-2 d-1) and the mean daily sunshine fraction (n/N). The general form of the 

Angstrom equation is:  
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where a is a regression parameter specific to a location. It is generally recognised that a 

is equivalent to the mean proportion of radiation received on a completely overcast day 

(Mani & Rangarajan, 1983; Revfeim, 1997). 

 

The original Angstrom equation used the ratio of the monthly average daily global 

radiation to the monthly average daily clear sky radiation. This considers the local 

effects on the atmospheric transmittance of solar radiation. In the modified form, these 

are considered with an additional constant. 

 

It is difficult to obtain sufficient measurements of clear sky radiation for use in the 

Angstrom equation. Therefore, Prescott (1940) and Page (1961) modified the Angstrom 

equation to be based on ETR on a horizontal surface where ETR is easily calculated, 

rather than on clear sky radiation. A disadvantage of the Angstrom-Prescott equation is 

that it needs an additional parameter to account for the local effects on the atmospheric 

transmittance of solar radiation (e.g., due to water vapour) (Suehrcke, 2000).  
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The Angstrom-Prescott equation is suggested by the FAO-56 (Allen et al., 1998) for use 

in evaporation estimates. In this method global radiation G is given by: 

 







N

n
ba

G

G

0

 (2.36) 

where G0 is the daily total ETR on a horizontal surface, a and b are regression 

parameters, and n/N is the SSH fraction.  

 
In equation (2.36), the coefficients are empirical; however, they have some physical 

explanation. The parameter a represents the fraction of ETR received during a 

completely cloudy day (when n/N =0). Conversely, the parameter combination (a + b) 

represents the overall mean transmission factor of global radiation under clear sky 

conditions (when n/N = 1) (Mani & Rangarajan, 1983).  

 

Several factors influence the parameters a and b. Martinez-Lozano et al. (1984) 

suggested the factors include latitude, height of the station, reflection coefficient of the 

surface, mean solar altitude, water vapour concentration, and natural or artificial 

pollution concentration. In particular, Mani and Rangarajan (1983) showed that the 

magnitude of a is dependent on the type and thickness of the clouds, and b is dependent 

on the transmission characteristics of the cloud free atmosphere, particularly the total 

water vapour content and turbidity. 

 
Gueymard et al. (1995) discussed some problems with the Angstrom-Prescott equation. 

The coefficients of the Angstrom-Prescott equation may change when different 

aggregating periods are considered. Cloudless days generally have a different turbidity 

and precipitable water to cloudy days, and cloud transmittance does not necessarily vary 

with total cloud cover. Martinez-Lozano et al. (1984) compared regression parameters 

between authors who used data from the same location and time period and they 

showed that the coefficients determined using one kind of data (e.g., monthly) are not 

interchangeable with those determined using a different set of data (e.g., daily or 

weekly). 
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2.2.1.3 Other empirical global radiation models 

Since the introduction of the Angstrom-Prescott equation, many empirical estimates of 

monthly mean daily global radiation from daily SSH data have been developed. Bakirci 

(2009) presented a review of 60 models for global radiation calculated from SSH data. 

Many of the empirical models simply suggest parameter values for the Angstrom-

Prescott equation and consequently parameter values have been calculated at many 

locations around the world (e.g., Black et al., 1954; Page, 1961; Rietveld, 1978).  

 

Some authors have modified the Angstrom-Prescott equation to include various types of 

nonlinearities. For example, Akinoglu and Ecevit (1990) added a quadratic term: 
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while Samuel (1991) and Ertekin and Yaldiz (2000) used a cubic model of the form: 
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Almorox and Hontoria (2004) used an exponential model: 
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Newland (1989) and Ampratwum and Dorvlo (1999) added a logarithmic term:  
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Ogelman et al. (1984) derived an equation that used the monthly SSH fraction and its 

standard deviation (σn/N):  
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Rietveld (1978) examined published values for a and b and found that a is linearly 

related to the mean monthly value of n/N, while b is hyperbolically related to the mean 

monthly value of n/N: 
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This method was shown to achieve a greater accuracy than the use of constants for the 

coefficients when compared with the models of Black (1954) and Penman (1956), 

particularly for n/N values smaller than 0.40. However, Rietveld did not presume that 

the linear and hyperbolic functions had a general validity. 

 
The Angstrom-Prescott equation can be further enhanced by using geographical and 

seasonal parameters to account for variations in latitude and season. Glover and 

McCulloch (1958) expressed a in terms of latitude (φ), while keeping b constant:  
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Gopinathan (1988a), using data from around the world, suggested that the coefficients 

were a function of the SSH fraction, altitude (h) and latitude: 
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Gopinathan (1988a) suggested that these coefficients could be used for any location 

around the world to estimate global radiation on a horizontal surface with an accuracy 

of about 10%. 

 
Some authors have specified different coefficients based on the time of year. For 

example, Benson et al. (1984) provided a set of values for April to September and 

another set for the rest of the year. Similarly, Soler (1990a) derived coefficients for each 

month from Rietveld’s model using data from 100 European locations.  

 

Brooks and Brooks (1947) showed that the Campbell-Stokes SSH recorder, which 

measures the number of bright SSH in a day, usually only responds to sunshine when 

the sun is greater than 5° above the horizon. Accordingly, other authors such as Hay 
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(1979) have modified the Angstrom-Prescott equations to account for a reduced 

maximum bright daylight period.  

 

Hay (1979) also accounted for multiple reflections between the land surface and the 

atmosphere for global radiation correlations. However, Jain (1986) incorporated these 

two effects into his study, both separately and together, and found that they did not offer 

any advantage over the Angstrom equation. In a further study, Jain and Jain (1988) 

noted that Jain (1986), due to lack of surface albedo data, assumed a common constant 

value of 0.2 for all seasons and locations. Jain and Jain (1988) then assessed the use of 

the equations incorporating the two effects using measured values of surface albedo. 

However, they still found that the inclusion of the Campbell-Stokes response and the 

multiple reflections did not significantly reduce the scatter of the parameter values. 

They did find that Hay’s improvements slightly increased the correlation coefficients 

for all sites. They suggested that the effect of multiple reflections is only significant 

under some conditions, in regions where the surface albedo is high (>~0.3). The 

inclusion of the Campbell-Stokes response made no difference. It is worthy of note that 

Hay only studied both effects together. 

2.2.1.4 Comparison of models and regional applicability  

Many modifications have been made to the Angstrom-Prescott equation. However, the 

complex modified versions do not tend to offer any advantage due to the 

interdependency of the different variables. Many studies have been undertaken which 

compare the different methods for estimating monthly mean daily global radiation. The 

main conclusion is that the models generally perform equally well, although the linear 

models may perform slightly better.  

 

Several authors examined the Angstrom-Prescott equation across various locations and 

proposed parameter values that may be applicable worldwide (e.g., Black et al., 1954; 

Penman, 1956). Other authors have incorporated latitude into the Angstrom-Prescott 

type equations to make the models more regionally applicable (e.g., Glover & 

McCulloch, 1958; Gopinathan, 1988c). Alternatively, Rietveld (1978) suggested that 

the coefficients could be derived from the relative sunshine duration of a location, and 

that this method was preferable to the use of worldwide constant coefficients. The 
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regression parameters have sometimes been suggested to be globally applicable, 

although many authors doubt their independence.  

 Direct and diffuse radiation 2.2.2

Knowledge of the amounts of direct and diffuse radiation is important for agriculture 

and ecosystem modelling and for modelling canopy photosynthesis. Diffuse and direct 

radiation differ in how they transfer through plant canopies, which affects the process of 

photosynthesis (Gu et al., 2002; Kanniah et al., 2012). Diffuse radiation can penetrate 

deeper into dense subcanopies and has been found to result in higher light use 

efficiencies by plant canopies (Roderick et al., 2001; Gu et al., 2002). Cloudiness can 

lead to increased amounts of diffuse radiation but this only leads to increased 

photosynthesis if the benefit of the increased diffuse radiation is not outweighed by the 

decrease in direct radiation (Alton, 2008). 

 
The amounts of direct and diffuse radiation are functions of the factors that deplete the 

ETR as it travels through the atmosphere, such as solar altitude, water vapour, dust, and 

ozone. In a relatively clean atmosphere (nonindustrial location with small dust effects), 

the daily variation, with the sun at a fixed altitude, is primarily due to variation of the 

atmospheric water vapour (Liu & Jordan, 1960).  

 

The intensity of direct radiation, unlike diffuse radiation, also varies according to the 

geometry of the terrain. Therefore, to calculate global radiation on a sloped surface, the 

amount of the direct and diffuse components needs to be explicitly known.  

 

Direct and diffuse radiation measurements are limited; however, they can be calculated 

from theoretical and empirical models. The theoretical models account for absorption 

and scattering by various atmospheric constituents. These formulae require values of the 

concentration of ozone, water vapour, and particulate matter in the atmosphere. 

Empirical models, while not physically correct, are simpler, less data intensive, and 

hence are more commonly used. 
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2.2.2.1 Empirical models 

Empirical models typically estimate direct and diffuse radiation from SSH, from the 

clearness index, or both. The clearness index kt is given as:	 

 
0G

G
kt   (2.47) 

where G is the global radiation and G0 is the extraterrestrial radiation. 

 

The diffuse fraction has a strong relationship with the clearness index and this 

relationship is commonly used to estimate diffuse radiation (e.g., Liu & Jordan, 1960; 

Page, 1961; Ruth & Chant, 1976; Erbs et al., 1982; Hollands & Crha, 1987; Jain 1990). 

Other authors have correlated direct and diffuse radiation with SSH measurements and 

ETR (Hay, 1976; Iqbal, 1979; Benson et al., 1984; Garg & Garg, 1985; Jain, 1990). A 

third type correlates direct and diffuse radiation with both SSH and global radiation 

(Benson et al., 1984; Gopinathan 1988b, 1988c; Al-Hamdani et al., 1989; Al-Riahi et 

al., 1992; Tiris et al., 1996). Some of the hourly kt models have different equations for 

different clearness values (e.g., Orgill & Hollands, 1977; Erbs et al., 1982; Reindl et al., 

1990). 

 

Further models have been developed to estimate direct and diffuse radiation that use 

additional variables, such as solar altitude, humidity, cloudiness and temperature data 

(e.g., Collares-Pereira & Rabl, 1979; Skartveit & Olseth, 1987; Reindl et al., 1990; 

Coppolino, 1990, 1991; Munawwar & Muneer, 2007). Coppolino (1990, 1991) 

calculated monthly mean daily diffuse radiation from the clearness index and minimum 

air mass. Munawwar and Muneer (2007) developed a series of empirical models to 

calculate daily diffuse radiation from sunshine fraction, a cloudiness factor, and the 

daily clearness index. 

 

Reindl et al. (1990) assessed twenty-eight potential variables using correlation analysis 

to predict hourly diffuse radiation. A stepwise regression found four significant 

predictors: (1) the clearness index, (2) solar altitude, (3) ambient temperature, and (4) 

relative humidity. Note that they did not assess SSH as a predictor. The clearness index 

was found to be the most important variable at low and mid clearness index intervals, 
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but decreased in significance at high intervals. Solar altitude was found to be more 

important for clear skies than cloudy skies and was found to be the dominant predictor 

variable for clear skies. The diffuse fraction, under clear skies, was found to increase 

with decreasing solar altitude angles due to the longer path length of the radiation. Iqbal 

(1980) and Skartveit and Olseth (1987) also suggested that the solar altitude is an 

important predictor variable for diffuse radiation. 

 
While the global radiation models tend to give a monthly mean daily average, the 

diffuse radiation models related to global radiation have been developed for many 

timescales ranging from hourly (Orgill & Hollands, 1977; Iqbal, 1980; Erbs et al., 1982; 

Al-Riahi et al., 1992; Posadillo & Lopez Luque, 2009), to daily (Ruth & Chant, 1976; 

Collares-Pereira & Rabl, 1979), and monthly (Liu & Jordan, 1960; Al-Hamdani et al., 

1989). The SSH based models tend to use a monthly mean daily timescale (e.g., 

Barbaro et al., 1981; Benson et al., 1984; Garg & Garg, 1985; Gopinathan 1988c), 

although Gopinathan (1992) used a monthly mean hourly estimation of global and 

diffuse radiation from hourly SSH measurements. 

2.2.2.1.1 Liu and Jordan (1960) type model 

The most well-known method for determining diffuse radiation, and the basis of many 

others, is that by Liu and Jordan (1960), which relates diffuse radiation to the clearness 

index. Liu and Jordan (1960), using data from one location (Blue Hill, Mass.) presented 

relationships for determining, on a horizontal surface, the instantaneous intensity of 

diffuse radiation on clear days along with long term hourly average and daily sums of 

diffuse radiation for days with differing amounts of cloud cover. These estimates 

required the global radiation on a horizontal surface to be known. 

 

Their work showed that for average conditions, the daily diffuse radiation (Gd) could be 

determined from the daily global radiation (G) and the ETR (G0) using linear 

regression: 
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where c and d are regression parameters.  
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Subsequent investigations have used higher powers of G/G0 to gain a greater accuracy 

(e.g., Barbaro et al., 1981). In a further study, Hay (1976) added a term to account for 

the multiple reflections between the ground and the atmosphere. 

 

The disadvantage of using the clearness index is that global radiation measurements are 

needed. In contrast, SSH data is more readily available than global radiation data and 

has become the most dominant parameter for the estimation of diffuse as well as global 

radiation (Jain, 1990).  

2.2.2.1.2 Models relating direct and diffuse radiation with sunshine hours 

Several models have been developed that estimate monthly average daily diffuse and 

direct radiation from SSH and ETR. Different higher order equations have also been 

proposed.  

 

For the diffuse radiation, Garg and Garg (1985), Gopinathan (1992) and Tiris et al. 

(1996) proposed a linear model: 
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Iqbal (1979), Barbaro et al. (1981), Garg and Garg (1985) and Gopinathan (1988b) also 

used a quadratic model: 
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For the direct radiation (Gb), Tiris et al. (1996) used a linear model: 
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Iqbal (1979), Benson et al. (1984) and Garg and Garg (1985) used a quadratic model: 
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While Benson et al. (1984) also used a cubic model. 



Chapter 2 - Background 

Page 41 

 

 

The preferred diffuse and direct radiation models tend to be the quadratic versions 

(Iqbal, 1979; Barbaro et al., 1981; Bensen et al., 1984).  

2.2.2.2 Comparison of models and regional applicability  

Many authors have compared their Liu and Jordan type equations for estimating diffuse 

radiation from global radiation with those from other studies and found minimal 

difference. For example, Erbs et al. (1982) found their results compared very well with 

those of Orgill and Hollands (1977).  

 

Other authors have compared the performance of the prediction of diffuse radiation 

calculated from global radiation with that calculated from ETR and SSH. Barbaro et al. 

(1981), using data from three Italian locations, compared the performance of the two 

methods for determining monthly mean diffuse radiation, and found both methods to 

perform similarly well and produce results very close to the experimental data. Garg and 

Garg (1985) also found both methods to be equally suitable for estimating diffuse 

radiation across eleven locations in India. 

 

Benson et al. (1984) advocated using regressions with SSH duration to find the direct 

and diffuse component, rather than using regression with the global component, as there 

is more SSH data and less scatter in the predictions. 

 

There is no consensus in the literature as to the worldwide applicability of the direct and 

diffuse coefficients. Ruth and Chant (1976) used a monthly Liu and Jordan type 

correlation to show that their correlations exhibited latitude dependence. In contrast, 

Srinivasan et al. (1986) used a seasonal (one parameter set per season) Liu and Jordan 

type correlation to compare their model curve to that of other authors, and showed that 

the diffuse fraction was not overly latitude dependent. However, this could have been 

influenced by the different seasonal parameter sets. Their correlations displayed a 

seasonal dependence: although spring, summer, and autumn were similar, winter was 

quite different. This was attributed to the cooler months having a lower diffuse fraction 

than the other months (drier air and less dusty). 
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Soler (1990b) examined the dependence of the coefficients of the Liu and Jordan type 

equation to latitude for European locations with latitudes in the range 36°N to 61°N. 

Although only latitude was examined, Soler suggested that the coefficients were 

complex functions of atmospheric conditions and relative SSH, as well as latitude. 

Higher latitudes are generally characterised by larger air mass. 

 

Benson et al. (1984), using daily and monthly correlations, found no seasonal influence 

in the correlations of daily direct and diffuse radiation. This occurred despite winter 

being characterised by predominantly clear or very overcast days, while summer 

consisted of mostly partly cloudy conditions. In contrast, the monthly correlations 

showed a difference between the coefficients for summer and winter conditions.  

 

Garg and Garg (1985) found that the direct radiation in India was highly dependent on 

local conditions. However, the diffuse radiation could have one equation applied to 

several locations collectively. The linear Gd/G0 model correlated with SSH was found to 

perform better for regional regression in India than the Gd/G model. 

2.2.2.3 Transmission of direct and diffuse radiation 

The transmission of direct radiation through the atmosphere varies with latitude, 

altitude, and season, and also varies throughout the day. This is due to the changing 

optical air mass. The optical air mass is the length of the atmospheric path traversed by 

the sun’s rays in reaching the earth, measured in terms of the length of this path when 

the sun is in the zenith. A longer path length results in less transmission of direct 

radiation. According to List (1968), for a zenith distance of the sun (z) less than 80°, the 

optical air mass is approximately equal to secz.  

 

List (1968) gives a basic formula for calculating the direct radiation on a horizontal 

surface in time (t) as: 
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where a is the transmission coefficient of the atmosphere, r is the radius vector of the 

earth, Jo is the solar constant and secz is equal to: 

 
 coscoscossinsin

1
sec


z  (2.54) 

where φ is the latitude, δ is the sun’s declination and ω is the sun’s hour angle. 

For the period of sunrise to sunset, δ can be assumed constant for one day.  

 

The Jo/r
2cosz term gives the ETR (Go). Therefore, the daily transmission of direct 

radiation can be written as: 

 z
b aGG sec

0  (2.55) 

This method was also used by Garnier and Ohmura (1968, 1970) and Varley et al. 

(1993). Garnier and Ohmura (1968) cautioned that this approximation underestimates 

the solar energy at low sun altitudes. However, assuming that a maximum 

underestimation of 10% in daily totals is acceptable, this error is never exceeded on a 

horizontal surface within 35° of the equator. Williams et al. (1972) followed the 

procedure of Garnier and Ohmura (1968) for direct radiation. They suggested that the 

major contribution of direct radiation to global radiation was around solar noon, when 

any error in secz will be small. Revfeim (1976) also discussed the use of an optical air 

mass with secz exponent. They warned that the secz approximation is larger than the 

true optical air mass for z>60°.  

 

Monteith (2007) likewise used asecz for direct radiation transmission. Monteith 

suggested that for values of zenith angle less than 80°, the air mass (m) at a location 

could be given by: 

 z
p

p
m sec

0

  (2.56) 

where P is the location’s atmospheric pressure, and P0 is the standard atmospheric 

pressure at sea level. 	

 

Hottel (1976) gave the transmittance of direct radiation through the atmosphere (a) in 

clear conditions as: 
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where a0, a1 and k are constant parameters. Secz is again used to approximate the air 

mass. 

 

The diffuse radiation in List (1968; attributed to Fritz) under cloudless conditions is 

given by the assumption that, of the radiation that is scattered (i.e., not direct radiation), 

half is scattered forward and half scattered backwards. This is only strictly correct when 

the scattering particles are small compared with the wavelength of light.  

 

Therefore, to calculate global radiation following the List method, the ETR is first 

calculated followed by the direct radiation, which is subtracted from the ETR. Half of 

the remainder is the diffuse radiation. The sum of the direct and diffuse radiation is the 

global radiation. This procedure was also used by Houghton (1954), Williams et al. 

(1972) and Varley et al. (1993). 

 The influence of clouds on radiation  2.2.3

The influence of clouds on the amounts of global, direct, and diffuse radiation is 

difficult to account for. Different cloud properties influence the global, direct, and 

diffuse radiation in different ways. In completely clear conditions, variations in the 

amount of global radiation occur with varying atmospheric turbidity and water vapour 

content. Under overcast conditions, additional variation occurs due to the type of the 

cloud cover (Benson et al., 1984). At a given level of sunshine, variation in the amount 

of global radiation can occur for partly cloudy conditions due to the varying cloud 

transmissivities for different types and thickness of clouds. Houghton (1954) discussed 

that the magnitude of absorption and scattering by clouds is dependent on cloud height, 

depth and density, the vertical distribution of the water vapour, and the suns zenith 

angle. 

 

McCormick and Suehrcke (1991) found that their diffuse fraction – clearness index 

correlations had relatively wide scatter. McCormick and Suehrcke (1991) showed that 

two separate hours could have the same clearness index, but very different diffuse 

fractions depending on the type of cloud cover. Bugler (1977) suggested that a 
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significant source of scatter was the variety of cloudiness states possible for a given 

hourly clearness index value. Similarly, Erbs et al. (1982) suggested that the diffuse 

fraction was dependent on the type and distribution of clouds in the sky during the hour. 

Further to this, Benson et al. (1984) also stated that at zero sunshine, rainfall conditions 

significantly decreased the global radiation below what was experienced for cloudy 

conditions. Rain clouds are generally darker than non-precipitation clouds.  

 
With increasing cloudiness, both direct and global radiation should decrease, while the 

additionally scattering should lead to an increase in the diffuse radiation. However, a 

heavier cloud presence will also decrease the diffuse radiation. The extent of the 

influence of the cloudiness effect should be smaller for the global radiation than the 

direct and diffuse radiation due to the partially compensating effect of the opposite 

trends in the direct and diffuse components. 

 Sunshine Hours and the Campbell-Stokes Recorder 2.3

Bright SSH are recorded at many locations around the world and can be used to 

estimate global, direct and diffuse radiation. Bright SSH can be measured using a 

variety of instruments. The most common in Australia and many parts of the world is 

the Campbell-Stokes (CS) recorder. This device responds to the direct radiation 

reaching the earth’s surface. A sphere of glass focuses the sun’s rays onto a strip of 

cardboard and burns a trace. The length of the burn trace is a measure of the number of 

bright SSH that occurred during the day (World Meteorological Organization, 2008). 

 

One of the limitations of the CS recorder is that direct radiation needs to reach a 

threshold before the paper will begin to burn. This threshold is given as 120 Wm-2 by 

the WMO (2008). Painter (1981) gave the threshold range as 16–400 Wm-2, with an 

average threshold of 170 Wm-2. The threshold range can be attributed to differences in 

humidity. For example, when humidity is high, the card may become damp and require 

more intense radiation to burn. The threshold can also increase if dew or other water 

deposits are present on the glass sphere (Painter, 1981; Benson et al., 1984). 

 

The threshold has also been shown to be dependent on sun angle and time of year (e.g., 

Brooks & Brooks, 1947; Painter, 1981; Kerr & Tabony, 2004). Brooks and Brooks 
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(1947) showed that the CS recorder responded later in the day in summer than in winter. 

In contrast, Painter (1981) showed that winter had a higher threshold of burning than 

summer due to the generally lower temperatures and damper conditions. Kerr and 

Tabony (2004) showed that a CS recorder overestimated sunshine amounts by 

approximately 20% in summer and 7% in winter. They attributed the seasonal 

difference to the influence of solar elevation.  

 

There is also potential for inaccurate readings, quality of the paper, and maintenance 

issues. Benson et al. (1984) showed that CS recorders can underestimate the SSH at low 

sun angles. The length of the burn can also affect the daily reading during intermittent 

strong sunshine (Painter, 1981). Painter (1981) suggested that the burn will spread on 

days with intermittent strong sunshine. This can produce an overestimation of sunshine 

durations due to the actual width of burn mark. Overburn will be minimal on days with 

continuous sunshine. Therefore, the CS recorder is more accurate in completely clear or 

overcast conditions. It was also shown that the overburn of cards is less in winter than 

summer due to the lower irradiances that occur in winter. 

 

A further limitation of the CS recorder is that it only records the period for which the 

direct radiation exceeds the threshold, and does not record the intensity of the radiation 

reaching the earth. Additionally, the CS recorder does not respond to diffuse radiation 

(Brooks & Brooks, 1947). 

 

Sunshine duration is commonly recorded as a daily total. A primary disadvantage when 

using daily SSH estimates is that it is unknown when during the day the bright sunshine 

occurred. Bright sunshine at different parts of the day have different contributions to the 

daytime total radiation – an hour in the middle of the day will contribute more radiation 

than an hour at the start or end of the day. To counter this, common methods for 

estimating solar radiation calculate deterministic values of the radiation for a monthly 

timescale. These methods assume that the SSH measurement is averaged across the day 

(Revfeim, 1997). There is additional uncertainty due to the influence of clouds on the 

attenuation of the solar radiation. While these factors can be averaged out over long 

time periods (e.g., for monthly estimates), this is not useful for short term estimates.  
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Other authors have recognised that hourly SSH data is needed for more accurate results 

(e.g., Schulze, 1976; Revfeim, 1981; Yeboah-Amankwah & Agyeman, 1990). For 

example, Revfeim (1981) developed a model to calculate global radiation from hourly 

SSH fractions. This model gave improved estimates of global radiation. Although 

hourly data can lead to improved estimates of global radiation, hourly data is not always 

readily available. In recognition of this limitation, Revfeim (1997) presented a model to 

estimate hourly sunshine from daily data using a weighting factor, with a greater 

concentration around noon. This method replaces the hourly recorded sunshine fractions 

with a plausible pattern of sunshine for the daily fraction. 

 

Despite the uncertainty associated with SSH measurements, the common methods for 

estimating solar radiation are purely deterministic – they estimate monthly values of the 

radiation based on average daily SSH measurements. A monthly estimate is used to 

average out errors and uncertainty due to the timing of bright hours and uncertainty of 

cloud effects on the attenuation of the radiation. This approach gives no indication of 

errors or uncertainty associated with daily radiation estimates.  

 Satellite Measurements of Global Radiation 2.4

The Bureau of Meteorology currently uses computer models to estimate global 

irradiance over a day from satellite data. These computer models use visible images 

from the geostationary meteorological satellites, taken every hour, to estimate daily 

global solar exposures at ground level (BoM, 2013). The procedure involves analysis of 

the brightness levels of each pixel, averaged over at least four pixels, and integrated 

over the entire day. The pixels contain 1024 different brightness levels and cover an 

area of 1.25 by 1.25 km at the equator, and a larger area at mid-latitudes.  

 

The ground irradiance is calculated from the irradiance at the top of atmosphere, cloud 

albedo, surface albedo, and atmospheric absorption. The irradiance (I) at the ground is 

estimated from:  

 Absorption cAtmospheriAlbedo SurfaceAlbedo CloudAtmosphere of Topground IIIII   (2.58) 
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The largest source of uncertainty in the estimate is associated with the reflectance from 

the clouds. As the top of the clouds are irregularly shaped, the reflectance from any 

cloud can vary with the relative positions of the sun and satellite. According to BoM 

(2013), this introduces an error of 5% into the model. The estimation of water vapour in 

the atmosphere also introduces an error of approximately 2%.  

 

The computer models were calibrated against the ground-based measurements (BoM, 

2013). A comparison of the satellite estimates with the ground-based pyranometer data 

led to the conclusion that the satellite model has an error of 7% or better in clear sky 

conditions and up to 20% in cloudy conditions. In terms of the accuracy of predictions 

in relation to the location of the pyranometer, the satellite method is given as more 

accurate than using the pyranometer at a distance typically 40 km from the pyranometer. 

 

Weymouth and Le Marshall (2001) compared the satellite and ground-based estimates 

at twelve Australian locations from July 1997 to April 1998. The locations included 

Adelaide, Alice Springs, Broome, Darwin, Mildura, Mt. Gambier, Tennant Creek and 

Wagga Wagga. The overall difference between the observed and modelled estimates 

was 6.2%. The largest error over all conditions occurred at Cairns with 9.06% error, as 

Cairns experienced large cloud variations throughout the year. The smallest error was 

4.71% at Wagga Wagga. 
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 Summary 2.5

This chapter presents a summary of the available literature on ET modelling, global, 

direct and diffuse radiation modelling, and the use of SSH data for radiation modelling. 

It is evident that ET is important for many hydrological studies; however, the 

fundamentals of the relationship between temperature and ET are sometimes 

misunderstood and/or poorly represented in empirical models.  

 

Whilst important for many hydrological applications, ET is difficult to measure. This 

has led to the formation of many empirical models for estimating ET. These models 

have different data requirements, although the more commonly used and most accepted 

models require an estimate of global radiation as an input. It is further shown that 

estimates of global radiation are also quite scarce; however, many empirical models 

have been formed to estimate global radiation and its components. Most of these models 

estimate the radiation from SSH data. These models are generally deterministic, do not 

account for the timing of the ‘bright’ hours during the day, and do not provide an 

estimate of the errors associated with the radiation predictions. Consequently, there 

exists a need for a stochastic model that estimates the radiation and its components from 

sunshine hours, and explicitly accounts for the variability in the estimate due to the 

timing of the bright hours, as well as any external influences on the radiation.  
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 - Stochastic Radiation Model Chapter 3

Development 

Overview 

The previous chapter highlights a need for a stochastic model to estimate global 

radiation and its components and also provide a measure of the uncertainty in the 

estimates. This chapter develops several different stochastic models that use daily SSH 

data to produce probabilistic predictions of global, direct and diffuse radiation, 

including associated uncertainties. Five global models, three direct models and five 

diffuse radiation models are developed. The models differ in the parameterisation of the 

diffuse and direct portions of the global radiation, using either no scaling, linear or 

quadratic scaling of the radiation by the daily SSH fraction to account for the 

attenuation of radiation by clouds. Two sources of predictive uncertainty are considered: 

(i) the timing of the SSH during the day and (ii) external errors such as variability in 

cloud type and amount. The models are calibrated under different residual error 

assumptions, including constant, linear and quadratic variances related to SSH fraction 

and the simulated radiation. 

 

This chapter also summarises the meteorological data used in the analysis of the 

radiation models. Nine main locations that have observations of global, direct and 

diffuse radiation for an extended number of years are used in the development of the 

stochastic radiation models. These locations cover a range of climate conditions. The 

observations from an additional eleven locations are also used in the development of the 

regional radiation models. 

 Data 3.1

The data used in the development of the stochastic radiation models comprises daily 

SSH measurements and ground-based measurements of half-hourly global, direct and 

diffuse radiation. All data was provided by the Bureau of Meteorology (BoM, 2013). 

The SSH data was measured with a CS recorder while the ground-based global radiation 
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was measured with a pyranometer. The measurement uncertainty for SSH duration is 

±0.1 h with a resolution of 0.1 h (WMO, 2008). The ground radiation measurements are 

aggregated to give daily estimates. Only days with complete records of radiation and 

SSH are used. In addition, daily estimates of satellite-derived global radiation were 

obtained to compare against the modelled global radiation.  

 

Only nine locations have global, direct and diffuse radiation data along with SSH data 

for the same time period covering at least seven years from 1999 to 2010. These 

locations are used for the development and assessment of the stochastic SSH models. 

The models are calibrated using data from 2003-2005. This period was selected as 

continuous daily data is available at each of the locations. Three years is chosen in an 

attempt to encompass a wide range of radiation and rainfall variability. The remaining 

data is used to validate the models. 

 

Aside from the nine main study locations, eleven other locations have observed 

radiation measurements. The observations from these locations are used in the 

development of a regional version of the stochastic models. 

 Climatology 3.2

The climatology of the main nine locations and the additional eleven locations is 

detailed in this section. 

 Main nine study locations 3.2.1

The following nine locations are used in the development and analysis of the stochastic 

radiation models. The locations used and the SSH and rainfall statistics for these 

locations are listed in Table 3.1. 

  



Chapter 3 - Stochastic Radiation Model Development 

Page 52 

 

Table 3.1 Data for the nine main locations used. 

Location 
Station 

No. 
Years Latitude

SSH 
fraction

No. days 
n/N>0.8

No. days 
n/N<0.3 

Rain 
days 

>0mm 

Av.Ann
Rainfall 

(mm) 

Av. 9am
Humidity 

(%) 
Adelaide 23034 2003-2010 -34.95 0.631 144 64 108 394.7 61 

Alice Springs 15590 1999-2010 -23.80 0.810 256 31 43 314.4 40 

Broome  3003 1999-2010 -17.95 0.817 272 20 62 742.7 55 

Darwin 14015 1999-2010 -12.42 0.720 202 40 125 1769.9 69 

Melbourne 86282 1999-2010 -37.67 0.535 89 91 135 460.3 69 

Mildura 76031 1999-2005 -34.24 0.725 204 41 66 242.7 63 

Mt Gambier 26021 1999-2006 -37.75 0.536 88 93 190 692.7 75 

Tennant Creek. 15135 1999-2006 -19.64 0.806 256 27 55 570.2 39 

Wagga Wagga 72150 1999-2010 -35.16 0.686 192 62 97 504.7 66 

 

Each of the locations has a different climate. According to BoM (2013): 

 Adelaide, located in South Australia, has a temperate climate with warm dry 

summers and cold wet winters. 

 Alice Springs, located in inland Northern Territory around central Australia, has 

a grassland climate and is arid with low rainfall. 

 Broome, located on the coast of Western Australia, also has a grassland climate 

with a marked wet summer and dry winter. 

 Darwin, located on the coast of the Northern Territory, has a tropical climate 

with a marked wet summer and dry winter. 

 Melbourne, located on the coast of Victoria, has a temperate climate with 

uniform rainfall throughout the year and no dry season. 

 Mildura, located in inland Victoria, has a grassland climate. It is warm and 

persistently dry with a wet winter and low summer rainfall. 

 Mount Gambier, near the coast in the south of South Australia, has a temperate 

climate with a wet winter and low summer rainfall. 

 Tennant Creek, located in inland Northern Territory, to the north of Alice 

Springs, has a grassland climate and is arid with low rainfall in winter. 

 Wagga Wagga, located in inland New South Wales, has a temperate climate 

with no dry season. 
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 Additional eleven locations 3.2.2

Along with the main study locations, the following eleven locations are used in the 

development of the regional stochastic models. The locations are listed in Table 3.2. 

Table 3.2 Data for the additional eleven locations used. 

Location 
Station 

No. 
Years Latitude

SSH 
fraction

No. days 
n/N>0.8

No. days 
n/N<0.3 

Rain 
days 

>0mm 

Rainfall 
mm 

Brisbane 40223 1983-1995 -27.42 0.664 173 60 124 1081.4
Cairns 31011 1999-2003 -16.87 0.641 152 60 156 1847.8

Canberra 70014 1983-1994 -35.30 0.621 131 62 107 636.1 

Halls Creek  2012 1970-1980 -18.23 0.792 238 26 67 544.1 

Hobart 94008 1968-1980 -42.83 0.496 64 98 146 514.8 

Laverton 87031 1968-1980 -37.86 0.514 78 100 149 587.3 

Oodnadatta 17043 1969-1980 -27.56 0.800 258 33 35 215.2 

Perth 09021 1975-1980 -31.93 0.702 182 36 108 672.5 

Sydney 66037 1983-1994 -33.95 0.600 153 79 130 1136.4

Williamtown 61078 1969-1979 -32.79 0.591 134 84 147 1145.4

Woomera 16001 1968-1979 -31.16 0.759 230 37 55 244.1 

 
 
The climate of these locations is as follows: 

 Brisbane, located on the coast in the south of Queensland, has a subtropical 

climate with a wet summer and low winter rainfall. 

 Cairns, located on the coast in the north of Queensland, has a tropical climate 

with a marked wet, humid summer and dry winter. 

 Canberra, located in inland New South Wales, has a temperate climate with 

uniform rainfall throughout the year. 

 Halls Creek, located in inland Western Australia, has a grassland climate with a 

marked wet summer and dry winter. 

 Hobart, located in Tasmania, has a temperate climate with uniform rainfall 

throughout the year. 

 Laverton, located next to Melbourne, has a very similar climate to Melbourne. 

 Oodnadatta, located in inland South Australia, has a desert climate and is arid, 

hot and persistently dry. 

 Perth, located on the coast in the south of Western Australia, has a subtropical 

climate with a distinctly wet winter and dry summer. 
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 Sydney, located on the coast of NSW, has a temperate climate and has no dry 

season with uniform rainfall. 

 Williamtown, also located on the coast of NSW, has a temperate climate and has 

no dry season with uniform rainfall. 

 Woomera, located in inland South Australia, has a desert climate and is hot and 

persistently dry. It is arid with low rainfall.  

 Stochastic Radiation Model Overview 3.3

For any given day, the daytime ETR G0 and the day length N can be calculated from the 

time of year and latitude. Also known is the number of bright SSH observed on that 

day, n. Since the ETR is the dominant control on the radiation reaching the top of the 

atmosphere and is readily calculated, all the radiation models use ETR as the upper 

bound on the estimate of daily radiation. 

 

The ETR is depleted through absorption and scattering as it passes through the 

atmosphere. With a constant atmospheric consistency, all sunny, clear days should have 

the same transmittance of ETR in the form of direct radiation. This can be 

parameterised by a transmission coefficient Adir. Following List (1968), Garnier and 

Ohmura (1968), Hottel (1976), Revfeim (1981) and Varley et al. (1993), the 

transmission coefficient is scaled by secz, where z is the solar zenith angle, to account 

for changing air mass (path length through atmosphere) with season, time of day, 

altitude and latitude. A longer path length results in less transmission of direct radiation.  

 0
sec GAR z

dirdirect   (3.1) 

where Rdirect (MJ m-2 d-1) is the direct radiation, G0 is the extra-terrestrial radiation (MJ 

m-2 d-1) and secz is the secant of the solar zenith angle z (rad). 

 

The composition of the atmosphere ensures that there is always some diffuse radiation 

present (Sen, 2008). Even when no clouds are present, the gases, aerosols and dust 

ensure some of the ETR is scattered towards the earth. As the cloudiness increases, 

more ETR is scattered, increasing the amount of diffuse radiation. However, as the SSH 

fraction, n/N, drops below about 0.45, the diffuse radiation decreases as the clouds 
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prevent more of the scattered light from reaching the surface. On completely overcast 

days the clouds prevent essentially all direct radiation from reaching the land surface 

and only allow a minimal amount of diffuse radiation to reach the land surface. 

 

The diffuse fraction is generally thought to be less than 0.5 if, following List (1968), it 

is assumed that all the attenuated radiation is scattered (no absorption) and half of that 

radiation is scattered to the ground. The diffuse fraction parameter Adiff gives the amount 

of ETR converted to diffuse radiation on a completely cloudy day.  

 0GAR diffdiffuse   (3.2) 

The five models developed in this study differ in how they represent the influence of 

clouds and in the formulation of the direct and diffuse components. Clouds are difficult 

to incorporate into radiation estimates as they are highly variable in space and time (Hay 

1993a). It is often very difficult to define the amount and properties of clouds. Two days 

could have the same SSH measure but have different types and amounts of clouds with 

different attenuation of the radiation – the bright hours could have direct radiation 

intensities just above the threshold or close to the maximum possible ETR.  

 

As SSH is the only directly measured variable, the SSH fraction n/N is used as a scaling 

factor to reduce the amount of direct radiation on cloudy days and to scale the amount 

of diffuse radiation for different cloud conditions. Similar to Angstrom (1924) and 

Rietveld (1978), the models developed use the assumption that as SSH decreases, the 

cloudiness increases and so the density of the cloud may also increase, which results in 

a decrease in transmission of ETR. Each model uses a different scaling process to 

calculate the fraction of ETR transmitted.  

 

The day length N is used to give the maximum number of bright hours possible on a 

given day. The ETR and day length calculations are as given in the FAO-56 (Allen et 

al., 1998) and are widely used for evaporation estimates. 
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The ETR, G0, as given by the FAO-56 guide, for each time period h, is calculated using: 

                1sin2sincoscossinsin12
)60(12

,0 


 rdscGhG  (3.3) 

where Gsc is the solar constant (0.0820 MJ m-2 min-1), dr is the inverse relative sun-earth 

distance, ω1 is the solar time angle at the beginning of the period (rad), ω2 is the solar 

time angle at the end of the period (rad) φ is the latitude (rad) and δ is the solar 

declination (rad).  

 

The inverse relative Earth-Sun distance, dr, is calculated using the day of the year, J: 

 





 Jdr 365

2
cos033.01


 (3.4) 

The solar time angles at the beginning and end of the period are given by: 

 
24

1
1

p
   (3.5) 

 
24

1
2

p
   (3.6) 

where ω is the solar time at the midpoint of the time period (rad) and p1 is the length of 

the calculation period (hours). 

 

The solar time angle at the midpoint of the period is: 

    1206667.0
12

 cmz SLLct
  (3.7) 

where ct is the standard clock time at the midpoint of the period (hour), Lz is the 

longitude of the centre of the local time zone (degrees west of Greenwich), Lm is the 

longitude of the measurement site and Sc is the seasonal correction for solar time (hour), 

given by: 

      bbbSc sin025.0cos1255.02sin1645.0   (3.8) 

where 

 
 
364

812 


J
b


 (3.9) 
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The solar decimation δ in radians, is: 

 





  39.1

365

2
sin409.0 J

  (3.10) 

Day length N is calculated as: 

 sN 

24

  (3.11) 

where ωs is the sunset hour angle in radians, given by: 

      tantanarccos s  (3.12) 

 

For a bright hour to be recorded, the direct radiation needs to reach a threshold before 

the paper in the CS recorder will begin to burn. Each day is split into the potential 

sunshine hours, N’, which are the hours when the direct radiation is above the threshold, 

and the tails of the day, which are the interval when the direct radiation is below the 

threshold (see Figure 3.1). The bright hours can occur at any point during the potential 

sunshine hours. If the distribution of bright hours is known for a location, this can be 

used to help narrow the timing of the bright hours. 

 

 

 
Figure 3.1 Calculation of ETR for each hour in a day that has 11 potential sunshine hours. The 

‘tails’ of the day, when the direct radiation is below the threshold, are shaded red. 
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 Modelling Process 3.4

Five global radiation models, three direct radiation models and five diffuse radiation 

models are proposed, designed, calibrated and evaluated. The specific equations for 

each of the models are given in Sections 3.5-3.8 below while a summary of the model 

parameters is given in Table 3.3. Each model is composed of a deterministic and a 

stochastic component. The deterministic component represents the long term average 

behaviour of the radiation and is given by the internal radiation model equations (given 

in Section 3.5). There are two stochastic components, namely the “internal” (calculated 

in the radiation model equations) and “external” variances, which both represent the 

short term variability. The internal model variance accounts for the uncertainty in the 

timing of the bright hours, which is directly related to the SSH measurement. The 

internal variance is determined from the radiation calculated using the radiation model 

equations, and associated with the random sampling of the bright hours. The external 

error variance accounts for the factors influencing the radiation which is not accounted 

for by the amount and timing of the bright hours, such as uncertainty in the atmospheric 

composition and additional uncertainty in the SSH measurement. The external variance 

is the difference between the total residual error variance (calculated from the residual 

error models given in Section 3.8) and the internal variance. 

 Calibration of global radiation models 3.4.1

To begin the modelling process, all radiation and residual error model parameters are 

assigned values sampled randomly from a uniform distribution (any value within 

parameter bounds is equally likely). For each day t where n is known, the ETR G0 and 

day length N are calculated from latitude and Julian day using equations (3.3) and 

(3.11). This is then used to calculate the number of potential bright sunshine periods N’ 

for each day (see Figure 3.1):  

  



Nh

h
T

h
direct RRIN

1

)('  (3.13) 

where I() is the indicator function (1 if the Boolean argument is true, 0 otherwise), Nh = 

24 is the number of hours per day, )(h
directR is the direct radiation during hour h, and RT is 

the threshold of direct radiation required for the CS recorder to record a bright period. 
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Given n, the corresponding number of bright periods (direct radiation above the 

threshold) and dull periods nd (direct radiation below the threshold) are randomly 

selected for each day from a uniform distribution, where:  

 nd = N’ - n (3.14) 

For example, if N’ = 9 hours (time periods h1 to h9) and n = 4 hours, then nd = 5 hours.  

For the random sampling, h3, h4, h7, h9 may be bright and therefore h1, h2, h5, h6, h8 will 

be dull. 

 

The global radiation is then calculated as the sum of the direct and diffuse radiation for 

the selected bright periods, and the diffuse radiation from the remaining dull periods 

(equations for Rdirect and Rdiffuse given in Section 3.5).  

 e.g. 



8,6,5,2,1

,
9,7,4,3

,
9,7,4,3

,
h

hdiffuse
h

hdiffuse
h

hdirectt RRRG  (3.15) 

The random selection of bright periods is repeated i amount of times to obtain the daily 

mean μG,t and variance 2
,tG  of radiation (internal model variance) associated with the 

given SSH measurement , where:  

 
i
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1  (3.16) 
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tGittG G
i

  (3.17) 

Once the distribution of radiation is calculated for each day, the total error variance is 

calculated from the residual error models (see Section 3.8). The external variance is 

calculated as the total variance minus the internal model variance for each day. The 

entire process is then repeated with a new parameter set. 

 

The WMO (2008) gives a standard threshold of the CS recorder as 120 Wm-2. To test 

the applicability of a constant threshold, the models are recalibrated with the threshold 

in the models set equal to 120 Wm-2. Thus each model is calibrated twice for each 

location. 
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 Calibration of direct and diffuse radiation models 3.4.2

Separate to the calibration of the global radiation models, in the calibration of the direct 

radiation models (given in Section 3.6) and the diffuse radiation models (given in 

Section 3.7), a step wise process is used to calibrate the direct and diffuse parameters. 

The direct radiation model parameters are calibrated first. The direct radiation model 

parameters are calibrated using the same process as the global radiation (Section 3.4.1) 

but the diffuse radiation is not calculated. The best direct radiation model parameter 

values (found to be with Model 2) are then used in the calibration of the diffuse 

radiation model parameters. The diffuse radiation model parameters are also calibrated 

using the same process as the global radiation.  The direct radiation is calculated first as 

it is only dependant on the daily ETR and the atmospheric composition. In contrast, the 

diffuse radiation requires the direct component to be already known. This is because, for 

a bright hour, once the amount of ETR reaching the land surface as direct radiation is 

known, the diffuse component can be calculated from the remaining scattered amount.  

 Model assessment 3.4.3

Once calibrated, the models are run in forward mode. The performance of the different 

global, direct and diffuse radiation models is assessed and compared using the RMSE 

and relative error between the mean of the predicted radiation (Rsim) and the observed 

radiation (Robs) for each radiation type.  

 
 

t

RR
t

tObstSim 
 1

2
,,

RMSE  (3.18) 
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,, 


 tObstSim RR
 (3.19) 

The extent to which the probabilistic predictions are compatible with the observed data 

is investigated using Quantile-Quantile (QQ) plots, as outlined in Thyer et al. (2009). 

To construct the QQ plots, the cumulative distribution function (cdf) of observed p-

values are plotted against the cdf of a theoretical uniform distribution. The cdf of 

observed p-values are determined by comparing the predictive distributions of radiation 

to the corresponding observed radiation. When producing the predictive distribution, 

relevant noise (constant, linear or quadratic, dependant on the residual error model used 
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in calibration, see Section 3.8), is added to the estimates to represent the external 

variance. 

 

To assess the validity of the calibrated models, the models are run using the remaining 

available data not used for the calibration. 

 

 

Table 3.3 Summary of parameters for the global, direct and diffuse radiation models and the 
residual error models. Note that each of the radiation models is calibrated separately using the 

five residual error models. 
 

Radiation Model Parameters 

Model 
Direct radiation 
component parameters 

Diffuse radiation component parameters 
Bright hours Dull hours 

Global Radiation   
1 Adir - Adiff 
2a Adir, Bdir Adiff, Bdiff Adiff 
2b Adir, Bdir Adiff, Bdiff Adiff, Bdiff 
3a Adir, Bdir Adiff, Bdiff, Cdiff Adiff 
3b Adir, Bdir Adiff, Bdiff, Cdiff Adiff, Bdiff, Cdiff 
Direct Radiation   
1 Adir - - 
2 Adir, Bdir - - 
3 Adir, Bdir, Cdir - - 
Diffuse Radiation   
1 - - Adiff 
2a Adir, Bdir Adiff, Bdiff Adiff 
2b Adir, Bdir Adiff, Bdiff Adiff, Bdiff 
3a Adir, Bdir Adiff, Bdiff, Cdiff Adiff 
3b Adir, Bdir Adiff, Bdiff, Cdiff Adiff, Bdiff, Cdiff 
 
Residual Error Model Parameter 
Model  Parameters  
Constant Variance - 
Variance dependent on SSH-linear Avar, Bvar 
Variance dependent on SSH-quadratic Avar, Bvar, Cvar 

Variance dependent on simulated radiation-linear Avar, Bvar 
Variance dependent on simulated radiation-quadratic Avar, Bvar, Cvar 
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 Global Radiation Model Equations 3.5

 Global Model 1: No scaling by n/N  3.5.1

In this Model, all bright hours are assumed to be completely bright and are given the 

full amount of direct radiation available. Similarly, dull hours are assigned the 

maximum available diffuse radiation. During bright hours only direct radiation Rdirect 

reaches the land surface and during dull hours only diffuse radiation Rdiffuse reaches the 

land surface.  

 
For a bright hour: 

  
h

z
dirdirect GAR ,0

sec   (3.20) 

 0diffuseR  (3.21) 

For a dull hour: 

 0directR  (3.22) 

 hdiffdiffuse GAR ,0  (3.23) 

 Global Model 2a and 2b: Linear scaling by n/N 3.5.2

This Model allows for diffuse radiation in the bright hours and introduces a factor that 

linearly scales the direct and diffuse radiation for bright hours, when there is some cloud 

present during the day. Similar to Model 1, in a dull hour only diffuse radiation reaches 

the land surface. 

 

For a bright hour: 
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   (3.24) 

  directhdiffdiffdiffuse RG
N

n
BAR 














 ,0  (3.25) 

For a dull hour, two different representations of the diffuse radiation behaviour are 

considered. Version A assumes that the diffuse radiation is a constant and therefore the 
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same for each dull hour. Version B assumes that the diffuse radiation varies in 

proportion to the amount of sunshine hours: 

 0directR  (3.26) 

a) hdiffdiffuse GAR ,0  (3.27) 

b) hdiffdiffdiffuse G
N

n
BAR ,0














  (3.28) 

 Global Model 3a and 3b: Quadratic scaling by n/N 3.5.3

This Model is similar to Model 2 but uses a quadratic model of diffuse radiation. 

 

For a bright hour: 
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 (3.30) 

For a dull hour, 2 variations of the model are again considered: 

 0directR  (3.31) 

a) hdiffdiffuse GAR ,0  (3.32) 

b) hdiffdiffdiffdiffuse G
N

n
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  (3.33) 

 Direct Radiation Model Equations 3.6

The following direct radiation models are based on the direct radiation components of 

the global radiation models. For all models, the direct radiation only occurs during 

bright hours. For the dull hours the direct radiation equals zero.  

 Direct Model 1: No scaling by n/N 3.6.1

  
h

z
dirdirect GAR ,0

sec   (3.34) 
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 Direct Model 2: Linear scaling by n/N 3.6.2
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   (3.35) 

 Direct Model 3: Quadratic scaling by n/N 3.6.3
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 Diffuse Radiation Model Equations 3.7

The following diffuse radiation models are based on the diffuse radiation components of 

the global radiation models. 

 Diffuse Model 1: No scaling by n/N 3.7.1

In this Model no diffuse radiation is calculated during the bright hours. For each dull 

hour: 

 hdiffdiffuse GAR ,0  (3.37) 

 Diffuse Model 2: Linear scaling by n/N 3.7.2

This Model allows for diffuse radiation in the bright hours and introduces a factor that 

linearly scales the diffuse radiation for bright hours when there is some cloud present 

during the day.  

 

For a bright hour: 

  directhdiffdiffdiffuse RG
N

n
BAR 














 ,0  (3.38) 

For a dull hour, 2 variations of the diffuse radiation are considered: 

a) hdiffdiffuse GAR ,0  (3.39) 

b) hdiffdiffdiffuse G
N

n
BAR ,0














  (3.40) 
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 Diffuse Model 3: Quadratic scaling by n/N 3.7.3

This Model is similar to Model 2 but uses a quadratic function to model the diffuse 

radiation. 

 

For a bright hour: 
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n
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 (3.41) 

For a dull hour, 2 variations of the model are considered: 

a) hdiffdiffuse GAR ,0  (3.42) 

b) hdiffdiffdiffdiffuse G
N

n
C

N

n
BAR ,0

2

























  (3.43) 

 Residual Error Models 3.8

For any day t the residual error et is given by: 

 tObstSimt RRe ,,   (3.44) 

where RSim,t is the mean of the simulated radiation for each day and RObs,t is the observed 

radiation. The residual errors are assumed to follow a Gaussian distribution. 

 

Five different residual error models are considered, differing in their parameterisation of 

the variance of the residuals: 

 

1: constant variance: constt 2  
       

(3.45) 

2: variance dependant on the daily SSH fraction (n/N) 

- linear dependence: 
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3: variance dependent on the magnitude of the simulated radiation scaled by ETR 

- linear dependence: 
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- quadratic dependence: 
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The SSH is normalised by the day length and the simulated radiation by the ETR to be 

independent of month, season and location, as the maximum number of possible SSH 

and amount of radiation vary with time of year and latitude. 

 Objective Function 3.9

The parameters of all models were calibrated under the assumption that the total 

uncertainty is approximately Gaussian. This yields an objective function  derived from 

the Gaussian probability density function, containing the sum of squared residual errors: 

    
2

2
1: 2

1 1

1
( , ) log ( ) | , ( ) log 2

2

obs obsm m
t

M t M t t
t t t

e
N e        

 

       (3.50) 

where mobs is the number of observations and the notation N(x|,2) denotes the 

probability density of a Gaussian deviate x with mean  and variance 2.  

 

This objective function explicitly indicates the dependence of residuals on the model 

parameters M (different for each radiation model) and the dependence of the Gaussian 

error variance on the error model parameters ε (different for each error model).  

 

The calibration approach consists of maximizing the objective function in equation 

(3.50) with respect to the model parameters M and the error model parameters ε. The 

optimisation method used is the shuffled complex evolution (SCE) algorithm (Duan et 

al., 1992). 
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  Summary 3.10

In this chapter, the meteorological data used in the development and analysis of the 

radiation models is summarised. Nine main locations that have observations of global, 

direct and diffuse radiation for an extended number of years are used in the 

development of the stochastic radiation models. These locations cover a range of 

climate conditions. 

 

This chapter also outlines the development of five stochastic global radiation models, 

three direct radiation models and five diffuse radiation models. The models differ in the 

parameterisation of the diffuse and direct portions of the global radiation, using either 

no scaling, linear or quadratic scaling of the radiation by the daily SSH fraction to 

account for the attenuation of ETR by clouds.  

 

Also developed are five different residual error models which are used to calibrate the 

radiation models. These residual error models have different assumptions including 

constant, linear and quadratic variances related to SSH fraction and the simulated 

radiation. Two sources of predictive uncertainty are considered: (i) the timing of the 

bright SSH during the day and (ii) external uncertainty such as variability in cloud type 

and amount.  
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 - Performance of Radiation Models Chapter 4

Overview 

Stochastic models for estimating global, direct and diffuse radiation were developed in 

Chapter 3. In this chapter the performance of the different global, direct and diffuse 

radiation models and the different residual error models are presented and compared for 

each radiation type. The results for the global radiation models are presented first, 

followed by the results for the direct models, and finally the results for the diffuse 

models. 

 Global Radiation 4.1

 Global radiation distributions from observed data 4.1.1

In the developed models, the SSH data is used to estimate the daily global radiation. 

Therefore, the relationship between SSH and global radiation is first presented. To 

illustrate each relationship, Figure 4.1 shows scatter plots of the observed daily SSH and 

global radiation fraction. The global radiation model simulations are also shown to 

demonstrate how well they model the observed radiation. These scatter plots also give 

an indication of the cloudiness and by extension the rainfall regimes at each location. 

 

The observed global radiation appears to follow a linear relationship with SSH. The 

direct and diffuse components of global radiation both follow nonlinear relationships 

with SSH (shown in Sections 4.2.1 and 4.3.1) but when summed together they make the 

global radiation follow an almost linear relationship. The linear relationship weakens 

around SSH=0.8, where there is a large amount of scatter. For all locations the scatter 

plots show that some global radiation exists regardless of SSH amount. The global 

radiation is approximately 20% of the ETR when there is no bright SSH (n/N=0). This 

increases to approximately 75% when the day is completely sunny (n/N=1). 

 

For the locations studied, Adelaide, Mount Gambier, Melbourne, Mildura and Wagga 

Wagga have relatively uniform rainfall throughout the year. In Figure 4.1 Melbourne 
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and Mount Gambier have a more even spread across all SSH fractions. For Alice 

Springs, Tennant Creek, Darwin and Broome, most of the observations have a high SSH 

and radiation fraction (most days are predominantly sunny). These locations have 

distinct wet and dry seasons with minimal rainfall from April-November with the 

majority of the rainfall occurring in the December-March period (monsoon season). 

From the climate classifications, discussed in Chapter 3, Alice Springs and Tennant 

Creek are arid, Broome and Darwin have a marked wet summer and dry winter, 

Mildura, Wagga Wagga, Adelaide and Mount Gambier have wet winter and low 

summer rainfall while Melbourne has uniform rainfall. 

 

 
Figure 4.1 Scatter plots showing the relationship between global radiation and SSH for all 

locations. Figure constructed from the observed SSH fraction and global radiation as well as the 
modelled radiation. 
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 Model calibration results  4.1.2

Figure 4.2 and Figure 4.3 show the time series of global radiation for Model 1, for Alice 

Springs and Melbourne respectively. Only Model 1 is shown as all the models perform 

similarly. The scatter plots in Figure 4.1 also compare all five models for each location. 

From Figure 4.1 it can be seen that all the models have similar predictions of global 

radiation with the change in SSH fraction. 

 

For all locations, the calibrated threshold is quite low, generally less than 200 W m-2, 

and varies between the models and locations. Alice Springs and Tennant Creek, located 

in central Australia, have the lowest value at approximately 10 W m-2 for Model 1. For 

all locations, Model 3a generally has a higher threshold than the other models. The 

threshold is influenced by early morning humidity as discussed previously. The 9am 

relative humidity for each of the locations is given in Table 3.1. Tennant Creek and 

Alice Springs have the lowest threshold and the lowest humidity. 

 

The transmission coefficient gives an indication of the clearness of the atmosphere. A 

higher value corresponds to a clearer atmosphere. The transmission coefficient 

(parameter Adir) is reasonably consistent between Models 1 and 2a at all locations. 

Values for Models 2b and 3a are consistently lower than the other models while those 

for Model 3a are higher. For Models 1 and 2a, all locations have a value equal to 

approximately 0.77 except for Alice Springs and Tennant Creek which have a slightly 

higher value at 0.80. This suggests that for a clear day, approximately 77% to 80% of 

the ETR is transmitted as direct radiation. This greater transmission is expected for 

Alice Springs and Tennant Creek as they are located in inland Australia and for most of 

the year (the dry season) have a relatively clear atmosphere with lower humidity. 

 

Note that the model parameters can interact with each other. For example, if the 

transmission coefficient is reduced, global radiation can remain unchanged if the diffuse 

fraction is increased. Therefore, the parameters are correlated and need to be examined 

jointly.  
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Figure 4.2 Time series of predicted radiation for the year 2004 (calibration period) for Alice 
Springs using Model 1. Panel (a) uses the constant residual error model, panels (b) and (c) use 

the n/N (SSH) residual error models while panels (d) and (e) use the simulated radiation 
(SimRad) residual error models. The red line is the observed radiation, the light grey shading is 
the internal variance of the modelled radiation, and the dark grey shading is the 95% predictive 
limit of the external (“residual error”) variance. The total variance is the sum of the internal and 

external variance. 
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Figure 4.3 Time series of predicted radiation for the year 2004 (calibration period) for 
Melbourne using Model 1. Panel (a) uses the constant residual error model, panels (b) and (c) 
use the n/N (SSH) residual error models while panels (d) and (e) use the simulated radiation 

(SimRad) residual error models. The red line is the observed radiation, the light grey shading is 
the internal variance of the modelled radiation, and the dark grey shading is the 95% predictive 
limit of the external (“residual error”) variance. The total variance is the sum of the internal and 

external variance. 
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At each location, varying the residual error model structure does not significantly 

influence the radiation model parameters (direct and diffuse parameters). Similarly, the 

residual error model parameters are reasonably consistent between the radiation models 

for each location. The residual error model parameters vary more between the locations. 

This suggests the errors are more dependent on local atmospheric conditions than the 

radiation model structure. The different residual error variances can be seen in the 

different time series in Figure 4.2 and Figure 4.3. Additionally Figure 4.4 shows the 

residual error variances for the range of SSH fractions and simulated radiations. Only 

the variance for Model 1 for Melbourne and Alice Springs is shown but is 

representative of all the locations and radiation models.  

 

 
Figure 4.4 Linear and quadratic error variance (MJ2 m-4 d-2) for Model 1 calibrated to Alice 

Springs (panels a and b) and Melbourne (panels c and d). The error variance is dependent on 
n/N (panels a and c) and the simulated radiation (SimRad) (panels b and d).
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In order to compare the panels of Figure 4.4, note that when n/N=1 the predicted mean 

radiation fraction is approximately 0.8. For both locations, the four different error 

structures result in a higher variance for cloudy days (low SSH and radiation fractions) 

than sunny days. The error variance for all four error structures approaches zero for 

sunny days for both locations, however, for cloudy days the variance is much higher for 

Alice Springs than Melbourne. Alice Springs has two distinct rainfall seasons – wet and 

dry. Almost no rainfall occurs during the dry season with the majority falling within a 

few months of the wet season. In contrast, Melbourne has uniform rainfall throughout 

the year. This means that Alice Springs has a greater seasonal variation in cloudy days 

and relative humidity than Melbourne. As only one parameter set is used for the whole 

year, it is suggested that this results in a higher uncertainty for Alice Springs than 

Melbourne.  

 

For cloudy days, the quadratic variance is much higher for the simulated radiation 

structure (Figure 4.4b and d) than the n/N structure (Figure 4.4a and c). This suggests 

that the n/N structure is more precise.  

 Model performance 4.1.3

Next, Figure 4.5 compares the models based on their maximum, minimum and average 

RMSE, internal and external variance.  

 

By comparing the RMSE (Figure 4.5a) between the models for each location, it is clear 

that the models tend to perform similarly – there is only a very small difference between 

the models for each location. However, on average, Model 3b performs marginally 

better than the other models. The RMSE is more variable between the different 

locations, shown in Table 4.1.  
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(a) RMSE 

 
(b) External variance 

  
 (c) Internal variance 

 

Figure 4.5 (a) RMSE, (b) external variance and (c) internal variance averaged individually for 
each of the models for all locations. The error bars indicate the maximum and minimum RMSE, 

internal and external variance for each location given by the different residual error models. 
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Table 4.1 Average RMSE and external variance of all models. The ranking for each location is 
given in the parenthesis where (1) is the best performance. 

Location 
Av. RMSE 
(MJ m-2 d-1) 

Av. Ext. Var. 
(MJ2 m-4 d-2) 

Adelaide 1.60   (6) 2.6   (5) 
Alice Springs 1.50   (4) 2.3   (3) 

Broome 1.46   (2) 2.0   (2) 

Darwin 1.99   (9) 4.0   (9) 

Melbourne 1.80   (8) 3.2   (8) 

Mildura 1.32   (1) 1.8   (1) 

Mt Gambier 1.71   (7) 2.9   (7) 

Tennant Creek 1.60   (5) 2.7   (6) 

Wagga Wagga 1.49   (3) 2.6   (4) 

 

The difference in RMSE between the locations can be partially attributed to the 

different SSH amounts and rainfall regimes, which can be inferred from the scatter plots 

in Figure 4.1 and the annual rainfall and average sunshine hour fraction listed in Table 

3.1. It is assumed that rainfall is a proxy for cloudiness, while the SSH fraction and 

radiation are closely related to cloudiness (Allen et al., 1998; Shuttleworth, 1992). 

Darwin has the highest rainfall with distinct wet and dry seasons. Given the highly 

variable nature of the rainfall and associated cloud amounts, it is reasonable that the 

models for Darwin have the poorest performance. Melbourne and Mount Gambier have 

the most variable SSH fractions (the scatter plots exhibit the most even spread across all 

SSH fractions), the lowest average SSH fraction and a relatively high amount of annual 

rainfall. For these locations, the models also perform comparatively poorly. The scatter 

plots for Melbourne, Mount Gambier and Adelaide also show more scatter in the 

relationship between the global radiation and SSH fraction than the plots for the other 

locations. In contrast, Mildura has the smallest amount of annual average rainfall, a 

higher average SSH fraction and the best model performances. This is expected as it is 

easier for the model to fit to sunny conditions as there is less uncertainty as to the 

composition of the atmosphere (type and amount of clouds etc.) which is reflected in the 

SSH fraction. Additionally, the CS recorder only responds to direct radiation which is 

greatest in sunny conditions. It does not give an indication of diffuse radiation which is 

greatest in cloudy conditions. 

 

For the average external variance (Figure 4.5b), there is only a small difference between 

the models at each location, except for Alice Springs, Tennant Creek and Darwin. No 
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model performs consistently better than the other models. There is a greater difference 

in the external variance when the different locations are compared, as shown in Table 

4.1. This is a similar order of performance as the RMSE, which is expected as a better 

performance is linked with smaller variability between the observed and simulated 

radiation.  

 

The average internal variance (Figure 4.5c) shows a little more variability between the 

radiation and residual error models. Model 1 tends to have the highest average internal 

variance, ranging from 0.34 (Mildura) to 0.7 MJ2 m-4 d-2 (Darwin), while Model 3b 

tends to have the least internal variance ranging from 0.01 (Wagga Wagga) to 0.24 MJ2 

m-4 d-2 (Darwin). It is interesting to note that Model 1 is the least complex while Model 

3b is the most complex. 

 

When n/N = 0 or 1 there is no internal variability in the predicted radiation as either no 

hours or all hours are selected as bright respectively. The internal model variance is 

greatest for mid values of SSH fractions (n/N~0.5). For a mid-range of hours, for 

example at Alice Springs on a summer day, the predicted global radiation varies from 

17 to 22 MJ m-2. A greater range of radiation can be sampled with a mid-range of bright 

hours compared with a small or a large amount. This can be seen in Figure 4.2 and 

Figure 4.3 where the internal variance for Model 1 accounts for most of the total 

variance in the mid SSH ranges. This is not as pronounced for the other models which 

have a smaller internal variance. 

 

The linear residual error model and the quadratic residual error model both perform 

similarly well. Additionally, the residual error models based on SSH fraction and the 

residual error models based on simulated radiation perform similarly well. Therefore, 

the main difference between the residual error models is the amount of internal 

variance. 

 

At a given location, the choice of radiation model and residual error model does not 

appear to significantly influence the average total variance.  However, as shown in 

Figure 4.4, the residual error variance for each day shows a clear dependence on both 

the daily SSH fraction and the simulated radiation amount. So although the average 
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total variance is not improved by using either linear or quadratic variance over constant 

variance, it is suggested that the linear residual error structure be used.  

 

Models 2a and 2b along with Models 3a and 3b vary in their structure of the radiation 

for the dull hours. The ‘b’ models allow for more variability in the radiation, which is 

dependent on the SSH fractions. There is no consistent difference in the performance of 

the models; however, Model 3b tends to have a lower internal variance than Model 3a. 

 

To further demonstrate the performance of the models, Figure 4.6 shows the relative 

error of the modelled radiation compared with the observed radiation for Model 3b with 

the linear n/N residual error model. Only this model is shown as the relative errors are 

very similar for all the residual error models within each radiation model for each 

location. The relative errors are also very similar for all the radiation models for each 

location, although Model 3b tends to have a slightly lower relative error. 

 

In Figure 4.6 the relative error is plotted against the percentage of data points. The 

relative error for all data points ranges from 6% at Broome and Alice Springs to 11% at 

Melbourne. The average relative error for all locations is 9%. The greatest amount of 

relative error occurs at low SSH fractions where the amount of radiation is at a 

minimum.  

 

 
Figure 4.6 Change in relative error with the change in percentage of data for all locations using 

Model 3b with the linear n/N residual error model. 
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To examine this relationship further, Figure 4.7 shows the relative error between the 

observed and simulated global radiation plotted against the SSH fraction for Alice 

Springs and Melbourne. Melbourne has the highest relative error for most SSH fractions 

while Alice Springs has one of the lowest relative errors for all SSH fractions. In Figure 

4.7 it can be seen that the relative error is the greatest for SSH fractions less than 0.2, 

which corresponds with minimum amounts of global radiation, and approaches zero as 

the SSH fraction increases. Therefore, the large relative error is in general the 

equivalent of less than 1 MJ m-2 d-1.  

 

(a) Alice Springs                                  (b) Melbourne 

 
 

Figure 4.7 Relative error with the change in SSH fraction for (a) Alice Springs and (b) 
Melbourne. All five radiation models are shown with the linear n/N error structure. The 

percentage of days with each SSH fraction is shown by the thick solid line and corresponds to 
the % occurrence axis. 

 

The relationship between the relative error and SSH fraction for all locations is shown 

in Figure 4.8. All locations follow very similar and consistent trends with the majority 

of the error occurring for SSH fractions less than 0.2, which corresponds to generally 

less than 10% of the data.  

 

These results are comparable to the global radiation estimated from satellite images 

(BoM, 2013). The satellite model, as given by BoM, has an error of 7% or better in 

clear sky conditions and up to 20% in cloudy conditions. 
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Figure 4.8 Relative error with the change in SSH fraction for all locations using Model 3b with 
the linear n/N residual error model. 

 Predictive reliability of the global models: QQ plots 4.1.4

QQ plots are developed to compare the predictive reliability of the different radiation 

models and residual error models. The QQ plots for Alice Springs and Melbourne are 

shown in Figure 4.9 and Figure 4.10 respectively. To the extent that the observations are 

statistically consistent with the predicted distribution, the p-values in the QQ plots fall 

approximately on the 1:1 line. 

 

By examining the QQ plots with no external noise added (the only source of 

randomness is due to the sampling of the SSH hours within the day), the left column of 

Figure 4.9 and Figure 4.10, it is clear that all of the models under-estimate the 

predictive uncertainty. The under-estimation is particularly strong for Model 3b. This 

indicates that the uncertainty due to the timing of the bright hours does not account for 

all the variation between the observed and simulated radiation. 
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Figure 4.9 QQ plots for Alice Springs for all radiation models and residual error model 
structures. The left column is for the internal variance while the other columns show the 

external variance for the five error models. RM stands for radiation model, CE for constant 
error, LE for linear error, QE for quadratic error, SRad for simulated radiation, EVar for 

external variance and IVar for internal variance. 
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With noise added to the modelled radiation, all the radiation models and residual error 

models slightly over-estimate the predictive uncertainty. The constant residual error 

model has the greatest over-estimation of all the models. The linear and quadratic error 

variance dependent on SSH produce the best agreement between the predictions and the 

observations, particularly in the Alice Springs simulations (Figure 4.9). This indicates 

that the best residual error models are those with heteroscedasticity based on the SSH 

fraction. Both the linear and quadratic residual error models perform equally well. 

Given that the linear structure has one less parameter to be calibrated, it is suggested 

that the models are best calibrated with linear error variance based on SSH fraction. 

 
 

 

Figure 4.10 QQ plots for Melbourne for all radiation models and residual error model structures. 
The left column is for the internal variance while the other columns show the external variance 
for the five error models. RM stands for radiation model, CE for constant error, LE for linear 

error, QE for quadratic error, SRad for simulated radiation, EVar for external variance and IVar 
for internal variance. 
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 Setting the threshold at 120 Wm-2 4.1.5

The WMO (2008) gives a standard threshold of the CS recorder as 120 Wm-2. The 

applicability of this constant threshold is tested by setting the threshold in the models 

equal to 120 Wm-2 and recalibrating the parameters. This also gives an indication of 

how sensitive the models are to the threshold value.  

 

It is found that forcing the threshold only leads to a very minor change in the models 

internal and external variance for each location. The decrease in model performance 

(RMSE) is also only very minor suggesting that the models are relatively insensitive to 

the threshold.  

 Validation 4.1.6

As a validation, each of the calibrated radiation models and residual error models, with 

variable threshold, for each location were run using the remaining available data not 

used for the calibration. The time period used and the change in RMSE and the 

variances can be seen in Table 4.2.  

 

For each location, the models perform similarly between the calibration and validation 

period. At four locations, the models show a slightly improved performance, in terms of 

RMSE and total and external variance, for the validation period. Melbourne has the 

greatest reduction in RMSE, reduced by an average of 0.1 MJ m-2 d-1. Darwin has the 

best performance in terms of the change in average external variance. For Darwin, the 

average external variance is actually smaller in the validation period than in the 

calibration period with a difference of -0.115 MJ2 m-4 d-2. Tennant Creek has the 

greatest increase in RMSE by 0.220 MJ m-2 d-1, while Mildura has the greatest increase 

in external variance by 0.171 MJ2 m-4 d-2. The average change in internal variance is 

only minor for each location.  

 

The validation test was also repeated for the models with the threshold set at 120 Wm-2. 

The validation results using this constant threshold are very similar to the validation 

results using a variable threshold. 
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The similar performance of the models in the calibration and validation periods suggests 

that the models are quite robust and that the period used for calibration contains a 

sufficiently wide range of atmospheric conditions e.g. a variety of cloudy and sunny 

days. As with the calibration, no model performs consistently better than the others for 

the validation period. 

 

Table 4.2 Change in average model RMSE, internal and external variance for each location for 
the validation period compared with the calibration period with a variable threshold. 

 

Location Years RMSE 
(MJ m-2 d-1) 

Internal 
Variance 

(MJ2 m-4 d-2) 

External 
Variance 

(MJ2 m-4 d-2) 

Adelaide 2006-2010 -0.090 -0.009 -0.155 
Alice Springs 1999-2002, 2006-2010 +0.143 +0.002 +0.112 

Broome 1999-2002, 2006-2010 +0.095 +0.004 +0.124 

Darwin 1999-2002, 2006-2010 -0.027 -0.040 -0.115 

Melbourne 1999-2002, 2006-2010 -0.100 +0.007 -0.043 

Mildura 1999-2002 +0.173 +0.027 +0.171 

Mount Gambier 1999-2002 -0.023 -0.006 -0.016 

Tennant Creek 1999-2002 +0.220 +0.000 +0.083 

Wagga Wagga 1999-2002, 2006-2010 +0.113 +0.009 +0.051 
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 Direct Radiation 4.2

 Direct radiation distributions from observed data 4.2.1

The relationship between SSH and the direct radiation can be seen in Figure 4.11 which 

shows scatter plots of the observed direct radiation plotted against the SSH fraction. The 

direct radiation model simulations are also shown.  

 

 

 
Figure 4.11 Direct radiation scatter plots showing the relationship between the observed and 

modelled direct radiation with SSH fraction. 
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The observed direct radiation data appears to follow a convex quadratic relationship 

with the SSH fraction. As the SSH increases so does the direct radiation, with a greater 

slope at higher SSH. When n/N=0 there is almost no direct radiation. In the mid ranges 

of the SSH, there is quite a lot of scatter. In comparison, the scatter at n/N~0 is much 

smaller. Alice Springs, Broome, Darwin and Tennant Creek also show little scatter at 

n/N~1 while Adelaide, Melbourne, Mount Gambier and Wagga Wagga have a greater 

amount of scatter.  

 

 Model calibration results 4.2.2

Comparison of the observed and simulated data in Figure 4.11 reveals that Models 2 

and 3 perform similarly well for most locations while Model 1 does not perform as well. 

Models 2 and 3 follow the quadratic structure of the observed radiation with SSH 

fraction. In contrast, Model 1 is quite poor and follows a linear structure. Time series 

for Model 2 for the year 2004 are shown in Figure 4.12 for Alice Springs and Figure 

4.13 for Melbourne. 

 

It is found that varying the residual error model structure does not significantly 

influence the radiation model parameter values at each location. The residual error 

model values are also reasonably consistent between the radiation models for each 

location, with minimal difference between radiation Models 2 and 3. The parameters 

vary more between the locations. This suggests that the errors are more dependent on 

local atmospheric conditions than the radiation model structure. This is similar to what 

was found with the global radiation. 
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Figure 4.12 Time series of predicted radiation for the year 2004 (calibration period) for Alice 

Springs using Model 2. The red line is the observed radiation, the light grey shading is the 
internal variance of the modelled radiation, and the dark grey shading is the 95% predictive 

limit of the external (“residual error”) variance. The total variance is the sum of the internal and 
external variance. 
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Figure 4.13 Time series of predicted radiation for the year 2004 (calibration period) for 
Melbourne using Model 2. The red line is the observed radiation, the light grey shading is the 
internal variance of the modelled radiation, and the dark grey shading is the 95% predictive 

limit of the external (“residual error”) variance. The total variance is the sum of the internal and 
external variance. 
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The different error variances can be seen in the different time series for Model 2 in 

Figure 4.12 and Figure 4.13. Additionally, Figure 4.14 shows the error variances for the 

range of SSH fractions and simulated radiations for Model 2 for Alice Springs and 

Melbourne. The error variance is very similar for all the radiation models. Therefore, 

only the variance for Melbourne and Alice Springs is shown but is representative of all 

the locations and models. Alice Springs is representative of Broome, Darwin and 

Tennant Creek while Wagga Wagga, Melbourne, Mt Gambier, Mildura and Adelaide 

have similar error variances. 

 

 

 

Figure 4.14 Linear and quadratic error variance (MJ2 m-4 d-2) for Model 2 calibrated to Alice 
Springs (panels a and b) and Melbourne (panels c and d) data. The error variance is dependent 

on n/N (panels a and c) and the simulated radiation (SimRad) (panels b and d). 
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In order to compare the panels of Figure 4.14, note that when n/N=1 the predicted mean 

direct radiation fraction is approximately 0.7. For both locations, the quadratic structure 

has a higher variance for mid-range sunny days (n/N and direct radiation fraction ~0.5) 

than cloudy days (n/N and radiation fraction ~0). The error approaches zero on 

completely overcast days as minimal direct radiation occurs under these conditions. 

This can also be seen in the scatter plots in Figure 4.11. As the day becomes clearer 

(n/N increases), the amount of direct radiation increases and there is a corresponding 

increase in the variance of the error. For Alice Springs, both the n/N and SimRad 

structures have reduced scatter as the day becomes completely clear.  

 

The linear error structure for both locations, but particularly Alice Springs, appears 

unable to adequately model the structure of the variance with changing SSH and 

radiation fraction. This is because there is not a constant change in variance with the 

change in SSH fraction.  

 

The linear and quadratic structures tend to follow similar trends for the SSH and 

simulated radiation structures for all locations. For Alice Springs, the maximum 

variance tends to be higher for the n/N structure than the simulated radiation structure. 

However, for other locations, the n/N structure shows less variance. Therefore, no error 

structure has a consistently smaller maximum variance for all locations. 

 Model performance 4.2.3

Figure 4.15 compares the average, minimum and maximum RMSE, internal and 

external variance for each of the direct radiation models at all locations.  

 

In terms of the RMSE (Figure 4.15a), it is clear that Model 1 has the poorest 

performance while Models 2 and 3 perform similarly well. Model 3 generally performs 

slightly better than Model 2. The residual error model structure only has a minor 

influence on the RMSE. As with the global radiation, Mildura and Alice Springs have 

the smallest RMSE while Darwin has the largest RMSE for Models 2 and 3. 
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(a) RMSE 

 

(b) External variance 

 

(c) Internal variance 

 

Figure 4.15 (a) RMSE, (b) external variance and (c) internal variance averaged individually for 
each of the models for all locations. The error bars indicate the maximum and minimum RMSE, 

internal and external variance for each location given by the different residual error models. 
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For the external variance (Figure 4.15b), following the same trend as the RMSE, Model 

1 has the greatest amount of variance while Models 2 and 3 have similar amounts. The 

variance is greatest for Darwin and smallest for Mildura. The residual error model 

structure has a larger role in the amount of external variance. This could be due to the 

external variance being calculated as the total variance minus the internal variance, 

where the internal variance is shown to be influenced by the error model structure. 

There is no consistency as to which residual error model has the smallest external error 

variance. 

 

For the internal model variance (Figure 4.15c), Model 1 has the greatest amount of 

variance for all locations followed by Model 2 and then Model 3. The residual error 

model structure has a larger influence on the internal variance particularly at Mount 

Gambier and Melbourne. There is no consistency between the models and locations as 

to which residual error model has the greatest amount of internal variance. However, 

compared to the external variance, on average the internal variance is relatively small 

for all the models. Nevertheless, as shown in Figure 4.12 and Figure 4.13, on days with 

mid values of the SSH fraction, the internal variance accounts for most of the total 

variance for all the error models.  

 

The difference in RMSE and external variance between the locations is similar to the 

global radiation. The performance of the models at each location can be attributed to the 

climate of each location, as discussed for the global radiation in Section 4.1.3 above. 

 
 
To further demonstrate the performance of the models, Figure 4.16 shows the relative 

error of the modelled radiation, compared with the observed radiation, for Model 2 with 

the quadratic n/N residual error model. Only this model is shown as the relative errors 

are very similar for all the residual error models, within each radiation model, for each 

location. The relative errors are also similar for Models 2 and 3, and these are lower 

than those for Model 1 for all locations.  
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Figure 4.16 Relative error with percentage of data for all locations for Model 2 with the 
quadratic n/N error structure. 

 

In Figure 4.16, the relative error is plotted against the percentage of data points. The 

relative error for all data points ranges from 14% at Tennant Creek and Alice Springs to 

80% at Adelaide, with an average of 23% for all locations. This relative error is quite 

large for Adelaide; however, the greatest amount of error occurs at low SSH fractions 

where the amount of radiation is at a minimum.  

 

To examine this relationship further, Figure 4.17 shows the relative error plotted against 

the SSH fraction for Alice Springs and Melbourne. Melbourne has the highest relative 

error for most SSH fractions while Alice Springs has one of the lowest relative errors 

for all SSH fractions. In Figure 4.17, it can be seen that the relative error is greatest for 

SSH fractions less than 0.2, which corresponds with minimum amounts of direct 

radiation, and approaches zero as the SSH fraction increases. Therefore, the large 

relative error is in general the equivalent of less than 1 MJ m-2 d-1. All locations follow 

similar trends with the majority of the relative error occurring for SSH fractions less 

than 0.2, which corresponds to generally less than 10% of the data. 
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(a) Alice Springs                                             (b) Melbourne 

 
Figure 4.17 Relative error with the change in SSH fraction for (a) Alice Springs and (b) 

Melbourne. All three models are shown with the quadratic n/N error structure. The percentage 
of days with each SSH fraction is shown by the thick solid line. 

 Predictive reliability of the direct models: QQ plots 4.2.4

QQ plots are formed to check the extent to which the probabilistic predictions of the 

different radiation and residual error models are compatible with the observed data. 

These can be seen in Figure 4.18 for Alice Springs and Figure 4.19 for Melbourne.  

 

By examining the QQ plots with no external noise added (the only source of 

randomness is due to the sampling of the bright SSH hours within the day), the left 

column of Figure 4.18 and Figure 4.19, it is clear that all of the models under-estimate 

the predictive uncertainty, particularly Model 3. This indicates that the uncertainty due 

to the timing of the bright hours does not account for all the variation between the 

observed and simulated direct radiation. 

 

With noise added, Models 2 and 3 slightly over-estimate the predictive uncertainty. The 

constant error variance has the greatest over-estimation for all the models. Model 1 also 

tends to result in an over-prediction. For Alice Springs the quadratic n/N error model is 

closest to the 1:1 line for Models 2 and 3. For Melbourne the quadratic n/N error model 

also has the smallest overestimation (closest to the 1:1 line).  

 

0

20

40

60

80

100

0

40

80

120

160

200

0 0.2 0.4 0.6 0.8 1

%
 o
cc
u
rr
e
n
ce

SSH fraction

Model 1

Model 2

Model 3

%days

0

20

40

60

80

100

0

40

80

120

160

200

0 0.2 0.4 0.6 0.8 1

re
la
ti
ve
 e
rr
o
r

SSH fraction



Chapter 4 - Performance of Radiation Models 

Page 95 

 

 
Figure 4.18 QQ plots for Alice Springs for all radiation models and residual error model 

structures for the calibration period. The left column is the internal variance while the other 
columns show the external variance for the five error structures. RM stands for radiation model, 
CE for constant error, LE for linear error, QE for quadratic error, SRad for simulated radiation, 

EVar for external variance and IVar for internal variance. 

 

 

 

  
Figure 4.19 QQ plots for Melbourne for all radiation models and residual error model structures 
for the calibration period. The left column is the internal variance while the other columns show 

the external variance for the five error structures. RM stands for radiation model, CE for 
constant error, LE for linear error, QE for quadratic error, SRad for simulated radiation, EVar 

for external variance and IVar for internal variance. 
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The predictive reliability is shown to be similar for all the models. This could be 

because the majority of data at all locations have a SSH fraction greater than 0.8 and the 

variance amount for this fraction is similar for all the models. Similarly, for the 

simulated radiation residual error model structures, the majority of data falls in the 0.5-

0.7 radiation fraction range, and the residual error model structures have an error 

variance of similar magnitude in this range. Further, Models 2 and 3 produce very 

similar mean direct radiation values for all residual error model structures. As this is 

what is used to determine the total and external variance, it is expected that they would 

have similar predictive distributions. 

 

For all locations it is clear that Model 1 does not perform as well as Models 2 and 3 in 

terms of RMSE, external variance and relative error. Models 2 and 3 perform similarly 

well. It is therefore suggested that Model 2 is the preferred model as it has one less 

parameter. It is clear that a single parameter, as used in Model 1, describing the amount 

of direct radiation as a fixed fraction of the ETR, is not sufficient to model the direct 

radiation. The diminution of the ETR with changes in the SSH fraction needs to be 

accounted for. A linear decrease in the radiation with the SSH fraction is sufficient. 

 Setting the threshold at 120 Wm-2 4.2.5

The applicability of the constant threshold for the CS recorder is tested by setting the 

threshold in the models equal to 120 Wm-2 and recalibrating the parameters. This also 

gives an indication of how sensitive the models are to the threshold value.  

 

The forced threshold only leads to a minor change in the radiation model parameter 

values. The error structures are also very similar between the variable threshold and the 

forced threshold for all locations for Models 2 and 3. However, Model 1 has much 

greater error variance terms. 

 

Changing the threshold to 120 Wm-2 only leads to a small increase in the RMSE for 

Models 2 and 3. For Model 1 the increase is much greater for all the locations. For 

Model 2 and 3 the greatest increase is 0.12 MJ m-2 d-1 for Darwin while for Model 1 the 

greatest increase is 1.28 MJ m-2 d-1 at Adelaide. The smallest increase for Models 2 and 
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3 is at Mildura where the increase is 0.004 MJ m-2 d-1. For Model 1 the smallest increase 

is 0.81 MJ m-2 d-1 at Darwin. 

 

The trend in external variance is similar to that in the RMSE. Model 1 has a much 

greater increase than Models 2 and 3, with the difference ranging from 5.77 (Broome) to 

8.56 MJ2 m-4 d-2 (Adelaide). For Model 2, the difference ranges from -0.01 (Mildura) to 

0.62 MJ2 m-4 d-2 (Darwin) and for Model 3 the difference ranges from -0.07 

(Melbourne) to 0.64 MJ2 m-4 d-2 (Broome).  

 

There is no consistent change to the internal variance. Different locations and different 

models exhibit either an increase or a decrease. The change ranges from -0.43 

(Adelaide) to -0.31 MJ2 m-4 d-2 (Wagga Wagga) for Model 1, -0.34 (Darwin) to 0.03 

MJ2 m-4 d-2 (Adelaide) for Model 2, and -0.09 (Mt Gambier) to 0.12 MJ2 m-4 d-2 (Alice 

Springs) for Model 3. 

 

It is therefore suggested that a threshold of 120 Wm-2 can be used for Models 2 and 3 

but not Model 1. 

 Validation 4.2.6

The change in RMSE and the variances between the calibration and validation periods 

can be seen in Table 4.3. For each location, the models perform similarly well between 

the validation and calibration periods. Models 2 and 3 show a slightly improved 

performance, in terms of RMSE and total and external variance, for the validation 

period at six locations while Model 1 shows an improved performance at four locations. 

The average change in internal variance is only minor for each location and model.  

 

For Models 2 and 3, Mt Gambier exhibits the greatest improvement in performance 

with the RMSE reduced by an average of 0.21 MJ m-2 d-1 and the external variance 

reduced by 0.36 MJ2 m-4 d-2. The greatest increase in RMSE is by 1.15 MJ m-2 d-1 at 

Mildura followed by Tennant Creek with an increase of 0.32 MJ m-2 d-1. Similarly, the 

greatest increase in external variance is at Mildura (0.83 MJ2 m-4 d-2) followed by 

Broome (0.37 MJ2 m-4 d-2). For Model 1, Mt Gambier also has the greatest improvement 

with the RMSE reduced by an average of 0.22 MJ m-2 d-1 and the greatest reduction in 
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external variance by 0.42 MJ2 m-4 d-2. Mildura has the greatest increase in RMSE by 

1.00 MJ m-2 d-1 and external variance by 0.91 MJ2 m-4 d-2. 

 

With the threshold set at 120 Wm-2, the validation results are very similar to the variable 

threshold results. 

 

The similar performance of the models in the calibration and validation periods suggests 

that the models are quite robust and that the period used for calibration contained a 

sufficiently wide range of atmospheric conditions. Models 2 and 3 perform consistently 

well between the validation and calibration periods for all locations while Model 1 tends 

to have a slightly reduced performance. 

 

Table 4.3 Change in average direct radiation model (M) performance for each location for the 
validation period compared with the calibration period with a variable threshold. 

 RMSE  
(MJ m-2 d-1) 

Internal Variance 
(MJ2 m-4 d-2) 

External Variance 
(MJ2 m-4 d-2) 

Location M1 M2 M3 M1 M2 M3 M1 M2 M3 

Adelaide -0.128 -0.101 -0.100 -0.025 -0.009 -0.010 -0.048 -0.003 -0.003
Alice Springs 0.054 -0.019 -0.053 -0.053 -0.026 -0.002 -0.229 -0.127 -0.261

Broome 0.205 0.296 0.261 0.039 0.010 0.001 0.468 0.315 0.444

Darwin -0.097 -0.070 -0.113 0.011 -0.015 -0.002 -0.394 -0.292 -0.056

Melbourne 0.002 -0.066 -0.062 0.012 0.006 0.006 -0.108 -0.126 -0.128

Mildura 1.007 1.149 1.147 0.048 0.014 0.006 0.906 0.853 0.827

Mt Gambier -0.217 -0.208 -0.209 0.000 -0.009 -0.008 -0.417 -0.358 -0.356

Tennant Creek 0.540 0.349 0.302 0.035 0.024 0.000 0.237 0.169 0.052

Wagga Wagga -0.077 -0.130 -0.129 0.025 0.008 0.007 0.017 -0.102 -0.088
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 Diffuse Radiation 4.3

 Diffuse radiation distributions from observed data 4.3.1

The SSH data is next used to estimate the daily diffuse radiation. The relationship 

between SSH and the diffuse radiation can be seen in Figure 4.20 which shows scatter 

plots of the observed diffuse radiation plotted against the SSH fraction. The diffuse 

radiation model simulations are also shown. 

 

 

Figure 4.20 Diffuse radiation scatter plots showing the relationship between the observed and 
modelled diffuse radiation with SSH fraction for all locations. 
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The observed diffuse radiation data appears to follow a concave quadratic relationship 

with the SSH fraction. Unlike the direct radiation, the diffuse radiation is greatest at mid 

values of SSH (n/N~0.45) and decreases towards the upper and lower SSH limits. 

Diffuse radiation is present for all SSH fractions. The scatter in the data is fairly 

uniform across all SSH values, with a slight increase at the lower SSH bound. 

 

Diffuse radiation is higher on cloudy days than clear or completely overcast days due to 

the scattering effect of clouds (Liu and Jordan, 1960; Choudhury 1963). Unlike the 

direct radiation, which does not occur on completely overcast days, the composition of 

the atmosphere ensures that there is always some diffuse radiation present. Even when 

no clouds are present, gases, aerosols and dust ensures some of the ETR is scattered 

towards the earth. As the cloudiness increases, more ETR is scattered, becoming diffuse 

radiation. However, as the SSH fraction drops below about 0.45 the diffuse radiation 

decreases as the clouds prevent more of the scattered light from reaching the surface. 

On completely overcast days, the clouds only allow a minimal amount of diffuse 

radiation to reach the land surface. 

 Model calibration results 4.3.2

The five diffuse radiation models are calibrated using the Model 2 direct radiation 

parameters. For the diffuse radiation, Models 2a and 2b perform similarly well, as do 

Models 3a and 3b for most locations; however, Model 3b shows a slightly better 

performance than the other models. The time series for Model 3b for the year 2004 are 

shown in Figure 4.21 for Alice Springs and Figure 4.22 for Melbourne. The scatter plots 

in Figure 4.20 also compare the models for each location. From Figure 4.20 it is clear 

that Models 2a and 2b have similar predictions of diffuse radiation, as do Models 3a and 

3b. However, only Models 3a and 3b follow the curved structure of the observed diffuse 

radiation with SSH fraction. Model 1 is linear and does not follow the curved structure 

of the observed radiation, while Models 2a and 2b only follow part of the curved 

structure. 
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Figure 4.21 Time series of predicted diffuse radiation for the year 2004 (calibration period) for 
Alice Springs using Model 3b. The red line is the observed radiation, the light grey shading is 
the internal variance of the modelled radiation while the dark grey shading is the 95% limit of 

the external variance of the modelled radiation. The total variance is the sum of the internal and 
external variance. 
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Figure 4.22 Time series of predicted diffuse radiation for the year 2004 (calibration period) for 
Melbourne using Model 3b. The red line is the observed radiation, the light grey shading is the 
internal variance of the modelled radiation while the dark grey shading is the 95% limit of the 
external variance of the modelled radiation. The total variance is the sum of the internal and 

external variance. 
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At each individual location, the radiation model parameter values are consistent 

between the different residual error model structures. The residual error model values 

are also reasonably consistent between the radiation models for each location, with 

minimal difference between Models 2a and 2b and between Models 3a and 3b. The 

error values tend to be greater for Model 1. As was found with the global and direct 

radiation, the diffuse radiation model parameters vary more between the locations.  

 

The different error variances can be seen in the different time series for Model 3b in 

Figure 4.21 and Figure 4.22. Additionally, the error variances for the range of SSH 

fractions and simulated radiations can be seen for Model 3b in Figure 4.23 for Alice 

Springs and Melbourne. Note that the error variance for all the models is very similar, 

however, the smallest variance occurs for Model 3b. As with the direct radiation, only 

the variance for Melbourne and Alice Springs is shown but is representative of all the 

locations.  

 

Unlike the direct radiation, the SSH and simulated radiation structures in Figure 4.23 

are not directly comparable. From the scatter plots in Figure 4.20, it is clear that the 

same simulated radiation fraction can occur for both high and low SSH fractions. The 

diffuse radiation fraction tends to range between 0.1 and 0.4. 

 

From the scatter plots in Figure 4.20, it can be seen that the observed diffuse radiation is 

reasonably scattered for all SSH fractions for all locations. This is reflected for 

Melbourne in the almost horizontal error variance for the SSH structure in Figure 4.23c. 

Each of the SSH error structures has a slightly higher variance for cloudy days (low 

SSH fraction) than sunny days, approaching zero as the SSH fraction approaches 1.  

 

The simulated radiation (SimRad) error variance structures are not as consistent 

between models or locations. For Alice Springs the simulated radiation variance is 

greater at higher diffuse radiation fractions (~0.4) while at Melbourne the error variance 

is greater at mid radiation fractions (~0.2). However, for all locations the error variance 

is generally smaller for Models 3a and 3b than for Models 2a and 2b. 
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Figure 4.23 Linear and quadratic error variance for Model 3b calibrated to Alice Springs (panels 
a and b) and Melbourne (panels c and d) data. The error variance is dependent on n/N (panels a 

and c) and the simulated radiation (SimRad) (panels b and d). 

 

 

 Model performance 4.3.3

Next, Figure 4.24 compares the diffuse radiation models based on their RMSE values, 

as well as the internal and external variance.  
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(a) RMSE 

 

(b) External variance 

 
(c) Internal variance 

 

Figure 4.24  (a) RMSE, (b) external variance and (c) internal variance averaged individually for 
each of the models for all locations. The error bars indicate the maximum and minimum RMSE, 

internal and external variance for each location given by the different residual error models. 
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The RMSE values (Figure 4.24a) show that Model 1 has the poorest performance. 

Models 3a and 3b have the best performance, followed closely by Models 2a and 2b. 

With the exception of Model 1, the range of RMSE for each model shows that the 

residual error models only have a minor influence on the RMSE. The RMSE values are 

reasonably similar for all locations, except for Model 1. For Model 1, Darwin has the 

greatest RMSE value while Adelaide has the smallest value. For Models 2a and 2b, Mt 

Gambier, Melbourne and Darwin have the greatest values while Alice Springs, Tennant 

Creek and Mildura have the lowest values. For Models 3a and 3b, the RMSE is more 

consistent for all locations. 

 

For the external variance (Figure 4.24b), following the same trend as the RMSE, Model 

1 has the greatest amount of variance while Models 3a and 3b have the smallest 

variance. Model 3b tends to have a slightly better performance than Model 3a. For 

Model 1, the variance is greatest at Darwin and smallest at Adelaide. For the remaining 

models, the external variance is greatest at Mt Gambier and smallest at Mildura. This 

follows a trend similar to the RMSE, as expected. With the exception of Model 1, the 

different error models only have a reasonably small influence on the external variance. 

Again there is no consistency as to which error model has the smallest error variance. 

 

For the internal model variance (Figure 4.24c), Model 1 shows the greatest amount of 

variance for all locations while the remaining models show a much smaller internal 

variance. The different residual error model structures have a slightly larger influence 

on the internal variance at Mt Gambier and Melbourne. There is no consistency between 

the models and locations as to which error model has the greatest amount of internal 

variance. As was found with the global and direct radiation, on average the internal 

variance only accounts for a small amount of the total variance. However, as shown in 

Figure 4.21 and Figure 4.22, on days with the mid values of the SSH fraction, the 

internal variance accounts for a larger portion of the total variance.  

 

The model performances can again be linked with the annual rainfall at each location. 

Mildura generally has the best performance and the smallest annual rainfall while 

Darwin and Mt Gambier have relatively high annual rainfall totals and comparatively 

poor performances. 
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To further demonstrate the performance of the models, Figure 4.25 shows the relative 

error of the modelled radiation, compared with the observed radiation, for Model 3b 

with the quadratic n/N residual error model. Only this model is shown as the relative 

errors are very similar for all the residual error models within each radiation model for 

each location. The relative errors are also similar for radiation Models 3a and 3b and for 

Models 2a and 2b. The average relative errors for Models 3a and 3b are lower than 

those for Models 1, 2a and 2b for all locations.  

 

The relative error for all data points ranges from 21% at Tennant Creek and Broome to 

23% at Mt Gambier, with an average error of 22% for all locations. This again suggests 

that the models perform similarly well at all locations. 

 

 

Figure 4.25 Relative error with percentage of data for all locations for Model 3b with the 
quadratic n/N error structure. 

 

Figure 4.26 shows the relative error plotted against the SSH fraction for all radiation 

models, using the quadratic n/N residual error model, for Alice Springs and Melbourne. 

It is clear that Model 1 has the greatest relative error. For the remaining models, for 

SSH fractions greater than 0.2, the relative error is generally around 20%. As was found 

with the direct radiation, the relative error is greatest for SSH fractions less than 0.2 

which corresponds with minimum amounts of diffuse radiation. Therefore, the large 

relative error is in general the equivalent of less than 3 MJ m-2 d-1. All locations follow 
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similar trends with the majority of the error occurring for SSH fractions less than 0.2, 

which corresponds to generally less than 10% of the data. 

 

(a) Alice Springs                                         (b) Melbourne 

 
Figure 4.26 Relative error with the change in SSH fraction. All five models are shown with the 
quadratic n/N error structure. The percentage of days with each SSH fraction is shown by the 

thick solid line. 

 

 Predictive reliability of the diffuse models: QQ plots 4.3.4

QQ plots are formed to check the extent to which the probabilistic predictions are 

compatible with the observed data. These can be seen in Figure 4.27 for Alice Springs 

and Figure 4.28 for Melbourne. The predictive reliability is consistent for Models 2a, 

2b, 3a and 3b. In contrast, Model 1 has a large under-prediction. Similar to the direct 

radiation, the internal variance shows significant under-estimation of the predictive 

uncertainty. This indicates that the uncertainty due to the timing of the bright hours does 

not account for all the variation between the observed and simulated diffuse radiation. 

For the external variance, the n/N (SSH) error models are closest to the 1:1 line. 
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Figure 4.27 QQ plots for Alice Springs for all radiation models and residual error model 
structures for the calibration period. The left column is the internal variance while the other 

columns show the external variance for the five error structures. RM stands for radiation model, 
CE for constant error, LE for linear error, QE for quadratic error, SRad for simulated radiation, 

EVar for external variance and IVar for internal variance. 
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Figure 4.28 QQ plots for Melbourne for all radiation models and residual error model structures 
for the calibration period. The left column is the internal variance while the other columns show 

the external variance for the five error structures. RM stands for radiation model, CE for 
constant error, LE for linear error, QE for quadratic error, SRad for simulated radiation, EVar 

for external variance and IVar for internal variance. 

 Setting the threshold at 120 Wm-2 4.3.5

The radiation model and residual error model parameter values are reasonably similar 

between the forced and variable threshold calibrations for all models and locations. In 

terms of model performance, the forced threshold results in a small increase in RMSE 

for all models, with the greatest increase in Model 1. For Model 1, the greatest increase 

is at Mildura (0.19 MJ m-2 d-1) and the smallest increase is at Darwin (<0.01 MJ m-2d-1). 

For Models 2a and 2b, the greatest increase is at Darwin (0.05 MJ m-2 d-1) and the 

smallest increase at Alice Springs (<0.01 MJ m-2 d-1). For Models 3a and 3b the greatest 

increase is at Tennant Creek (0.04 MJ m-2 d-1) and the smallest increase at Mt Gambier 

(<0.01 MJ m-2 d-1).  
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The trend in external variance is similar to that in the RMSE. Model 1 has a greater 

increase than the other models, ranging from 2.4 (Alice Springs) to 6.6 MJ2m-4d-2 (Mt 

Gambier). For Model 2a the range is from -0.008 (Mt Gambier) to 0.19 MJ2m-4d-2 

(Tennant Creek) while for Model 2b the range is -0.009 (Mt Gambier) to 0.21 MJ2m-4d-2 

(Broome). For Model 3a the range is -0.04 (Mt Gambier) to 0.09 MJ2m-4d-2 (Alice 

Springs) and for Model 3b the range is -0.06 (Mt Gambier) to 0.16 MJ2m-4d-2 (Tennant 

Creek). 

 

For all locations, except Adelaide, the forced threshold leads to a slight reduction in the 

internal variance (~0.02 MJ2m-4d-2). The increase at Adelaide is approximately 0.003 

MJ2 m-4 d-2. 

 

From these results, it is suggested that a set threshold of 120 Wm-2 can be used for 

Models 2a, 2b, 3a and 3b but not Model 1. 

 Validation 4.3.6

The change in RMSE and variance between the calibration and validation periods can 

be seen in Table 4.4.  

 
 

Table 4.4 Change in average diffuse radiation model performance for each location for the 
validation period compared with the calibration period with a variable threshold. 

 
RMSE 

(MJ m-2 d-1) 
Internal Variance 

(MJ2 m-4 d-2) 
External Variance 

(MJ2 m-4 d-2) 
Location M1 M2 M3 M1 M2 M3 M1 M2 M3 

Adelaide -0.054 -0.116 -0.147 -0.018 -0.002 -0.002 -0.498 -0.134 -0.107 
Alice Springs 0.081 0.093 -0.044 -0.004 -0.001 -0.001 -0.046 0.011 -0.046 

Broome 0.175 0.141 0.070 0.013 0.000 0.000 1.268 0.341 0.177 

Darwin -0.178 -0.097 -0.040 0.021 0.001 0.001 -0.085 0.057 0.068 

Melbourne -0.051 -0.052 -0.063 0.006 0.001 0.001 0.183 0.061 -0.016 

Mildura 0.425 0.263 0.254 0.025 0.002 0.001 0.630 0.315 0.189 

Mt Gambier -0.141 -0.140 -0.034 -0.004 -0.002 -0.001 0.018 -0.045 -0.038 

Tennant Creek 0.080 0.075 -0.009 0.001 0.001 0.000 -0.761 -0.128 -0.084 

Wagga Wagga -0.087 -0.004 -0.023 0.001 0.000 0.000 0.101 -0.023 -0.002 
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For each location, the models perform similarly well between the calibration and 

validation period. For the validation period, Models 1, 2a and 2b show a slightly smaller 

RMSE at five locations while Models 3a and 3b show a slightly smaller RMSE at six 

locations. For all models, Mildura has the greatest increase in RMSE.  Broome has a 

greater external variance for Models 1 and 2 while Mildura has the greatest external 

variance for Model 3.  

 

For Model 1, Darwin shows the greatest improvement in RMSE, which is reduced by an 

average of 0.18 MJ m-2 d-1, while Tennant Creek has the greatest reduction in external 

variance by 0.76 MJ2 m-4 d-2. For Models 2a and 2b, Mt Gambier has the greatest 

reduction in RMSE by 0.14 MJ m-2 d-1, while Adelaide has the greatest reduction in 

external variance by 0.13 MJ2 m-4 d-2. For Models 3a and 3b, Adelaide has the greatest 

reduction in RMSE by 0.15 MJ m-2 d-1 and the greatest reduction in external variance, 

by 0.11 MJ2 m-4 d-2. 

 

The average change in internal variance is only minor for each location and model.  

 

With the threshold set at 120 Wm-2, the validation results are very similar to the variable 

threshold results. 

 

The similar performance of the models in the calibration and validation periods suggests 

that the models are quite robust and that the period used for calibration contains a 

sufficiently wide range of atmospheric conditions.  

 Conclusions 4.4

This chapter examines the performance of each of the stochastic global, direct and 

diffuse radiation models. Each of the five global radiation models performs reasonably 

well for all locations. The performance of the global radiation models appears to be 

influenced by the rainfall regime at each of the locations. Mildura is the driest location 

and has the best performance, with an average RMSE of 1.32 MJ m-2 d-1. Darwin has 

the highest amount of rainfall and the poorest performance, with an average RMSE of 

1.99 MJ m-2 d-1. The relative error for all data points ranges from 6% at Broome and 
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Alice Springs, to 11% at Melbourne, with an average relative error of 9% for all 

locations. 

 

When the residual error models are compared, the constant residual error model over-

estimates the predictive uncertainty. The linear and quadratic residual error models 

perform equally well. Given that the linear error model has one less parameter to be 

calibrated, it is concluded that the global radiation models are best calibrated with linear 

error variance based on SSH fraction. 

 

The five global radiation models perform equally well for all individual locations in 

terms of the RMSE. This could be because the models estimate the direct and diffuse 

components which are then summed to give the global radiation, which has a linear 

relationship with SSH. The components may interact and offset each other to give 

similar global estimates. The magnitude of the error variance is also very similar 

between the models for each location, although Model 1 has the greatest internal 

variance. Therefore, in the interest of parsimony, the simplest model (Model 1) is 

sufficient for giving estimates of global radiation. 

 

In contrast to the global radiation models, the more complex models are better at 

predicting the individual direct and diffuse radiation components. The linear model 

(Model 2) is sufficient for modelling the direct radiation. These model parameters are 

then used to model the diffuse radiation component. The quadratic model (Model 3b) 

best models the diffuse radiation. The linear model for the direct radiation has RMSE 

values between 2.1 MJ m-2 d-1 for Mildura and 2.6 MJ m-2 d-1 for Darwin with an 

average relative error of approximately 23% for all locations. The quadratic model for 

the diffuse radiation has an RMSE between 1.5 MJ m-2 d-1 at Mildura and 1.8 MJ m-2 d-1 

at Mt Gambier with an average relative error of approximately 22% for all locations. As 

with the global radiation, the models perform better at locations with smaller annual 

rainfall totals than those with much higher annual totals. For both the direct and diffuse 

radiation, the residual errors are best (and most efficiently) described using the 

quadratic SSH residual error model. This results in a greater error variance for sunny 

days for the direct radiation, and a greater error variance for cloudy days for the diffuse 

radiation.  
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For the global, direct and diffuse radiation, the uncertainty due to the timing of the 

bright hours during the day, (the average internal error variance), only accounts for a 

small amount of the average total error variance. On average, the external error 

variance, due to the external influences not accounted for by the SSH timing, accounts 

for a larger amount of the total error variance. However, the internal variance is greatest 

for days which have mid values of the SSH fraction. On these days, the internal error 

variance accounts for a large portion of the total error variance. 

 

Knowledge of the amounts of global radiation, and the direct and diffuse radiation 

components, are important for a variety of applications including ecosystem modelling 

and the solar energy industry. The results of this study indicate that reasonable estimates 

of global, direct and diffuse radiation can be determined from SSH data. The accuracy 

can be determined with an error of approximately 9% for the global radiation, 23% for 

the direct component, and 22% for the diffuse component.  
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 - Development of Regional Radiation Chapter 5

Models 

Overview 

Models for estimating global, direct and diffuse radiation are developed and assessed in 

Chapters 3 and 4. These models are calibrated to observed data from individual 

locations, and each location has a separate parameter set. In this chapter, two different 

types of regional model are developed and assessed; a bulk-regional and a latitude-

dependant model. These regional models allow the global, direct and diffuse radiation 

to be determined at any location in Australia that has SSH data. 

 

The development of the regional models is first outlined. The performance of the global, 

direct and diffuse regional models is then compared with the performance of the locally 

calibrated models. For the global radiation, the radiation estimated using the regional 

and local models are also compared to the BoM satellite-derived estimates of global 

radiation. 

 Motivation 5.1

Chapter 4 shows that global, direct and diffuse radiation can be well modelled using 

SSH data. However, to calibrate the developed stochastic models, observed local 

radiation data is required. This data is relatively scarce. Only 21 locations in Australia 

have both SSH data and global radiation data. In contrast, there are over 200 locations 

that have measured SSH data (BoM, 2013). To enable estimation of the global, direct 

and diffuse radiation at these sites, an Australian-wide or regional model is required.  

 

Previous authors have developed global radiation models with regional parameter sets 

(e.g., Black et al., 1954; Penman, 1956). These models have one parameter set that can 

be used for a wide range of locations. Other authors have derived relationships between 

the parameters of the global radiation models and latitude (e.g., Glover and McCulloch, 

1958; Gopinathan, 1988c).  
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The Bureau of Meteorology has also derived estimates of global radiation from satellite 

data. These radiation estimates are calculated using computer models which estimate the 

radiation at ground level from the reflectance from cloud tops. These estimates are 

recognised to have an error of 7% or better in clear sky conditions, and up to 20% in 

cloudy conditions. However, this data is generally only available from 1990 onwards.  

 Data and Methodology 5.2

 Bulk-regional model 5.2.1

The bulk-regional models are developed by calibrating each of the radiation models, 

outlined in Chapter 3, to a lumped data set. This data set contains observed data from 

nine locations across Australia. The locations chosen cover a range of latitudes and 

climate regimes, and have measured data for the global, direct and diffuse radiation. For 

each location, three years of calibration data are chosen that include both relatively 

cloudy and sunny years, based on the annual total of sunshine hours. The bulk-regional 

models are validated using data from eleven other locations. The locations used and the 

years of available data are presented in Table 5.1 and Figure 5.1. Note that of all the 

available locations, four locations only have measurements of global radiation. A 

further six locations only have measurements of diffuse radiation. For these six 

locations, the direct radiation is calculated as the difference between the global and 

diffuse radiation. 

  

As the locations in the north of Australia generally have a different climate to those in 

the south, the bulk-regional models are also formed separately using the northern and 

southern locations. The northern locations tend to have a marked wet and dry season 

while the southern locations tend to have more uniform rainfall throughout the year. 

 

In Chapter 4, it was shown that the global radiation models are best calibrated for all 

locations using a linear SSH error structure. It was also shown that using a fixed 

threshold of 120 Wm-2 does not diminish the performance of the models. Therefore, the 
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five global radiation bulk-regional models are developed using the linear SSH error 

structure with a fixed threshold of 120 Wm-2.  

 

For the direct and diffuse radiation, the local models are best calibrated with a quadratic 

SSH error structure. As with the global radiation, a fixed threshold of 120Wm-2 does not 

diminish the performance of the direct and diffuse radiation models (except Model 1, 

which has a poor performance anyway). Therefore, bulk-regional models for the direct 

and diffuse radiation are developed using the same approach as the global radiation, 

using the quadratic SSH error model. 

 

Table 5.1 Locations used in the regional model development. The locations used for the bulk-
regional model calibration are in bold. The * indicates locations which only have measurements 

of global radiation. The ^ indicates locations which only have measurements of global and 
diffuse radiation. 

ID Location Latitude Years of data North/ South 

1 Adelaide -34.9524 2003-2010 S 

2 Alice Springs -23.7951 1999-2010 N 

3 Brisbane^ -27.4178 1983-1995 M 

4 Broome -17.9475 1999-2010 N 

5 Cairns -16.8736 1999-2003 N 

6 Canberra^ -35.3049 1983-1994 S 

7 Darwin -12.4239 1999-2010 N 

8 Halls Creek* -18.2292 1970-1980 N 

9 Hobart^ -42.8339 1968-1980 S 

10 Laverton^ -37.8565 1968-1980 S 

11 Melbourne -37.6655 1999-2010 S 

12 Mildura -34.2358 1999-2005 S 

13 Mt Gambier -37.7473 1999-2006 S 

14 Ooodnadatta* -27.5553 1969-1980 M 

15 Perth^ -31.9275 1975-1980 S 

16 Sydney^ -33.9465 1983-1994 S 

17 Tennant Creek -19.6423 1999-2006 N 

18 Wagga Wagga -35.1583 1999-2010 S 

19 Williamtown* -32.7932 1969-1979 S 

20 Woomera* -31.1558 1968-1979 S 
M = Middle, N = North, S = South 
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Figure 5.1 Location of stations. Stations in red are used for the bulk-regional calibration.  

 Latitude-dependant model 5.2.2

The latitude-dependent regional models are developed using the relationship between 

latitude and the locally calibrated global, direct and diffuse radiation model parameter 

values. For each radiation type, the locally calibrated parameter values for all individual 

locations are aggregated. For the global radiation, the linear SSH residual error model is 

used, while for the direct and diffuse radiation, the quadratic SSH residual error model 

is used. The parameter sets from the nine main locations as well as the additional eleven 

locations are used. For each model, and for each individual parameter, the values from 

the different locations are linearly regressed against the latitude of the locations, with 

latitude as the independent variable. The resulting linear regression equations are then 

used to calculate a new parameter set at each location. 

 Model assessment 5.2.3

The bulk-regional and latitude-dependent models are used to calculate the global, direct 

and diffuse radiation at all locations. The performance of the regional models at each 

location is determined by calculating the RMSE and relative error. QQ plots are also 

formed to check the extent to which the probabilistic predictions from the regional 
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models are compatible with the observed data. At each location, the performance of the 

regional models is compared with the performance of the locally calibrated models.  

 

For the global radiation, the radiation estimates using the local and regional models are 

also compared with the global radiation derived from satellite data. The satellite 

radiation estimates are obtained from the Bureau of Meteorology (BoM, 2013).  

 Performance of the Global Radiation Regional Models  5.3

 Bulk-regional model 5.3.1

All five bulk-regional global radiation models only have a slightly reduced performance 

compared to the locally calibrated models at all locations. In general, bulk-regional 

radiation Model 3b tends to perform slightly better than the other bulk-regional models. 

The RMSE for the bulk-regional and local Model 3b is shown in Figure 5.2 for all 

locations.  

 

The greatest increase in RMSE for the bulk-regional Model 3b, compared with the local 

Model 3b, is at Williamtown. The RMSE is increased by 0.38 MJ m-2 d-1 (22%). This 

poor performance may be because the data for Williamtown is not used in the 

calibration of the bulk-regional model. If the data were incorporated, the performance 

may be improved at Williamtown. However, the data for Adelaide is used in the 

calibration, yet Adelaide has the second highest increase in RMSE by 19%.  

 

The average difference in RMSE for all locations is an increase of 0.08 MJ m-2 d-1 (5%). 

The average relative error of local Model 3b for the nine main locations is 8.7%. For the 

bulk-regional Model 3b, the average relative error is 9.3%. Therefore, the bulk-regional 

model only results in a minor loss of performance. 
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Figure 5.2 Comparison of the RMSE for the local, bulk-regional and latitude-dependent 
regional models at all locations using Model 3b. The satellite-derived global radiation is also 

shown.  

 

For the separate southern bulk-regional calibration, in general, the RMSE is slightly 

improved for the southern locations when using the southern bulk-regional Model 3b. 

For Williamtown, the increase in RMSE is reduced to 17%.  A similar result is seen for 

the northern locations using the northern models. However, the increase in performance 

compared with the Australia-wide bulk-regional Model 3b is only minor.  

 

QQ plots for the Australia wide bulk-regional Model 3b can be seen in Figure 5.3 for 

each location. These plots show the extent to which the probabilistic predictions from 

the bulk-regional model are compatible with the observed data. The agreement between 

the predictions and observed data is very close at Brisbane, Broome, Cairns, Halls 

Creek, Hobart, Melbourne, Mt Gambier, Perth and Sydney. It can be observed that the 

bulk-regional Model 3b tends to slightly under-predict the radiation at half of the 

locations, with Adelaide displaying the greatest levels of under-prediction. At Brisbane 

and Darwin, the bulk-regional model slightly over-predicts the radiation. 

 

These results suggest that despite that range of climates seen in Australia, a regionally 

calibrated single parameter set can be applied across Australia, with minimal loss of 

accuracy compared with the local calibration of the radiation models. 
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Figure 5.3 Global radiation regional QQ plots using Model 3b. The black line is the latitude-

dependant model and the blue line is the bulk-regional model. The red line is the 1:1 line. 

 

 Latitude-dependent regional model 5.3.2

The relationship between latitude and each of the locally calibrated model parameters 

can be seen in Figure 5.4. The R2 and p-value of the regressions can be seen in Table 

5.2. As shown, a significant relationship with latitude occurs for most parameters, 

particularly for Models 2a, 2b and 3a.  

 

Also of interest, for all models, except Model 1, the error parameters show a significant 

trend with a higher error at the higher latitudes (northern Australia), as shown in Figure 

5.5. The locations in the north of Australia tend to have a greater variability in the SSH 

fractions, with distinct wet and dry seasons. This may cause the greater error variance at 

these latitudes. 
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Figure 5.4 Linear regression of the locally calibrated global parameters against latitude using the 

linear n/N residual error model.  
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Table 5.2 Results of the regression between the local parameter values and latitude for the 
global radiation models.  

 

   *result significant at <10%  
**result significant at <5% 
***result significant at <1% 

 

 

parameter model gradient intercept R2 p-value 

Adir  -0.001 0.764 0.060 0.297 
Bdir  - - - - 

Adiff 1 0.002 0.127 0.262 0.021** 

Bdiff - - - - 

Cdiff  - - - - 

Avar  0.166 12.371 0.224 0.035** 

Bvar  -0.147 -10.704 0.135 0.112 

Adir  -0.001 0.716 0.031 0.456 
Bdir  0.021 0.856 0.523 0.001*** 

Adiff 2a 0.005 0.414 0.486 0.001*** 

Bdiff 0.002 0.159 0.049 0.349 

Cdiff  - - - - 

Avar  0.356 19.249 0.529 0.001*** 

Bvar  -0.379 -19.182 0.489 0.001*** 

Adir  -0.002 0.652 0.277 0.017 
Bdir  0.022 0.870 0.538 0.001*** 

Adiff 2b 0.005 0.406 0.481 0.001*** 

Bdiff 0.000 -0.006 0.101 0.171 

Cdiff  - - - - 

Avar  0.357 19.400 0.543 0.001*** 

Bvar  -0.379 -19.310 0.498 0.001*** 

Adir  -0.007 0.446 0.358 0.005*** 
Bdir  -0.012 -0.204 0.113 0.147 

Adiff 3a 0.004 0.373 0.453 0.001*** 

Bdiff -0.052 -1.610 0.326 0.009*** 

Cdiff  0.063 1.982 0.365 0.005*** 

Avar  0.350 19.085 0.554 0.001*** 

Bvar  -0.376 -19.179 0.521 0.001*** 

Adir  0.004 0.778 0.138 0.107 
Bdir  0.008 0.844 0.193 0.053* 

Adiff 3b 0.001 0.253 0.067 0.272 

Bdiff 0.006 0.754 0.073 0.249 

Cdiff  -0.017 -0.963 0.195 0.051* 

Avar  0.235 14.740 0.382 0.004*** 

Bvar  -0.248 -14.430 0.331 0.008*** 
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Figure 5.5 Global radiation error variance (MJ2 m-4 d-1) for radiation Model 3b with the linear 
n/N error model. Darwin is the most northern location while Hobart is the most southern. 

 

The new latitude-dependent models, derived from the linear regression equations, 

perform quite well for all of the radiation models. In particular, latitude-dependent 

Model 3b has the lowest RMSE and highest R2 value at 17 of the 20 locations. The 

remaining latitude-dependent models do not show any consistency as to which has the 

best performance. For latitude-dependent Model 3b, the greatest increase in RMSE 

compared with the local model, is again at Williamtown. The RMSE is increased by 

0.27 MJ m-2 d-1 (16%).   

 

For all locations, the average increase in RMSE is 0.07 MJ m-2 d-1 (4.5%) for latitude-

dependent Model 3b. The average relative error for the nine main locations is 8.94%. 

The latitude-dependent Model 3b performs better than the bulk-regional Model 3b at 11 

of the 20 locations. The average relative error is also slightly smaller for the latitude-

dependent Model 3b. However, for the bulk-regional Model 3b, only nine locations 

were used to calculate the parameter values. If different locations were used, the new 

parameters may result in an improved performance. 

 

QQ plots for latitude-dependent Model 3b can also be seen in Figure 5.3. The reliability 

of the latitude-dependent model predictions is very similar to those of the bulk-regional 

model. Neither regional model performs better than the other at all locations. 
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 Comparison with satellite data 5.3.3

Figure 5.2 also compares the performance of satellite-derived global radiation with the 

performance of the local and regional Model 3b. Note that only ten locations have 

concurrent measured and satellite-derived global radiation data. As shown in Figure 5.2, 

the satellite-derived global radiation has a lower RMSE than the simulated locally 

calibrated global radiation at three of the ten locations (Mildura, Mt Gambier and 

Tennant Creek). The RMSE is reduced by approximately 8% at these locations. At these 

three locations, the satellite-derived global radiation also performs better than the bulk-

regional and latitude-dependent models. However, at the seven other locations, the 

satellite data performs significantly worse than the local and regional models, 

particularly at Cairns, Darwin and Melbourne, which have a large amount of rainy days. 

This is consistent with the results of Weymouth and Le Marshall (2001) who, in their 

comparison of the satellite estimates and ground-based observations, found that the 

largest error occurred at Cairns. This was attributed to the fact that Cairns experiences 

large cloud variations throughout the year.  

 Performance of the Direct Radiation Regional Models  5.4

 Bulk-regional model 5.4.1

The direct radiation bulk-regional Models 2 and 3 only have a slightly reduced 

performance compared to the local Models 2 and 3. The performance for bulk-regional 

Model 1 is comparatively poor. Bulk-regional Models 2 and 3 perform similarly well, 

although bulk-regional Model 3 tends to perform marginally better. However, bulk-

regional Model 3 has an extra parameter. The RMSE for the local and regional Model 2 

is shown in Figure 5.6. 

 

For bulk-regional Model 2, the greatest increase in RMSE, compared with the local 

Model 2, is at Adelaide. The RMSE is increased by 0.20 MJ m-2 d-1 (9%). The average 

increase in the RMSE for all locations is 0.11 MJ m-2 d-1 (5%). 
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Figure 5.6 Comparison of the RMSE for the local, bulk-regional and latitude-dependent 

regional models at all locations using Model 2. 
 

The average relative error of local Model 2 for the nine main locations is 22.4%. For 

bulk-regional Model 2, the average relative error is 30.2%. Therefore, the bulk-regional 

calibration leads to a noticeable increase in the relative error. 

 

For the separate southern bulk-regional calibration, similar to the global radiation, in 

general the RMSE is slightly reduced for the southern locations when using the southern 

bulk-regional Model 2. For Adelaide, the increase in RMSE is reduced to 2%. The 

average increase in RMSE for the southern locations compared with the local Model 2 

is 0.04 MJ m-2 d-1 (2%). A similar result is seen for the northern locations using the 

northern Model 2. The average increase in RMSE for the northern locations is 0.10 MJ 

m-2 d-1 (4%). However, this is only a minor increase in performance compared with the 

Australia-wide bulk-regional Model 2.   

 

QQ plots for the Australia wide bulk-regional Model 2 can be seen in Figure 5.7. The 

agreement between the predictions and observed data is very close at Brisbane, Broome, 

Cairns, Canberra, Melbourne, Perth, Tennant Creek and Wagga Wagga. It can be 

observed that the bulk-regional Model 2 tends to slightly under-predict the radiation at 

about half of the locations, particularly at Adelaide, Laverton and Sydney. At Darwin 

the model slightly over-predicts the radiation. 

 

These results suggest that a regionally calibrated model, using only one parameter set, 

can be applicable for calculating direct radiation across Australia. 
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Figure 5.7 Direct radiation regional QQ plots using Model 2. The black line is the latitude-
dependant model and the blue line is the bulk-regional model. The red line is the 1:1 line. 

 

 Latitude-dependent regional model 5.4.2

The relationship between latitude and each of the locally calibrated model parameters 

can be seen in Figure 5.8. The R2 and p-value of the regressions can be seen in Table 

5.3. As shown, a statistically significant relationship between the parameters and 

latitude occurs for most parameters in Model 3.  



Chapter 5 - Development of Regional Radiation Models 

Page 128 

 

 
Figure 5.8 Linear regression of the locally calibrated direct parameters against latitude using the 

quadratic n/N residual error model.  

 

The latitude-dependent Models 2 and 3, derived from the linear regression equations, 

perform well, while Model 1 does not. For latitude-dependent Model 2, the greatest 

increase in RMSE compared with local Model 2, is at Darwin. The RMSE is increased 

by 0.17 MJ m-2 d-1 (6%). The average increase in RMSE for all the locations is 0.04 MJ 

m-2 d-1 (2%). The average relative error for the nine main locations is 28.9%. 

 

The latitude-dependent models perform better than the bulk-regional models at all 

locations except Melbourne. The relative error is also smaller for the latitude-dependent 

models than the bulk-regional models. 
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Table 5.3 Results of the regression between the local parameter values and latitude for the direct 
radiation models.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   *result significant at <10%  

**result significant at <5% 
***result significant at <1% 

 

QQ plots for latitude-dependent Model 2 can be seen in Figure 5.7. The latitude-

dependent Model 2 performs similarly to the bulk-regional Model 2. At Broome, 

Tennant Creek and Wagga Wagga, the bulk-regional Model 2 is closer to the 1:1 line 

than the latitude-dependent Model 2; however, at the remaining thirteen locations, the 

latitude-dependent Model 2 is closer to the 1:1 line.  

 Performance of the Diffuse Radiation Regional Models 5.5

 Bulk-regional model 5.5.1

The bulk-regional Models 2a, 2b, 3a and 3b for the diffuse radiation only have a slightly 

reduced performance compared to the local Models 2a, 2b, 3a and 3b, particularly bulk-

regional Model 3b. The performance for bulk-regional Model 1 is comparatively very 

poor. The RMSE for the local and bulk-regional Model 3b are shown in Figure 5.9. 

 

parameter model gradient intercept R2 p-value 

Adir  0.003 0.686 0.090 0.258 
Bdir  - - - - 

Cdir 1 - - - - 

Avar  1.404 76.190 0.228 0.061* 

Bvar  -0.286 -16.961 0.001 0.900 

Cvar  -1.506 -63.015 0.043 0.439 

Adir  -0.001 0.655 0.103 0.225 
Bdir  0.006 0.743 0.155 0.132 

Cdir 2 - - - - 

Avar 0.007 0.361 0.066 0.335 

Bvar  1.241 51.489 0.292 0.031** 

Cvar  -1.451 -50.070 0.280 0.035** 

Adir  0.019 0.930 0.449 0.005*** 
Bdir  -0.073 -2.330 0.602 0.001*** 

Cdir 3 0.055 2.128 0.648 0.001*** 

Avar 0.007 0.345 0.060 0.359 

Bvar  2.110 81.470 0.580 0.001*** 

Cvar  -2.463 -85.140 0.572 0.001*** 
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Figure 5.9 Comparison of the RMSE for the local, bulk-regional and latitude-dependent 

regional models at all locations using Model 3b. 

 

For bulk-regional Model 3b, the greatest increase in RMSE compared with the local 

Model 3b, is at Hobart. The RMSE is increased by 1.1 MJ m-2 d-1 (76%). The average 

increase in RMSE for all locations is 0.42 MJ m-2 d-1 (26%). 

 

The average relative error of local Model 3b for the nine main locations is 21.9%. For 

the bulk-regional Model 3b, the average relative error is 29.7% for the nine main 

locations. Therefore, the bulk-regional model results in a noticeable increase in the 

relative error.  

 

For the separate southern bulk-regional calibration, for all locations the southern bulk-

regional Model 3b performs better than both the Australia-wide bulk-regional Model 3b 

and the northern bulk-regional Model 3b. Using the southern Model 3b, the average 

increase in RMSE, compared with the local Model 3b, is 0.25 MJ m-2 d-1 (16%). For 

Hobart, the increase in RMSE is reduced to 0.83 MJ m-2 d-1 (56%). It is clear that the 

southern Model 3b is preferable for all locations across Australia. For the global 

radiation, the northern locations have a greater amount of uncertainty in the estimates. 

Therefore, it is expected that northern Model 3b would not perform as well as the 

southern Model 3b. However, it is unexpected that the northern Model 3b performs so 

poorly for the northern locations. The use of the direct radiation parameters in the 

development of the diffuse radiation parameters may have contributed to this poor 

performance.  
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QQ plots for the Australia wide bulk-regional Model 3b can be seen in Figure 5.10. The 

agreement between the predictions and observed data is very close at Cairns, Darwin 

and Mt Gambier. However, it can be observed that the bulk-regional Model 3b tends to 

over-predict the diffuse radiation at all locations, particularly Perth and Hobart. 

 

 
Figure 5.10 Diffuse radiation regional QQ plots using Model 3b. The black line is the latitude-

dependant model and the blue line is the bulk-regional model. The red line is the 1:1 line. 

 Latitude-dependent regional model 5.5.2

The relationship between latitude and each of the locally calibrated diffuse model 

parameters can be seen in Figure 5.11. The R2 and p-value of the regressions can be 

seen in Table 5.4. As shown, a significant relationship between the parameters and 

latitude occurs for most parameters in Model 3b as well as Model 2b.  
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Figure 5.11 Linear regression of the locally calibrated diffuse parameters against latitude using 

the quadratic n/N residual error model.  
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Table 5.4 Results of the regression between the local parameter values and latitude for the 
diffuse radiation models.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   *result significant at <10%  

**result significant at <5% 
***result significant at <1% 

 

The new latitude-dependent Models 2 and 3, derived from the linear regression 

equations, perform quite well, but latitude-dependent Model 1 does not. Latitude-

dependent Model 3b has the best performance at all locations. For latitude-dependent 

Model 3b, the greatest increase in RMSE, compared with local Model 3b, is at Darwin. 

The RMSE is increased by 0.15 MJ m-2 d-1 (8%). The average increase in RMSE for all 

locations is 0.04 MJ m-2 d-1 (2%). The average relative error of the nine main locations 

is 22.9%, which is only slightly larger than that for the local Model 3b. 

parameter model gradient intercept R2 p-value 

Adiff  -0.001 0.389 0.025 0.562 
Bdiff  - - - - 

Cdiff 1 - - - - 

Avar  0.301 35.600 0.066 0.338 

Bvar  7.769 202.473 0.413 0.007** 

Cvar  -10.269 -264.505 0.482 0.003** 

Adiff  0.001 0.372 0.147 0.143 
Bdiff  0.002 0.077 0.215 0.071* 

Cdiff 2a - - - - 

Avar 0.382 23.868 0.511 0.002*** 

Bvar  -0.256 -26.659 0.029 0.530 

Cvar  -0.246 1.717 0.027 0.543 

Adiff  0.001 0.383 0.205 0.078* 
Bdiff  0.002 0.086 0.283 0.034** 

Cdiff 2b - - - - 

Avar 0.440 25.796 0.499 0.002*** 

Bvar  -0.370 -30.617 0.056 0.378 

Cvar  -0.191 3.763 0.017 0.635 

Adiff  0.000 0.226 0.022 0.580 
Bdiff  0.002 1.151 0.028 0.539 

Cdiff 3a -0.002 -1.129 0.017 0.630 

Avar  0.144 8.980 0.694 0.001*** 

Bvar  0.073 3.468 0.011 0.693 

Cvar  -0.280 -13.106 0.121 0.186 

Adiff  0.000 0.181 0.021 0.590 
Bdiff  0.006 0.817 0.289 0.032** 

Cdiff 3b -0.007 -0.754 0.286 0.033** 

Avar  0.114 6.888 0.585 0.001*** 

Bvar  0.154 8.438 0.047 0.418 

Cvar  -0.326 -15.748 0.155 0.132 
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The latitude-dependent Model 3b performs better than the bulk-regional Model 3b at all 

locations. The latitude-dependent Model 3b also performs better than the southern bulk-

regional Model 3b at all locations except for Mt Gambier. The average relative error for 

the latitude-dependent Model 3b is also much smaller than that for the bulk-regional 

Model 3b. 

 

QQ plots for latitude-dependent Model 3b can be seen in Figure 5.10. The agreement 

between the predictions and observed data is very close at most of the locations. 

However, it can be observed that the latitude-dependent Model 3b tends to either 

slightly over-predict the radiation or under-estimate the predictive uncertainty. In 

comparison to the bulk-regional Model 3b, the latitude-dependent Model 3b is closer to 

the 1:1 line at all locations. 

 Conclusions 5.6

In this chapter a bulk-regional and a latitude-dependent regional model are developed. 

These models enable the global, direct and diffuse radiation to be calculated at any 

location where data does not exist for local calibration.  

 

For the global radiation, the bulk-regional models perform well at all locations. The 

latitude-dependent models also perform well, particularly latitude-dependent Model 3b. 

The latitude-dependent Model 3b performs better than the bulk-regional Model 3b at 11 

of the 20 locations studied. 

 

The performance of the regional and local global radiation models is also compared to 

the satellite-derived global radiation at ten locations. At three of the locations, the 

satellite-derived global radiation performs slightly better than the global radiation 

calculated using the local and regional models. At the other seven locations, the 

satellite-derived radiation performs significantly worse than the radiation calculated 

from the local and regional models. 
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For the direct radiation, the bulk-regional and latitude-dependent Models 2 and 3 

perform well for all locations, while the bulk-regional and latitude-dependent Model 1 

do not. The latitude-dependent models perform better than the bulk-regional models at 

all but one location. 

 

For the diffuse radiation, the bulk-regional and latitude-dependent Models 2a, 2b, 3a 

and 3b perform well, with Model 3b having the best performance. The latitude-

dependent models perform better than the bulk-regional models at all locations. 

 

From the results of this study, it is clear that a regional model can be used to estimate 

the global, direct and diffuse radiation at all locations studied, with minimal loss of 

accuracy compared with the local models. For the global radiation, the bulk-regional 

and latitude-dependent models both perform well. Either model can therefore be used to 

determine the radiation at any location in Australia that has SSH data. For the direct and 

diffuse radiation, the latitude-dependent models perform better than the bulk-regional 

models, and are therefore recommended for use when local calibration is not possible. 

 

At seven of the ten locations studied, the global radiation estimated from the regional 

models is also closer to the observed measurements than the satellite-derived global 

radiation. The disadvantage of the regional models is that SSH data is needed as a 

model input. For locations where there is no measured SSH data, the SSH will need to 

be estimated from nearby measurements. At these locations, the radiation predicted by 

the regional models may not be as accurate as the satellite-derived estimates. However, 

the disadvantage of the satellite estimates is that they have only recently begun, and 

therefore cannot be used for historical analyses. 
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 - Influence of Uncertainty in the Chapter 6

Global Radiation Estimate on 

Evapotranspiration Rates 

Overview 

In this chapter, a selection of radiation-based ET models, along with the FAO-56 

Penman-Monteith model, are used to determine the influence of the uncertainty in the 

global radiation estimate on ET rates. The chosen ET models are commonly used in 

agricultural and climate studies. The ET is first estimated for all models using the 

average modelled radiation for each day. The upper and lower 95% limits of the 

radiation are then used to estimate the uncertainty in the ET. Following this, the 

associated amount of uncertainty in the ET estimates for the different ET models are 

compared. 

 Data and Method 6.1

The radiation-based ET models used are the Priestley-Taylor (PT), Hargreaves, Turc, 

Makkink, Doorenbos-Pruitt (DP), modified Jensen-Haise (mod-JH) and Abtew models. 

These models are outlined in Chapter 2. Along with the radiation-based ET models, the 

FAO-56-PM model is also used. The FAO-56-PM model and the radiation-based 

models all estimate ET for a reference crop. The ET models are used to calculate the ET 

at the nine main locations; Adelaide, Alice Springs, Broome, Darwin, Melbourne, 

Mildura, Mt Gambier, Tennant Creek and Wagga Wagga. 

 

Daily values of maximum temperature, minimum temperature, wind speed, vapour 

pressure and relative humidity, for use in the ET models, were obtained from the 

Bureau of Meteorology. The SSH data, as given in Chapter 3, is used to estimate the 

global radiation for each day following the procedure in Chapter 3.  
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The FAO-56-PM and PT models use net radiation rather than global radiation. The net 

radiation Rn (MJ m-2 d-1) is calculated using: 

 nlnsn RRR   (6.1) 

where Rns is the net shortwave radiation (MJ m-2 d-1) and Rnl is the net longwave 

radiation (MJ m-2 d-1). The net shortwave radiation is calculated using: 

 sns RR )1(   (6.2) 

where Rs is the global radiation and α is the albedo. Following Allen et al. (1998), α is 

equal to 0.23 for the hypothetical grass reference crop (dimensionless). The net 

longwave radiation is calculated using: 
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where σ is the Stefan-Boltzmann constant (4.903 10-9 MJ K-4 m-2 d-1), Tmax,K is the 

maximum absolute temperature during the 24-hour period, Tmin,K is the minimum 

absolute temperature during the 24-hour period, ea is the actual vapour pressure (kPa) 

and Rso is the clear-sky radiation (MJ m-2 d-1), calculated using: 

 aso RzR )10275.0( 5  (6.4) 

where z is the station elevation above sea level (m) and Ra is the ETR (MJ m-2 d-1). 

 

Following the FAO-56 guide (Allen et al., 1998), in the PM model the ground heat flux 

is ignored. 

 

The FAO (Allen et al., 1998) have proposed using the FAO-56-PM model as the 

standard equation for estimating reference ET. The FAO-56-PM model is commonly 

used for evaluating and calibrating ET models when local ET measurements do not 

exist (Jensen et al., 1990; Amatya et al., 1995; Trajkovic and Kolakovic, 2009; Tabari et 

al., 2011). Following Jensen et al. (1990), Amatya et al. (1995) and Xu and Singh 

(2000; 2001) the ET models are calibrated to the FAO-56-PM estimates using linear 

regression. The linear regression produces a constant which is used to adjust the 



Chapter 6 - Influence of Uncertainty in the Global Radiation Estimate on Evapotranspiration  

Page 138 

 

estimates for each location. This allows for the ET estimates, and the influence of the 

radiation uncertainty, to be directly comparable at the different locations.  

 

The length of period for which the ET estimates are applicable is different for each of 

the models. The FAO-56-PM model can be used on a daily basis, while the PT, 

Hargreaves, Turc, Makkink, DP and mod-JH models generally require a ten-day or 

longer averaging period. Therefore, each of the ET estimates are calculated using a 

daily, ten-day and monthly averaging period.  

 

To determine the influence of the uncertainty of the global radiation on the ET estimate, 

each ET model is calculated using the average global radiation estimate, along with the 

95% predictive limits of the global radiation amounts derived from the daily SSH 

values. The global radiation estimates are developed using the locally calibrated 

radiation models. All five global radiation models with a linear SSH error variance are 

used. In addition, the global radiation derived using the bulk-regional and latitude-

dependent regional models are also used to calculate the ET amounts. This allows for 

the uncertainty of the global radiation estimate on the ET to be determined and 

compared for the different local and regional global radiation models and ET models.  

 

To compare the uncertainty in the ET estimated by the different methods, the percent 

uncertainty of the estimates is calculated using; 

 
 

%100
5.0

y uncertaintpercent minmax 



aveET

ETET
 (6.5) 

where ETmax is the ET calculated using the upper radiation limit, ETmin is the ET 

calculated using the lower radiation limit and ETave is the ET calculated using the 

average global radiation estimate. 
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 Uncertainty in the Evapotranspiration Estimate from the 6.2

Local Radiation Models 

The uncertainty in the ET estimate varies between the ET models and between the 

locations. Figure 6.1 shows the range of ET estimated from the different ET and 

radiation models for Alice Springs and Melbourne. Of the locations considered, Alice 

Springs generally has the smallest uncertainty in the ET estimate while Melbourne 

generally has the largest uncertainty. Of the ET models, the FAO-56-PM model 

generally has the smallest uncertainty in the ET amount, while the Makkink and DP 

models have the greatest uncertainty. 

 

(a) Alice Springs 

 
 

(b) Melbourne 

 
Figure 6.1 Average ET and average range of daily ET predicted by the eight ET models and the 

five global radiation models for (a) Alice Springs and (b) Melbourne. The global radiation is 
estimated using the locally calibrated parameters. The different global radiation models are 

given by the different grey shades. The error bars indicate the range of ET for each day. 
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As shown in Figure 6.1, the choice of global radiation model does not significantly 

influence the average, or range, of ET produced by each ET model. In general, global 

radiation Model 3b leads to a slightly smaller uncertainty in each ET estimate. This is 

because the uncertainty in the radiation estimate is slightly smaller for Model 3b than 

the other four models, as shown and discussed in Chapter 4. 

 

Figure 6.2 shows the average daily percentage uncertainty in the ET estimates for all 

locations using radiation Model 3b. This gives the uncertainty in the range of ET, due to 

the range in estimated radiation, compared to the average ET estimated for each day 

(see equation 6.5). From Figure 6.2 it is clear that the uncertainty is dependent on both 

location and ET model. The extent of the uncertainty is dependent on both the local 

atmospheric variables, such as the temperature and wind speed, as well as the estimated 

uncertainty in the radiation estimates. 

 

 

Figure 6.2 Average uncertainty in the daily ET estimates for all locations and ET models using 
global radiation Model 3b. 

 

Box plots of the distribution of the daily percentage uncertainty in the ET estimates can 

be seen in Figure 6.3 for Alice Springs and Melbourne. From these plots, it can be seen 

that the range of uncertainty in the ET estimates is much larger for Melbourne than 

Alice Springs. Of the ET models, it is clear that the DP model has the greatest 

maximum uncertainty, although the upper and lower quartiles reveal that the majority of 

the data has a much smaller amount of uncertainty. For all the ET models, the greatest 

0

5

10

15

20

25

30

35

40

45

FAO‐56‐PM Abtew DP Hargreaves Makkink mod‐JH PT Turc

±
%
 u
n
ce
rt
a
in
ty

Adelaide
Alice Springs
Broome
Darwin
Melbourne
Mildura
Mount Gambier
Tennant Creek
Wagga Wagga



Chapter 6 - Influence of Uncertainty in the Global Radiation Estimate on Evapotranspiration  

Page 141 

 

percentage uncertainty generally occurs on cloudy days when the average ET amount is 

reduced. Therefore, the high percentage uncertainty is only equivalent to a small range 

of ET. 

 
(a) Alice Springs 

 
 

(b) Melbourne 

 

Figure 6.3 Box plots of the daily percentage uncertainty of the ET estimates for (a) Alice 
Springs and (b) Melbourne. The whiskers cover the entire range of percentage uncertainty. The 

dot is the mean percentage uncertainty.  

 

The amount of ET variability is generally less for the FAO-56-PM model than the 

radiation-based ET models. For Alice Springs, the average uncertainty in the radiation-

based ET estimate ranges from ±10% of the average ET for the PT model, to ±17% of 

the average ET for the DP model. The average uncertainty of all the radiation-based 

models is ±15%. For Melbourne, the uncertainty in the ET estimate ranges from ±13% 
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of the average ET for the PT model, to ±39% of the average ET for the DP model. The 

average uncertainty of all the radiation-based models is ±31%. 

 

The PM model is recommended by many authors as the best performing method for 

estimating ET (e.g., Jensen et al., 1990; McKenney and Rosenberg, 1993; Allen et al., 

1998) The PM model is physically derived, incorporates all the driving variables and 

has been shown to perform well in a variety of climates. The FAO-56-PM model is 

considered the standard method for estimating ET. For both Alice Springs and 

Melbourne, the uncertainty in the FAO-56-PM model is ±4% while for all locations the 

average uncertainty is ±5%. The maximum average uncertainty in the FAO-56-PM 

method is at Darwin, and is ±10%. It is clear that the uncertainty in the ET estimate due 

to the radiation uncertainty is much smaller for the FAO-56-PM model than the 

radiation-based models.  

 

The FAO-56-PM and PT models both show the smallest uncertainty in the ET estimate 

at all locations. These models both use net radiation rather than just global radiation. 

The net radiation estimate adds additional uncertainty, as the longwave radiation 

estimate is calculated using the global radiation estimate. However, a higher global 

radiation amount (such as the upper limit of the radiation estimate) leads to a higher net 

longwave radiation estimate. As the net radiation is calculated as the difference between 

the net global and net longwave radiation, this leads to a smaller uncertainty in the net 

radiation amount. Therefore, the FAO-56-PM and PT models have a much smaller 

uncertainty in the ET estimate than the models which only use the global radiation. 

Note, however, that the calculated longwave radiation amount is only an estimate. 

Therefore, there is uncertainty in the longwave radiation estimate, and hence the net 

radiation estimate, which is not considered in the error bars of Figure 6.1. 

 Influence of the Averaging Period 6.3

While the FAO-56-PM model can be used on a daily timescale, the radiation-based ET 

models usually require an averaging period of at least ten days. Therefore, the above 

analysis is repeated using a ten-day and a monthly averaging period.  
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Using a ten-day and monthly averaging period does not greatly influence the average 

uncertainty in the ET estimates. For the FAO-56-PM model, the uncertainty is reduced 

from ±4% to ±3% in Melbourne and Alice Springs, for both the ten-day and monthly 

averaging period. For the DP model, which shows the greatest uncertainty, the 

uncertainty is reduced from ±17% to ±14% for the ten-day period, and to 13% for the 

monthly averaging period for Alice Springs.  For Melbourne, the uncertainty in the DP 

model is reduced from ±39% to ±35% and ±31% for the ten-day and monthly averaging 

period respectively. 

 

The main influence of using a ten-day or monthly averaging period is a reduction in the 

maximum range, and an increase in the minimum range, of ET estimated for each day. 

This leads to a reduction in the maximum uncertainty and an increase in the minimum 

uncertainty of the ET estimates. Box plots of the percentage uncertainty in the ET for 

the ten-day averaging period can be seen in Figure 6.4. From this figure, it can be seen 

that there is a much smaller range of uncertainty in the ET estimates for all models, with 

a reduced maximum and a slightly increased minimum uncertainty, compared with the 

daily estimate (Figure 6.3).  

 

As an example of how the averaging period changes the range and uncertainty of the 

estimated ET, individual days from December 2005 for Alice Springs are analysed. 

Using the daily estimate, the greatest range in ET for the FAO-56-PM model is 

2.2mm/day, while the smallest range is 0.0 mm/day. For the ten-day averaging period, 

the greatest range is 1.1 mm/day, while the smallest range is 0.04mm/day. For the 

monthly averaging period, the range is 0.8 mm/day. It can therefore be seen that 

increasing the averaging period reduces the maximum uncertainty and range of ET 

estimated for each day, and increases the minimum uncertainty and range of ET for 

each day. 
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 (a) Alice Springs 

 
 

(b) Melbourne 

 
Figure 6.4 Box plots of the percentage uncertainty of the ET estimates using a ten-day 

averaging period for (a) Alice Springs and (b) Melbourne. The whiskers cover the entire range 
of percentage uncertainty. The dot is the mean percentage uncertainty. 

 

 Uncertainty in the Evapotranspiration Estimate from the 6.4

Regional Radiation Models 

The use of the radiation estimated from both the bulk-regional and latitude-dependent 

regional models only leads to a very minor change in the mean ET estimated by all of 

the ET models. The change in the percentage uncertainty of the ET estimate is also 

minor. For both Alice Springs and Melbourne, the increase in the uncertainty for the 

FAO-56-PM model is <1% for both regional models. For the radiation-based ET 

models, the latitude-dependent regional radiation models show a slight decrease in the 

ET uncertainty, while the bulk-regional models show an average increase of 

approximately 1% for Alice Springs and 2% for Melbourne. Therefore, using the 
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regional global radiation models only leads to a minor loss in accuracy of the mean ET 

estimate, and a minor change in the uncertainty for all the ET models. 

 Conclusions 6.5

In this chapter, the influence of the uncertainty in the global radiation estimates on ET 

rates is determined. The uncertainty in the ET estimate is shown to be dependent on 

location, the type of ET model used, and the initial uncertainty in the radiation estimate. 

The locations with a greater uncertainty in the radiation estimate have a greater 

uncertainty in the ET estimate. The choice of global radiation model does not 

significantly influence the average, or range, of ET produced by each ET model. 

 

The amount of ET uncertainty is generally less for the FAO-56-PM model than the 

radiation-based ET models. The average uncertainty in the FAO-56-PM model is ±4% 

for Alice Springs and Melbourne, and ±5% for all locations. For the radiation-based ET 

models, the average uncertainty is ±15% for Alice Springs, and ±31% for Melbourne. 

The FAO-56-PM model has a much lower uncertainty as it accounts for the influence of 

wind speed and humidity, and this reduces the influence of the radiation component on 

the ET estimates. The FAO-56-PM model also uses net radiation instead of just the 

global radiation. The estimate of the longwave radiation in the net radiation calculation 

reduces the uncertainty of the radiation estimate.  

 

The use of a ten-day and monthly averaging period does not greatly influence the 

average uncertainty in the ET estimates. However, the averaging period does reduce the 

maximum uncertainty, and increase the minimum uncertainty, in the ET for an 

individual daily estimate.  

 

The ET is also estimated using the regional radiation models. For all ET methods and 

regional radiation models, the use of the regional models only leads to a minor loss in 

the accuracy of the ET estimate. 
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Of all the ET models, the combination-type FAO-56-PM model gives the smallest 

amount of uncertainty. Of the radiation-based ET models, the PT model gives the 

smallest uncertainty. It is therefore recommended that the FAO-56-PM model be used 

to estimate ET. In addition to having the smallest uncertainty, the FAO-56-PM model 

also incorporates all the driving variables of ET. When sufficient data is not available 

for using the FAO-56-PM model, the radiation-based PT method is recommended, as it 

gives the next smallest uncertainty in the ET estimate.  
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 - Influence of Increased Temperature Chapter 7

on Evapotranspiration Rates 

Overview 

In the Murray-Darling Basin, the air temperatures during the 2002 drought were about 

2°C warmer than the long-term average. Investigations into this drought led previous 

authors to incorrectly speculate that increased temperatures lead to a marked increase in 

ET rates. Other authors have estimated the influence of increased temperatures from 

climate change on ET rates, estimated by empirical equations, using GCM output such 

as temperature, global radiation, humidity and wind speed. A main conclusion of these 

studies is that the different ET models can produce vastly different responses to climate 

change, even of opposite sign. This chapter investigates the influence of a 2°C increase 

in temperature on ET rates, calculated by combination, radiation and temperature-based 

ET models. The change in ET due to the increased temperature is compared with the 

uncertainty in the ET estimate due to the uncertainty in the radiation input. 

 Data and Method 7.1

The radiation-based ET models, and data used in Chapter 6, are used here to simulate 

the influence of a 2°C increase in temperature on ET rates. Only the average of the 

modelled radiation is used in this analysis. In addition to the radiation-based ET models, 

the six temperature-based models outlined in Chapter 2 are also used. These are the 

Thornthwaite, FAO-24 Blaney-Criddle (FAO-24-BC), Hamon, Romanenko, 

Hargreaves-Samani (HS), and Kharrufa models. 

 

The ET rates are first calculated using the observed temperatures. This establishes a 

baseline of ET which is used as a comparison for the temperature enhanced output from 

the different ET models. Using the method outlined in Chapter 6, the ET models are 

calibrated to the FAO-56-PM estimates using linear regression. This allows for the ET 

estimates to be directly comparable at the different locations.  
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The vapour pressure deficit (VPD), which is the difference between the saturated 

vapour pressure es and the actual vapour pressure ea, is also calculated for each day:  
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 where P is the station pressure (kPa), Td is the dry bulb temperature (°C) and Tw is the 

wet bulb temperature (°C). The ea can also be calculated from the dew point 

temperature, but the results are essentially the same.  

 

To simulate the influence of an increase in temperature, 2°C is added to the observed 

minimum temperature and maximum temperature for each day. The FAO-56-PM model 

requires the VPD. The saturated vapour pressure is calculated at the increased 

temperature. The actual vapour pressure is calculated using the VPD from the 

unenhanced temperatures. 

 

The VPD is kept constant between the two scenarios as it is not known how an increase 

in temperature will influence the VPD. However, Roderick and Farquhar (2004) suggest 

that although temperatures have been observed to be increasing, the VPD has remained 

relatively constant in Australia. Roderick et al. (2007) also assessed the trend in VPD at 

41 sites from 1975-2004 and only found a small trend of -0.2Pa a-1 compared to a 

background average of 1205Pa (less than 1% over the 30 years). As an alternative, in a 

third scenario, the ea is calculated keeping the relative humidity constant between the 

baseline simulations and the simulations with the increased temperature. 

 

The average daily ET amounts for each ET model are determined using a daily, ten-day, 

and monthly averaging period. 

 

This method is relatively simple as the purpose of this investigation is only to see how 

the increase in temperature affects the output from the ET models. An increase in 

temperature may affect other driving variables of ET; however, this is beyond the scope.  
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 Results and Discussion 7.2

The average daily ET from the baseline scenario and the two enhanced temperature 

scenarios, using a ten-day averaging period, can be seen in Figure 7.1 for Alice Springs 

and Melbourne. 

(a) Alice Springs 

 
(b) Melbourne 

 

Figure 7.1 Average daily ET using a ten-day averaging period, for each ET model, for (a) Alice 
Springs and (b) Melbourne. The error bars give the uncertainty in the ET estimate due to the 

uncertainty in the radiation input. 
 

From Figure 7.1, it can be seen that an increase in temperature using a constant VPD 

leads to a range of changes in ET, even of differing sign. Table 7.1 compares the 

percentage change in the temperature enhanced ET with the base-line ET for Melbourne 

and Alice Springs using the ten-day and monthly averaging periods. The monthly and 

ten-day averaging periods produce results very similar to the daily estimates.  
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Table 7.1 Average daily ET from the observed data and the percentage increase in ET resulting 
from the addition of 2°C, using a constant VPD and constant relative humidity (RH). 

 Alice Springs Melbourne 

 
Obs. ET 
(mm d-1) 

% increase in ET 
Obs. ET
(mm d-1)

% increase in ET 

ET model 10 day month 10 day month 

 VPD RH VPD RH VPD RH VPD RH 

FAO-56-PM 6.5 -0.1 4.8 0.0 4.9 5.1 -1.2 7.6 -1.2 7.6 
Abtew 6.7 0.0 0.0 0.0 0.0 5.0 0.1 0.1 0.0 0.0 

DP 6.6 0.2 3.0 0.2 3.0 4.7 0.7 4.2 0.7 4.2 

Hargreaves 6.5 5.0 5.0 5.0 5.0 4.8 5.9 5.9 5.9 5.9 

Makkink 6.6 3.0 3.0 3.0 3.0 4.8 4.1 4.1 4.1 4.1 

Mod JH 6.4 10.7 10.7 10.7 10.7 4.7 14.5 14.5 14.6 14.6 

PT 6.2 10.0 2.7 10.5 2.8 4.5 6.3 4.3 7.9 4.4 

Turc 6.5 -5.2 3.9 -5.2 3.9 4.8 -1.6 5.8 -2.0 5.8 

FAO-24-BC* 6.6 -1.0 6.8 -0.9 6.8 4.9 0.9 8.7 0.9 8.6 

Hamon* 6.4 11.6 11.6 11.7 11.7 5.1 12.6 12.6 12.5 12.5 

HS* 6.5 17.9 17.9 17.9 17.9 4.8 23.5 23.5 23.5 23.5 

Kharrufa* 6.3 11.9 11.9 11.9 11.9 5.0 16.8 16.8 16.7 16.7 

Romanenko* 6.6 -3.3 8.8 -3.3 8.7 5.2 -2.8 10.1 -2.9 10.1 

Thornthwaite* 5.5 22.4 22.4 22.1 22.1 4.8 9.9 9.9 9.8 9.8 

  *Temperature-based ET models 
 

Using a constant VPD, the temperature enhanced ET rate remains almost unchanged for 

the FAO-56-PM and Abtew models. This is expected of the Abtew model as the ET is 

calculated as a fraction of the global radiation only, which remains constant. The FAO-

56-PM model is physically derived and incorporates all the driving variables of ET. 

With the increased temperature, keeping the VPD constant results in a corresponding 

increase in relative humidity. This increased relative humidity counteracts the effect of 

the increased temperature, leading to a minimal change in ET.  

 

The ET rate is decreased for the Turc and Romanenko models by 5% and 3% 

respectively at Alice Springs, and 2% and 3% respectively at Melbourne. The FAO-24-

BC model also shows a slight decrease of 1% at Alice Springs, but a slight increase of 

1% at Melbourne. The ET rate is increased for the remaining models. The Turc, 

Romanenko and FAO-24-BC models all include a humidity term along with a 

temperature term. It is this increase in humidity which leads to the decrease in the ET 

rate. 
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The increased relative humidity plays a large role in the influence of the increased 

temperature on the ET rates. This effect can be further illustrated by recalculating the 

ET rates while keeping a constant relative humidity between the baseline and enhanced 

temperature scenarios. With the relative humidity held constant, as shown in Figure 7.1, 

the ET is slightly enhanced for the FAO-56-PM, DP, Turc, FAO-24-BC and 

Romanenko models. The ET is enhanced for the FAO-56-PM model because keeping 

the relative humidity constant results in an increase in the VPD. For the DP, Turc, FAO-

24-BC and Romanenko models, which only use the relative humidity term rather than 

the VPD term, the relative humidity is lower in the constant relative humidity scenario, 

which allows for greater ET rates. The remaining models, which do not include a 

humidity term, are unaffected.  

 

Of the radiation-based models, the greatest increase in ET is seen for the mod-JH 

model, which is increased by 11% and 15% at Alice Springs and Melbourne 

respectively. In comparison, for the temperature-based models, the greatest increase for 

Alice Springs is seen with the Thornthwaite model, which has an increase of 22%. For 

Melbourne, the HS model has the greatest increase, by 23%.  

 

The Thornthwaite model gives the greatest increase in ET at Alice Springs; however, 

Alice Springs is an arid location and therefore the Thornthwaite model is not strictly 

valid. Shaw (1994) has shown that compared to the Penman model, the Thornthwaite 

model tends to exaggerate ET in arid climates. For Melbourne, which has a temperate 

climate, the increase in ET is much smaller. The other ET models do not display a large 

difference in the ET between the different climate states. 

 

Table 7.1 shows the average daily percentage change in ET due to the increased 

temperature; however, the change in ET is much more variable on a day-to-day basis. 

The response of the ET to the increased temperatures is generally greater in summer 

than in winter. A time series of the daily ET for Alice Springs can be seen in Figure 7.2. 

These figures reveal that the increase in ET from the higher temperatures is much more 

prominent in the summer months for the temperature-based models, particularly for the 

Thornthwaite model.  
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(a) Radiation-based ET models 
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(b) Temperature-based ET models 
 

Figure 7.2 Time series of daily ET estimated using a ten-day averaging period for Alice Springs 
for (a) the radiation-based ET models and (b) the temperature-based ET models. The baseline 

observed ET is shown in black. The ET resulting from the increased temperature using a 
constant VPD is shown in red and the ET using a constant relative humidity is shown in blue. 
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The temperature-based models, with the exception of the Romanenko and FAO-24-BC 

models with constant VPD, generally have a much greater increase in ET than the FAO-

56-PM model. The greatest increase is seen with the HS, Kharrufa and Thornthwaite 

models. This is because the Thornthwaite model only has inputs of the average daily 

temperature and a heat index term. Similarly, the HS model uses the difference between 

the maximum and minimum daily temperature, and the ETR. The Kharrufa model uses 

temperature and a daylength term. In contrast, the other models all include some 

measure of humidity along with the temperature term. Only the FAO-24-BC model, 

which uses wind speed, relative humidity and the SSH fraction, gives similar results to 

the FAO-56-PM model.  

 

Of the radiation-based ET models, the mod-JH model has the greatest increase in ET. 

This model does include a saturated vapour pressure term rather than a humidity term, 

but temperature is still a key input. Of the remaining models, only the DP model, which 

has terms for humidity and windspeed, gives similar results to the FAO-56-PM method.  

However, on average the radiation models tend to produce results more similar to the 

FAO-56-PM model than the temperature-based models. This is consistent with the 

studies of Jensen et al. (1990) and Trajkovic and Kolakovic (2009). 

 

The influence of temperature on the ET derived by the Thornthwaite model is 

particularly important. The Thornthwaite model is commonly used in the calculation of 

the PDSI, which gives a measure of dryness of the land surface. The results of this study 

suggest that an increase in temperature will result in enhanced ET rates, using the 

Thornthwaite model, leading to greater drying of the land surface and drought 

conditions. However, these ET rates are exaggerated compared with the other ET 

estimates. This suggests that PDSI estimates may be more extreme than reality would 

suggest, particularly for arid environments. 

 

The uncertainty in the ET amount due to the uncertainty in the radiation amount is 

shown in Figure 7.1 along with the average ET for the FAO-56-PM and radiation-based 

ET models. For both Melbourne and Alice Springs, it is clear that the uncertainty in the 

radiation-based ET estimates is greater than the change in ET resulting from the 

increase in temperature. This suggests that the uncertainty in the radiation estimate has a 
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greater influence on possible ET amounts than the influence of increased temperatures. 

The FAO-56-PM model has a much smaller uncertainty associated with the radiation 

estimate. For this model, the uncertainty in the ET due to the radiation is comparable 

with the change in ET from increased temperatures with constant relative humidity.  

 Conclusions 7.3

This chapter demonstrates the influence of a 2°C increase in temperature on ET rates, 

using a variety of well-known ET models. The increased temperature leads to a range of 

responses in ET rates. This is consistent with the studies of McKenney and Rosenberg 

(1993), Kay and Davies (2008) and Hobbins et al. (2008). The response of the models 

differs depending on the climatic factors each model considers. It is also shown that the 

effect of the increasing temperature on humidity also influences the amount of ET 

calculated. Whether or not the relative humidity or VPD is held constant affects how the 

increased temperature influences the ET rates.  

 

When the VPD is kept constant between the baseline and enhanced temperature 

scenarios, the ET rate for the FAO-56-PM and Abtew models remains almost constant, 

and decreases for the temperature-based Romanenko model and the radiation-based 

Turc model. This is consistent with the work of Roderick et al., (2009) who noted that 

pan ET rates have decreased over the last several decades while the VPD has remained 

almost constant. The decrease in pan ET was attributed mainly to decreasing wind speed 

with some regional contributions from decreasing solar irradiance. Air temperature, as 

well as the VPD, was found to play only a minor role in the changes in pan ET. The 

remaining models calculate an increase in ET of up to 23% of the average baseline ET. 

The ET models that include a relative humidity term lead to either a decrease, or a very 

minor increase, in ET rate.  

 

When the ET is recalculated keeping the relative humidity constant between the 

baseline and enhanced temperature scenarios, the ET rate increases for all the models. 

The ET models that only use temperature as an input have the greatest increase in ET 

with the increase in temperature. The models that have ET rates most similar to the 

FAO-56-PM model all include humidity terms.  
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Given the range of responses of the ET models to the increase in temperature, it is clear 

that not all empirical models can be used to estimate the influence of increased 

temperatures on ET. The FAO-56-PM model, the standard for estimating ET, suggests 

that the ET response to an increase in temperature will only be very minor. In contrast, 

the radiation and temperature-based models can lead to overly high, as well as negative 

estimates of ET. The Thornthwaite model, based solely on air temperature, leads to a 

large increase in ET, which has important implications for the application of the PDSI. 

 

In an environment where the temperatures are increasing, simple temperature-based ET 

models cannot be relied on to give accurate estimates of ET. ET is influenced by more 

than just temperature. With an increase in temperature, it is unknown how humidity, 

radiation amounts and wind speed may be influenced. Donohue et al. (2010) suggested 

that under conditions of climate change, the driving variables may have different, even 

opposing, trends on ET. As shown in this study, with a constant VPD, the FAO-56-PM 

model suggests there will be a very slight decrease in the average daily ET rates. In 

contrast, with a constant relative humidity, the FAO-56-PM model suggests there will 

be a slight increase in the average daily ET rates.  

 

This study also shows that for the radiation-based ET models, the uncertainty in the 

radiation amount can lead to large differences in the predicted ET. Of all the ET models, 

only the DP model has estimates close to that of the FAO-56-PM model, suggesting it is 

the most reliable method; however, in Chapter 6 it was shown that this model has the 

largest uncertainty due to the radiation input. 

 

Temperature-based models are clearly erroneous when compared to the FAO-56-PM 

model, which is physically-based. From this analysis, we do not advocate the use of 

temperature-based empirical models for determining the influence of enhanced 

temperatures on ET rates. Models such as the PM model, which include radiation and 

humidity terms, can be expected to give more physically realistic results. However, the 

PM model itself has limitations as it is one-dimensional, and has what is known as a big 

leaf canopy assumption (Calder, 1990). In addition, the FAO-56-PM model is a 

simplified version of the PM model and represents a hypothetical crop, similar to grass, 

and is not representative of all vegetation types.  
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 - The Role of Soil Moisture in Daytime Chapter 8

Evolution of Temperatures 

Overview 

The previous chapter presents a simple analysis of the influence of a 2°C increase in 

temperature on potential ET rates, as estimated by simple empirical equations at a daily, 

ten-day and monthly timescale. In this chapter, the relationship between temperature, 

evaporation and soil moisture is explored in more detail using a planetary boundary 

layer (PBL) model. It focuses on illustrating and quantifying the effect of soil moisture 

on the evolution of daytime temperatures, and the interaction between potential and 

actual evaporation and temperatures under drought conditions. This chapter also 

reiterates the known fundamental processes associated with temperature and soil 

moisture, with the aim of providing a very simple demonstration of cause and effect. A 

coupled PBL/Penman-Monteith model is used to simulate the evolution of the PBL and 

evaporation over the course of a day in order to quantify the effect of soil moisture 

content on the evolution of daytime air temperature.  

 Motivation 8.1

Investigations into the recent drought in the MDB have brought to light confusion 

surrounding the cause and effect of temperatures and evaporation. These studies have 

noted that during the recent drought, low rainfall totals were accompanied by 

anomalously high air temperatures. In particular, Karoly et al. (2003) noted that whilst 

monthly rainfall totals were at extreme lows during the 2002 drought, the monthly 

average maximum temperatures were much higher than in previous droughts. This led 

the authors to state that “…the higher temperatures caused a marked increase in 

evaporation rates, which sped up the loss of soil moisture and the drying of vegetation 

and watercourses. This is the first drought in Australia where the impact of human-

induced global warming can be clearly observed…” (p. 1). 
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Similarly, Nicholls (2004) investigated the anomalously high air temperatures that 

occurred during the 2002 cool season (May–October) in the MDB. This was achieved 

through a comparison to an identified negative correlation between average monthly 

temperature and average monthly rainfall, between 1952 and 2002. Nicholls (2004) then 

examined the residual time series of the correlation which demonstrated a statistically 

significant monotonic increase toward higher air temperatures over the period of the 

regression data. It was then speculated that this was due to the increasing trend in 

atmospheric carbon dioxide and other greenhouse gases, and that “the warming has 

meant that the severity and impacts of the most recent drought have been exacerbated 

by enhanced evaporation and evapotranspiration” (p. 334). 

 

In a more recent study, Cai and Cowan (2008) suggested that increased temperatures are 

the cause of reduced inflows into the MDB since 1950. They showed that a rise of 1°C 

leads to an approximate 15% reduction in annual inflows. Similarly, Cai et al. (2009) 

speculated that increased temperatures have led to decreased soil moisture, and that 

annually a rise of 1°C leads to a 9% reduction in soil moisture over the southern MDB.  

 

The actual relationship between temperatures and evaporation is driven by interactions 

between the land surface and the lowest part of the atmosphere, known as the PBL. The 

land surface and PBL are a tightly coupled system (Santanello et al., 2005; Shuttleworth 

et al., 2009). The characteristics of the landscape (predominantly soil moisture) 

influence the atmosphere by controlling the division of net radiation into latent and 

sensible heat fluxes (Stensrud, 2007). Conversely the atmosphere forces the land surface 

through precipitation, momentum and radiative fluxes, due to the moving atmospheric 

fluid (Trier et al., 2008).  

 

Shuttleworth et al. (2009) also examined the role of large scale changes in the 

atmosphere, which are then reflected in near-surface values, on the interactions between 

pan ET and atmospheric drivers in Australia. They found evidence for landscape-scale 

coupling between the surface and PBL via surface radiation, wind speed, and VPD as 

well as changes in pan ET that are associated primarily with large-scale changes in wind 

speed and to a lesser extent surface radiation. They recognise that changes in area-

average ET are controlled by changes in atmospheric demand, as well as changes in 
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area-average surface resistance, which reflect changes in available moisture at the 

surface. 

 Planetary Boundary Layer 8.2

The PBL can be conceptualized to comprise three layers as seen in Figure 8.1. These are 

the surface layer, where potential temperature increases towards the warmer ground 

surface, the uniformly mixed layer, which has constant profiles with height of potential 

temperature, θ, and specific humidity, q, and the inversion layer (Δθ, Δq), above the 

mixed layer, where potential temperature increases with height. The inversion layer 

separates the turbulent boundary layer from the free atmosphere and is where 

entrainment occurs. 

 

     

Figure 8.1 Boundary layer profiles of potential temperature and specific humidity. Figure based 
on the schematics presented by Quinn et al. (1995) and Margulis and Entekhabi (2001). 

 

The PBL can be as shallow as tens of meters and as deep as several kilometres. 

Generally the PBL height is between 100 and 300m in the early morning and can reach 

1-3km by the afternoon (Margulis & Entekhabi, 2001). Evolution of the boundary layer 

begins at sunrise when solar radiation reaches the land surface and begins to warm the 

ground (Stensrud, 2007). Consequently heat and moisture fluxes from the ground to the 

atmosphere become larger. In response the boundary layer slowly deepens as thermals 

reach the top of the layer and overshoot their level of neutral buoyancy, causing 
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entrainment. The depth of the mixed layer is controlled by the rate of entrainment of 

fluid across the inversion and by advective effects (Stull, 1976). Along with sensible 

heat flux from the ground surface, wind shear also plays a role in boundary layer 

development by generating turbulence (Stensrud, 2007). The PBL typically reaches its 

maximum depth by the middle of the day, often approaching a well-mixed structure 

when turbulence is vigorous. At the end of the day the heat flux vanishes and the 

turbulence quickly dissipates causing the PBL to collapse to a residual level which is 

maintained through forced convection.  

 

Figure 8.2 shows an example of the evolution of the PBL temperature profile through a 

day. Each line shows the profile of the PBL at a given time determined from radiosonde 

data. As can be seen, the potential temperature is predominantly uniform with height in 

the mixed layer due to the entrainment and surface sensible heat flux, which help 

support the well mixed structure of the boundary layer. The boundary layer warms and 

increases in height through the day. 

 

 

Figure 8.2 The development of the boundary layer temperature profile for 5 June 1987. 

 Methodology 8.3

 Planetary Boundary Layer model 8.3.1

This investigation uses a simple PBL model coupled to the Penman-Monteith equation 

to model the interaction between the atmosphere and the land surface. This 

methodology is similar to that of van Heerwaarden et al. (2010) and has been 
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successfully used in previous studies to model the dynamics of the daytime PBL 

coupled to the land surface (e.g. Shuttleworth et al., 2009). PBL models have been used 

for many purposes and many investigations into the dynamics of the PBL have been 

reported (e.g. Tennekes, 1973; Betts et al., 1992; Quinn et al., 1995; Margulis & 

Entekhabi, 2001, 2004; Courault et al., 2007; Trier et al., 2008).  

 

A simple convective model of the PBL is used to assess the evolution of daytime 

temperature under different soil moisture scenarios. In this model, the PBL is 

represented by a slab of air of height h (m) with uniform potential temperature and 

uniform specific humidity. A step inversion caps the slab which is in turn overlain by 

drier stably stratified air, as shown in Figure 8.1. The inversion is idealised as a step 

discontinuity in temperature and humidity. The governing equations below are as given 

in Quinn et al. (1995) and are based on the model first presented by Tennekes (1973) 

and Carson (1973). The reader is referred to Raupach (2000, 2001) and Culf (1994) for 

more detailed analysis of the physics of the coupled system. 

 

The temperature of the slab (θ), is described using the differential equation:  

 
P

iS

ch

HH

dt

d


 
  (8.1) 

where ρ is the density of air (kg m-3), cP is the specific heat capacity (J kg-1 K-1) of the 

air at constant pressure and t is time (s). 

 

The water vapour budget is similar and controlled by the fluxes of water vapour at the 

surface, ES (kg m-2 s-1), and at the inversion, Ei (kg m-2 s-1). For the specific humidity, q:  

 
h

EE

dt

dq iS    (8.2) 

The sensible heat flux at the inversion, Hi (W m-2), is given by: 

 
dt

dh
cH Pi    (8.3) 
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and the water mass flux at the inversion, Ei, is given by: 

 
dt

dh
qEi    (8.4) 

The sensible heat flux at the inversion is proportional to the sensible heat flux at the 

surface, HS (W m-2), where the constant of proportionality (the entrainment coefficient 

ce) takes values in the range 0–1. This yields the rate of change of height, h, of the slab 

as follows: 

 
 


P

Se

c

Hc

dt

dh
 (8.5) 

The inversion strength (Δθ) tends to decrease as the boundary layer warms. Additionally 

the inversion strength tends to increase as entrainment into the stable air above the 

inversion base increases (Tennekes, 1973). Following Quinn et al. (1995) the 

entrainment increases the inversion strength by an amount γdh/dt giving a net rate of 

change of Δ as: 

 
dt

d

dt

dh
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 (8.6) 

for temperature, and: 

 
dt

dq

dt

dh

dt

qd m
q 

   (8.7) 

for humidity. In equations (8.6) and (8.7), γθ and γq are the gradients (lapse rates) of 

potential temperature (K m-1) and specific humidity (kg kg-1 m-1) in the overlying air. 

 

To avoid numerical instabilities and solution errors that can corrupt the behaviour of the 

simple PBL model, the system of equations (8.1)-(8.7) is discretized in time using the 

implicit Euler scheme and solved using Newton-Raphson iteration (e.g., Kavetski & 

Clark, 2011). 

 

Equations (8.1)-(8.7) are limited to simulating the PBL only throughout daylight hours, 

until the PBL begins to decay. There is no simple model available to run continuously 

throughout the night due to the complex nature of the nocturnal boundary layer.  
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The physical boundary layer is a complex system and as such is only roughly 

approximated by the simplified PBL model used in this study. For example, equations 

(8.1)-(8.7) ignore lateral advection, which, along with sensible heat flux from the 

ground surface, also plays a large role in boundary layer development (Stensrud, 2007). 

Using a model that neglects lateral advection may bias individual daily estimates 

(Margulis & Entekhabi, 2004), but building a 3D model allowing for lateral advection is 

beyond the scope of this work. 

 

The evolution of the PBL potential temperature and specific humidity is principally 

driven by the balance between the surface sensible and latent heat fluxes and the 

entrainment fluxes at the top of the mixed layer.  

 

Boundary layer models based on the work of Tennekes (1973) require a 

parameterisation of the entrainment coefficient ce. However, entrainment is difficult to 

measure directly and there is much discussion of values and how to determine them in 

the literature. Santanello et al. (2005) suggest that the entrainment coefficient can be 

estimated using gradients of temperature and moisture at or near the top of the PBL, but 

recognise that such methods require numerous assumptions. Quinn et al. (1995) used a 

simple entrainment estimate based on the jump in temperature from the mixed layer to 

the free atmosphere and the rate of PBL growth, from the work of Tennekes (1973). 

However this estimate ignores advection, subsidence and radiation and is sensitive to 

small errors in height and to uncertainty in inversion-level temperature and humidity 

(Santanello et al., 2005). 

 

A range of entrainment coefficient values are suggested in the literature. The traditional 

value for thermally driven dry convective boundary layers has been ce ≈ 0.2 (Quinn et 

al., 1995; Stensrud, 2007). Encompassing studies from 1960 to 1975 most of the 

published values for ce lie between 0.1 and 0.3 although values ranging from zero to one 

have been used (Stull, 1976). These values are mostly based on early studies (e.g. 

Tennekes, 1973) that tried to quantify PBL growth and entrainment using simple 

models for PBL growth where the downward entrainment of virtual heat flux was 

parameterised as a fraction of the surface virtual heat flux (Margulis & Entekhabi, 

2004).  
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Later studies have found larger values of the entrainment coefficient. A larger 

entrainment value means that the PBL grows, warms and entrains dry air more rapidly 

(Betts et al., 1992) which will impact on the PBL moisture budget. Santanello et al. 

(2005) found a mean value of the entrainment parameter as 0.48. Margulis and 

Entekhabi (2004), using FIFE data, estimated the entrainment parameter by combining 

radiosonde and micrometeorological observations with a simple coupled boundary-layer 

and land surface model. They calculated a range of values from 0.22 (for June FIFE 

observations) to 0.54 (for August FIFE observations) with an average of 0.40. Also 

using FIFE data, Betts et al., (1992) found ce to be 0.38 ± 0.16 and even for low wind 

cases found ce ≈ 0.4. Large values of ce estimated from field experiments have been 

linked to high wind speeds in the PBL as wind enhances entrainment at the base of the 

inversion layer (Betts et al., 1992; Margulis & Entekhabi, 2004; Santanello et al., 2005).  

 

Santanello et al. (2005) advise caution when using common parameterisations for ce 

when ce is proportional to the surface sensible heat flux. Substantial errors in the 

estimated entrainment fluxes can be introduced when setting ce equal to a constant as 

the magnitude of the sensible heat flux varies diurnally from day to day. The value of 

the entrainment coefficient parameter is highly dependent on weather conditions 

(Margulis & Entekhabi, 2004) requiring calibration for each day. 

 Penman-Monteith equation 8.3.2

The Penman-Monteith model is used to estimate the latent heat flux (Monteith, 1965, 

1981). This model is given in Section 2.1.2.1.1 of Chapter 2. 

 

The aerodynamic resistance term in the PM model is calculated using: 
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  (8.8) 

where u is the mean wind speed (m s-1), za is the reference height of the anemometer 

(m), dz is the zero plane displacement (m), z0 the roughness length (m) and k is the 

dimensionless von Karman’s constant equal to 0.41. 
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The specific humidity deficit terms can be calculated using: 

 









 3.237

27.17

611.0 d

d

T

T

s ee  (8.9) 

   wwd
T

T

a TTTPee w

w

00115.0100066.0611.0 3.237

27.17










  (8.10)

 where P is the station pressure (kPa), Td is the dry bulb temperature (°C) and Tw is the 

wet bulb temperature (°C). 

 Data 8.3.3

Data required by the model was obtained from observations made during the First 

ISLSCP (International Satellite Land Surface Climatology Project) Field Experiment 

(FIFE). This was a land-surface-atmosphere experiment, conducted from May 1987 to 

late 1989, centred on a 15 × 15km grassland site near Manhattan, Kansas. During the 

Intensive Field Campaigns the fluxes of heat, moisture, carbon dioxide, and radiation 

were measured. The primary source of data used to calibrate and run the model comes 

from the spatially-averaged FIFE surface measurements and the PBL radiosonde 

observations (Betts & Ball, 1998). The surface measurements were collected from 

numerous stations and are given at 30-min resolution, while radiosondes were launched 

most days at roughly 90-min intervals with zero to eight launches occurring each day 

between sunrise and sunset.  

 

The initial conditions required by the model are determined using the radiosonde data. 

The initial conditions consist of mixed-layer height (h), potential temperature (θ), 

specific humidity (q), temperature step size (Δθ) and humidity step size (Δq). The 

inversion strength (Δ), or the size of the step, is the potential temperature and specific 

humidity difference across the inversion layer. It is difficult to determine the inversion 

strength from many of the profiles as the step is not clearly defined. 

 

The model also requires parameter values of the lapse rates (gradients) in potential 

temperature (γθ) and specific humidity (γq) above the mixed layer which represent the 

general characteristics of the free atmosphere. For each day an early morning 

radiosonde is used to estimate these lapse rates.  
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In addition to the initial conditions and parameters, the model also requires the latent 

and sensible heat flux as forcing variables. The latent heat flux (W m-2) through the day 

is determined using the Penman-Monteith equation. The sensible heat flux is then 

calculated as the difference between the net radiation (minus the ground heat flux) and 

the latent heat flux. 

 

Data from both a dry and a wet day are used to calibrate the model. Given several 

important assumptions in the PBL model, the days chosen from the FIFE database are 

selected to most closely adhere to the assumptions in the model. In particular, days are 

chosen that are relatively cloud free with no precipitation and have relatively light 

winds. Cloudless days are desirable to ensure no outside influence on turbulence and a 

strong surface buoyancy flux to stabilise the model. Days with minimal lateral 

advection are chosen as lateral advection is not modelled. The magnitude of lateral 

advection is inferred from the wind speed as the advection terms are proportional to 

mean horizontal wind speed (Margulis & Entekhabi, 2004).  

 

The days chosen are 12 August 1989 which is a relatively dry day and 5 June 1987 

which is relatively wet. 5 June 1987 is considered a silver day with no clouds present 

while 12 August 1989 does have some clouds present. Both days have no precipitation. 

For 5 June the temperature increases from 20.5°C to 27.1°C and the maximum net 

radiation is 691 Wm-2. For 12 August the temperature increases from 23.7°C to 28.3°C 

with a maximum net radiation of 481Wm-2. 5 June, although a relatively wet day, has a 

greater maximum net radiation which results in the greater increase in temperature.  

 Calibration and sensitivity analysis 8.3.4

The PBL parameters for a given site are not known a priori and require calibration. The 

range of the parameter values can be seen in Table 8.1. Since the PBL model predicts 

the evolution of three state variables (temperature, latent heat and PBL height), a multi-

response objective function is defined, based on scaled RMSE’s for individual state 

variables. The “optimal” parameter set is obtained as the parameter set that minimizes 

the multi-response objective function, thus providing a tradeoff between fitting the 

multiple time series. 
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Table 8.1 The range of parameter values used in this study. 
Parameter Range 

rs (s m-1) 50 - 1000 
z0 (m) 0.02 - 0.12 

dz (m) 0.15 - 0.35 

ce (-) 0 - 1 

 

The multi-response objective function is based on standardized sums-of-squared errors: 
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where ε is the error in the temperature (T), latent energy (LE) and height (Ht), n is the 

number of observations for the temperature and latent energy and nH is the number of 

observations of the PBL height. The error variances are pre-estimated based on single-

objective optimization of the fit to the individual time series of temperature, latent 

energy and height. This is similar to previous multi-response applications (e.g., Franks 

et al., 1999). 

 

In addition to parameter optimization, a simple sensitivity analysis is carried out to 

explore the performance of the PBL model as quantified by the multi-response objective 

function. 

 

Both parameter optimization and sensitivity analysis are carried out using a simple 

Monte Carlo approach as follows. 10000 model simulations are generated, with 

parameter sets randomly sampled from a uniform distribution spanning the parameter 

range. Each simulation begins at the time the first PBL height was measured and 

finishes at the warmest part of each day as the PBL model does not simulate the decay 

of the PBL.   

 Influence of Wet and Dry Soil Moisture on Temperature 8.4

The PBL model is calibrated to the three state variables individually (temperature, latent 

heat and PBL height) as well as using the multi-response objective function. The 

sensitivity plots for the single-objective calibrations can be seen in Figure 8.3. The rs 

parameter is found to have the greatest influence on the ability of the model to 
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reproduce the observations for all three variables, with the strongest influence on the 

LE. This is also seen using the multi-response objective function. The rs parameter is a 

measure of the soil moisture. It therefore controls the division of net radiation into latent 

and sensible heat (temperatures). This in turn influences the growth of the boundary 

layer. The optimum rs value is similar for each of the individual calibrations for both 

days. Using the multi-response objective function, 5 June 1987 has a calibrated rs value 

of 97 s m-1, while 12 August 1989 has a value of 339 s m-1. This shows that 5 June 1987 

was a relatively wet day while 12 August 1989 was relatively dry. 

 

 

Figure 8.3 Sensitivity analysis of the PBL model for 5 June 1987 (top row) and 12 August 1989 
(bottom row). The plot panels show the sensitivity of the RMSE criterion to changes in the 

surface resistance rs and the entrainment coefficient ce for individual calibration to latent energy 
(panels a and e), temperature (panels b and f) and height (panels c, d, g, h). For visual display 

purposes, only the top 1000 simulations are shown. 

 

Additionally, it is found that the coefficient of entrainment does not have a strong 

influence on the temperature or latent energy but does have a small influence on the 

height of the PBL. The other parameters are insensitive. 

 

The calibrated model is used to determine the influence of soil moisture on the 

evolution of day time temperatures. The surface resistance parameter, which is a 

measure of moisture availability, is used to simulate varying soil moisture conditions. A 

value of rs = 50 s m-1 is used to simulate high soil moisture while a value of rs = 5000 s 

m-1 is used to simulate very low soil moisture. For consistency, the atmospheric and 
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meteorological forcing is kept the same for each day. The temperature evolution 

resulting from wet and dry soil moisture can be seen in Figure 8.4.  

 
 

    (a) 5 June 1987                                                (b) 12 August 1989 

 

Figure 8.4 PBL-based simulation of temperature evolution under wet and dry soil moisture 
conditions. 

 

Using the identified optimum parameter set, for the wet day, 5 June 1987, the wet soil 

moisture conditions yield a temperature increase of 3.8°C with a maximum temperature 

of 24.3°C. The dry soil moisture conditions yield a temperature increase of 8.9°C with a 

maximum temperature of 29.4°C. For the dry day, 12 August 1989, the wet soil 

moisture conditions lead to a temperature increase of 2.0°C with a maximum 

temperature of 25.7°C. Under the dry soil moisture conditions the temperature increases 

by 7.0°C with a maximum temperature of 30.7°C. 

 

To gauge the sensitivity of the results to the optimised model parameter values, the 

experiments are repeated using the best 100 parameter sets. As seen in Table 8.2 for 5 

June 1987 the temperature increase range under wet conditions is 2.9 to 3.8°C and 

under dry conditions 9.1 to 9.4°C. For 12 August 1989 the range of temperature 

increase under wet conditions is 1.7 to 2.1°C and under dry conditions 7.2 to 7.6°C. 

 

Table 8.2 Daytime temperature increase (°C) from best 100 simulations for wet and dry soil 
moisture conditions. 

 Wet Dry 

5 June 1987 2.9 - 3.8 (°C) 9.1 - 9.4 (°C) 
12 August 1989 1.7 - 2.1 (°C) 7.2 - 7.6 (°C) 
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From these results it is clear that soil moisture influences the maximum temperature that 

can be reached during the daytime. Soil moisture controls the division of net radiation 

into latent and sensible heat. Dry soil moisture conditions lead to higher temperatures as 

there is less actual evaporation and therefore more net radiation is partitioned into 

sensible heat allowing for increased temperature.  

 

The different ranges that occurred over the two days demonstrate that net radiation also 

influences the evolution of temperature over a day. 12 August 1989, with a maximum 

net radiation of 481 Wm-2, has a smaller temperature increase under both dry and wet 

conditions than 5 June 1987 which has a maximum net radiation of 691 Wm-2.  

 

These results demonstrate that daytime temperatures are influenced by both net 

radiation and soil moisture. Given the model limitations previously discussed, the 

temperature increase found is only applicable to the conditions of the two days of FIFE 

data used. However, it is clear that the general trend is that dry soil moisture conditions 

result in considerably higher maximum temperatures than wet conditions.  

 Influence of Soil Moisture and 2°C Temperature Increase 8.5

on Evaporation 

The studies by Nicholls (2004) and Karoly et al. (2003) both proposed that the increased 

temperatures of the 2002 drought led to enhanced evaporation. This represents a 

confusion of cause and effect of temperature and evaporation. Here, the calibrated PBL 

model is used to test this proposition. Note that the 2002 drought was about 2°C warmer 

than the long term average. As before, the dry day and the wet FIFE day are used along 

with extreme dry and wet soil moisture conditions to determine the influence of a 2°C 

temperature increase on actual ET. 

 

The model is first run using the observed temperature data for both days, under wet and 

dry soil moisture conditions. The ET at each time step is recorded. To determine the 

influence of a temperature increase, the temperature at each time step is increased by 

2°C. This is investigated under two different scenarios. In Scenario A, the dry bulb 

temperature Td is increased by 2°C and the wet bulb temperature Tw is increased by an 
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amount that keeps the same VPD as the original simulation. This is to ensure that any 

change to the ET is due only to the temperature increase and wet/dry scenarios and not 

due to an increased atmospheric vapour demand. In Scenario B, 2°C is added to both the 

observed wet and dry bulb temperatures. This allows for an enhanced VPD which 

effectively adds additional evaporative demand to the atmosphere. These results can be 

seen in Figure 8.5. 

 

 

Figure 8.5 Simulation of evaporation for 5 June 1987 (left column) and 12 August 1989 (right 
column). Each plot shows the original modelled ET along with: (i) the effect of increasing the 
temperature by 2°C with the vapour pressure deficit preserved (keeping constant VPD) and (ii) 

the effect of adding 2°C to both the dry and wet bulb temperatures (Td and Tw). 
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As expected, the evaporation is greater with wet soil moisture conditions than dry. 

Importantly it can be seen that only a minor increase in evaporation with an increase in 

temperature is apparent in each of the simulations. A simple calculation gives the 

additional evaporation resulting from a 2°C increase for both scenarios, shown in Table 

8.3. 

 

For the wet day, Scenario A leads to an increase of at most 0.004 mm/hr while Scenario 

B leads to an increase of at most 0.03 mm/hr. For the dry day, Scenario A leads to an 

increase of at most 0.007 mm/hr while Scenario B leads to an increase of at most 0.026 

mm/hr. 

 

The influence of a 2°C increase in temperature on evaporation is most pronounced, in 

terms of percentage increase, under dry soil moisture conditions (rs = 5000 s m-1). 

However, due to the lack of evaporation occurring under dry conditions, this is only an 

increase of at most 0.001 mm/hr in Scenario A and 0.004 mm/hr in Scenario B. The 

percentage increase under wet conditions (rs = 50 s m-1) is much smaller. However, due 

to the increased evaporation with wet conditions, this is a corresponding increase of at 

most 0.004 mm/hr in Scenario A and at most 0.026 mm/hr in Scenario B. 

 

These simulations reveal that adding 2°C to both the wet and dry bulb temperatures 

leads to the greater increase in evaporation. This is because the VPD is enhanced, which 

effectively adds atmospheric evaporative demand, and hence allows for a greater 

increase in evaporation.  

 

Table 8.3 Additional evaporation resulting from a 2°C increase in temperature. The percentage 
increase is given in the parentheses. 

  Increase in evaporation (mm/hr) 
 

rs, s m-1 
Scenario A 
+2°C, keeping 
constant VPD

Scenario B 
+2°C added to Td 
and Tw 

5 June 1987 97 0.004 (0.76%) 0.030 (5.48%) 
 50 0.003 (0.39%) 0.022 (3.34%) 

 5000 0.001 (3.04%) 0.003 (11.45%) 

12 August 1989 339 0.007 (2.74%) 0.023 (8.67%) 

 50 0.004 (0.69%) 0.026 (5.15%) 

 5000 0.001 (4.77%) 0.004 (12.09%) 
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A question arises as to which simulation is more likely to occur. Maximum 

temperatures have been observed to be increasing, however, Roderick and Farquhar 

(2004) report that in Australia the VPD has remained near constant. This suggests that 

Scenario A (which uses a constant VPD) is more realistic and that a 2°C increase in 

temperature will only lead to a hydrologically insignificant increase in evaporation. 

 Conclusions 8.6

This chapter uses a simple convective PBL model, coupled with the Penman-Monteith 

equation, to estimate ET, to examine the relative impact of dry and wet soil moisture 

conditions on daytime temperatures and to examine the interaction between temperature 

and evaporation. Using this model it is illustrated that soil moisture, along with the 

available net radiation, influences the maximum temperature that can be reached during 

the day. Soil moisture controls the partition of net radiation into latent and sensible heat. 

Dry soil moisture conditions lead to higher temperatures as there is less evaporation and 

therefore more net radiation is partitioned into sensible heat. For the days examined, 

daily maximum temperatures can be up to 5°C higher under extreme dry conditions 

compared with wet conditions. 

 

Some recent literature has suggested that rising temperatures are the cause of reduced 

soil moisture and inflows in the MDB, implying that increased temperatures lead to 

increased evaporation. However, in this study it is shown that an increase in temperature 

only has a minor influence on evaporation. Soil moisture is the dominant control on 

evaporation and it is shown that the amount of evaporation has a controlling influence 

on the temperatures reached in the daytime. The findings highlight an important 

weakness of climatological studies and climatological projections based on the 

assumption that increased temperatures are responsible for increased evaporation, and 

lend more weight to the use of more physically realistic energy-balance models. 
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 - Conclusions  Chapter 9

Overview 

The primary objective of this thesis was to develop a new stochastic SSH based model 

for estimating global, direct and diffuse radiation, explicitly accounting for the 

uncertainty in the radiation estimates. The model output was to be applied to ET models 

to determine the influence of the uncertainty in the global radiation amounts on the ET 

estimates. The secondary objective was to examine the relationship and interaction 

between evaporation, temperature and soil moisture. This final chapter summarises how 

these objectives were achieved, the major conclusions and findings of this thesis, and 

future directions of this research. 

 Stochastic Radiation Model Development and 9.1

Performance 

The review of available literature on the modelling of ET and global radiation 

concluded that the more commonly used and most accepted ET models require global 

radiation as an input. However, measured radiation data are not very common. 

Consequently, a variety of empirical models have been developed for estimating global 

radiation. These empirical models are deterministic and give no indication of the 

uncertainty in the radiation estimates. This provided the motivation for the development 

of a stochastic model for estimating global radiation and its components. 

 

The development of the stochastic radiation models was outlined in Chapter 3. Five new 

stochastic models were developed for estimating daily global radiation distributions 

which use SSH as the main input. Each of the five models developed had a different 

complexity- a constant, linear or quadratic structure, scaled by SSH to account for the 

influence of clouds on the attenuation of the radiation. The five models were calibrated 

using five different statistical residual error models, including assumptions of constant 

residual error variance, linear and quadratic residual error variance dependent on SSH 
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fraction, and linear and quadratic error variance dependant on the simulated global 

radiation.  

 

For any day, the models developed provide estimates of the mean global radiation, a 

probability distribution of the radiation based on the timing of the bright hours, and an 

estimate of the errors from the external influences on radiation not accounted for by the 

SSH input.  

 

At each location, the different global radiation models and residual error models were 

all found to perform well. Therefore, in the interests of parsimony, it was concluded that 

Model 1, calibrated with linear error variance based on SSH fraction, was sufficient for 

modelling global radiation. The performance of the radiation models at each location 

was found to be influenced by the rainfall regime of the location. Mildura was the driest 

station and had the best performance, with an RMSE of 1.32 MJ m-2 d-1. In contrast, 

Darwin had the highest amount of rainfall and consequently the poorest performance, 

with an RMSE 1.99 MJ m-2 d-1. The average error of the global radiation predictions 

was approximately 9% for all locations. 

 

The calibration of the global radiation models did not account for the ability of the 

individual simulated direct and diffuse radiation components to model the observed 

direct and diffuse radiation. These individual estimates are important when applying the 

estimates to uneven terrain, photosynthesis calculations and forest ecosystem studies. 

Therefore, three direct and five diffuse radiation models, based on the components of 

the global radiation models, were separately calibrated to the individual direct and 

diffuse radiation components. The three direct and five diffuse radiation models 

consisted of a constant, linear and quadratic structure. It was found that these stochastic 

models could be used to reliably estimate the individual direct and diffuse radiation 

components.  

 

Unlike the global radiation, the direct and diffuse radiation had an optimal model. The 

linear model (Model 2) was found to be sufficient for modelling the direct radiation. 

These model parameters were then used to model the diffuse radiation component. It 

was found that the quadratic model (Model 3b) best modelled the diffuse radiation. For 
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both the direct and diffuse radiation, the residual errors were best (and most efficiently) 

described using the quadratic SSH estimate. This resulted in greater error variance for 

sunny days for the direct radiation, and greater variance for cloudy days for the diffuse 

radiation. As with the global radiation, the models performed better at stations with 

smaller annual rainfall totals than those with much higher annual totals. For all 

locations, the average error of the direct radiation predictions was approximately 23%, 

while the average error of the diffuse radiation predictions was approximately 22%. 

 

For the global, direct and diffuse radiation, the uncertainty due to the timing of the 

bright hours during the day, (the internal variance), only accounted for a small amount 

of the total error variance. On average, the external variance, which was due to the 

external influences not accounted for by the SSH timing, accounted for a larger amount 

of the total error variance. However, the internal variance was greatest for mid values of 

the SSH fraction. On these occasions, the internal variance accounted for a large portion 

of the total variance. 

 

While all five radiation models performed equally well at estimating global radiation 

amounts, there was a preferred model for estimating the direct and diffuse radiation. 

Therefore, to model the global radiation with the direct and diffuse components being 

accurately accounted for, Model 3b is the preferred model. 

 

The models in Chapter 4 were calibrated to each location individually using observed 

radiation data. However, observed radiation data is relatively scarce. To enable 

estimation of the radiation at all sites that have SSH data, a regional model is required. 

Therefore, in Chapter 5 two different types of regional models were developed and 

assessed for the global, direct and diffuse radiation. These were a bulk-regional model 

and a latitude-dependent model. The bulk-regional models were formed by calibrating 

the radiation models to a lumped input, comprising data from a range of locations across 

Australia. This provided one parameter set that can be used for all locations. The 

latitude-dependent models were developed using the relationship between latitude and 

the locally calibrated global, direct and diffuse radiation model parameter values. At 

each location, the radiation estimates from the different regional models was compared 

with the radiation estimates from the local models. The regional models for global 
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radiation were also compared to the BoM satellite-derived estimates of global radiation 

at ten locations. 

 

For the global radiation, all five bulk-regional and latitude-dependent models performed 

reasonably well at all locations, particularly latitude-dependent and bulk-regional Model 

3b. The latitude-dependent Model 3b performed better than the bulk-regional Model 3b 

at eleven of the twenty locations. At three locations, the BoM satellite-derived global 

radiation performed slightly better than the regional and local models. However, at the 

other seven locations, the satellite-derived global radiation performed significantly 

worse than the local and regional models. 

 

For the direct radiation, the bulk-regional and latitude-dependent models, with the 

exception of Model 1, were found to perform well. The latitude-dependent Model 2 

performed better than the bulk-regional Model 2 at all locations except Melbourne. For 

the diffuse radiation, the bulk-regional and latitude-dependent Models 2a, 2b, 3a and 3b 

were found to perform well, with Model 3b having the best performance. The latitude-

dependent Model 3b performed better than the bulk-regional Model 3b at all locations. 

 

From these results, it is clear that the global, direct and diffuse radiation are well 

modelled using the developed stochastic models, particularly Model 2 for the direct 

radiation and Model 3b for the diffuse radiation. It is also clear that a regional model 

can be used to estimate the global, direct and diffuse radiation at all locations studied, 

with minimal loss of accuracy compared with the local models. For the global radiation, 

the bulk-regional and latitude-dependent models both performed well and either model 

can be used when local calibration is not possible. These models also performed well 

when compared with the BoM satellite-derived global radiation. For the direct and 

diffuse radiation, the latitude-dependent regional models are recommended for use 

when local calibration is not possible. 
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 Influence of Uncertainty in the Radiation Estimate on 9.2

Evapotranspiration Rates 

Global radiation is an important input for many models which estimate ET. The 

maximum, minimum and average global radiation, simulated for each location, was 

therefore used in Chapter 6 to determine the influence of the uncertainty of the radiation 

estimate on ET amounts. The FAO-56-PM combination model was used in addition to 

seven radiation-based models. 

 

It was found that the uncertainty in the ET estimate was dependent on the type of model 

used, the location of the estimates, and the initial uncertainty in the radiation estimates. 

The locations with a greater uncertainty in the radiation estimate produced a greater 

uncertainty in the ET estimate. The amount of uncertainty was generally less for the 

combination FAO-56-PM ET model than the radiation-based ET models. For the 

radiation-based ET models, the average uncertainty was ±15% of the average for Alice 

Springs, and ±31% for Melbourne. For the FAO-56-PM model, the uncertainty was 

±4% for both Alice Springs and Melbourne. The FAO-56-PM model had a much lower 

uncertainty as it used net radiation rather than just global radiation, and also accounted 

for the influence of wind speed and humidity, which reduced the influence of the 

radiation component. The FAO-56-PM model is considered the standard model for 

estimating ET. 

 

The ET was also estimated using the regional global radiation models. It was found that 

the use of the radiation from the regional models only led to a minor loss in accuracy in 

the ET estimate for all ET models and radiation models. Therefore, although the 

uncertainty in the radiation amount is location dependent, this uncertainty can be well 

estimated using the regional models, and there is only a minor loss of accuracy in the 

resulting ET estimates. 

 

Of all the ET models, the FAO-56-PM model gave the smallest amount of uncertainty. 

Of the radiation models, the Priestley-Taylor model gave the smallest uncertainty, while 

the Doorenbos-Pruitt model gave the largest. It is therefore recommended that the FAO-

56-PM model be used to estimate ET. When data is not available for using the FAO-56-
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PM model, the radiation-based Priestley-Taylor model is recommended as it gives the 

next smallest uncertainty in the ET estimate. The global radiation, for input into the ET 

models, can also be estimated using the regional radiation models. 

 Interaction of Temperature and Evapotranspiration 9.3

In the context of climate change, there is uncertainty as to how increased temperatures 

may influence ET rates. The second focus of this thesis was therefore to examine the 

relationship between evaporation, soil moisture and temperature. 

 

In Chapter 7, the influence of a 2°C increase in temperature on ET estimates, derived 

from combination, radiation- and temperature-based models, was investigated. The 

increased temperature was found to lead to a range of responses in ET. The response of 

the models differed depending on the climatic factors each model considered. It was 

also shown that the effect of the increasing temperature on humidity also influenced 

how much ET was calculated. Whether or not the relative humidity or VPD was held 

constant affected how the increased temperature influenced the ET rates.  

 

When the VPD was kept constant between the baseline and enhanced temperature 

scenarios, the ET rate for the FAO-56-PM model and Abtew models remained constant, 

and decreased for the temperature-based Romanenko model and the radiation-based 

Turc model. The remaining models calculated an increase in ET of up to 23% of the 

average baseline ET. The ET models that included a relative humidity term led to either 

a decrease, or a very minor increase, in ET rate. When the ET was recalculated keeping 

the relative humidity constant between the baseline and enhanced temperature 

scenarios, the ET rate increased for all the models. The ET models that only use 

temperature as an input had the greatest increase in ET. The models that gave ET rates 

most similar to the FAO-56-PM model all included humidity terms.  

 

It was shown that the influence of increased temperature on ET rates is model 

dependent and therefore not all models can be used in climate response studies. In 

particular, the Thornthwaite model, which is based solely on air temperature, led to a 

large increase in ET. This was particularly seen at the arid locations; however, the 
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Thornthwaite model has been shown to be unreliable in arid climates. This has 

important implications for the application of the PDSI. The ET rates from the 

Thornthwaite model were overinflated compared with the other model estimates. 

Therefore, in a warming climate, PDSI estimates may be more extreme than reality 

would suggest. 

 

Chapter 6 showed that for the radiation-based models, the uncertainty in the radiation 

amount can lead to large differences in the predicted ET. For the enhanced temperature 

scenarios, only the Doorenbos-Pruitt model had estimates close to that of the FAO-56-

PM model, suggesting it is the most reliable method; however, in Chapter 6 it was 

shown that this model has the largest uncertainty due to the radiation input. In studies of 

future climate states, the uncertainty in the radiation estimate may overshadow the 

change in ET due to the enhanced temperature. 

 

The increased temperatures can also affect other meteorological components, which can 

be unaccounted for in the empirical models. In particular, it was shown that the effect of 

the increased temperature on humidity also influenced how much ET was calculated. 

With a constant VPD, the FAO-56-PM model led to a very slight decrease in the 

average daily ET rates. In contrast, with a constant relative humidity, there was a slight 

increase in the average daily ET rates. 

 

For climate change studies, temperature-based ET models have been shown to be 

unreliable when compared to the FAO-56-PM model, which is physically-based and 

considered the standard for estimating ET. Models such as the PM model which include 

radiation and humidity terms can be expected to give more physically realistic results. 

However, it was also discussed that the PM model and the FAO-56-PM model have 

limitations.  

 

It was also recognised that the temperature-ET relationship is driven by complex 

interactions between the land surface and atmosphere. In particular, soil moisture 

controls the division of net radiation into latent and sensible heat. Therefore, following 

the simple analysis of the influence of increased temperature on ET, Chapter 8 provided 
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a more in-depth study of the interaction between temperature, ET and soil moisture, 

using a PBL model.  

 

It was illustrated that soil moisture, along with the available net radiation, influences the 

maximum temperature that can be reached during the day. Dry soil moisture conditions 

lead to higher temperatures as there is less evaporation and therefore more net radiation 

is partitioned into sensible heat. For the days examined, it was found that daily 

maximum temperatures can be up to 5°C higher under extreme dry conditions compared 

with wet conditions. It was also shown that, contrary to speculation in previous studies, 

an increase in temperature only has a minor influence on evaporation. Rather, soil 

moisture is the dominant control on evaporation.  

 

The results of Chapters 7 and 8 highlight an important weakness of climatological 

studies and climatological projections based on the assumption that increased 

temperatures are responsible for increased evaporation, and lend more weight to the use 

of more physically realistic energy-balance models. 

 

ET is influenced by more than just temperature. In an environment where the 

temperatures are increasing, simple temperature-based models cannot be relied on to 

give accurate estimates of ET. With an increase in temperature, it is unknown how 

humidity, radiation amounts and wind speed may be influenced. These variables may 

have different, even opposing trends on ET. As shown in Chapters 6, 7 and 8, the 

uncertainty in the humidity and radiation amounts can lead to large differences in the 

predicted ET. 

 Future Work 9.4

The stochastic radiation model developed in this thesis has applications beyond 

modelling evaporation rates. The global radiation and its components can, for example, 

be utilised by the solar energy industry for use in energy efficient building design, and 

for further agricultural applications.  
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The radiation distributions provided in this thesis were only for a horizontal surface. By 

knowing the direct and diffuse components, the radiation distributions can be calculated 

for a sloped surface. This is useful for the agricultural sector for applications such as 

determining the energy input for crops on a hill side. The influence of any obstructions 

on the radiation, such as nearby buildings or trees, can also be accounted for. 

 

The radiation distributions were also only estimated using SSH as the input. However, 

previous authors have also estimated the radiation components from other variables 

such as the maximum and minimum daily temperature. These variables could be 

incorporated into the models. This may reduce the variance of the distributions. The 

temperature measurements may also help determine the timing of bright SSH within the 

day. 

 

The regionalisation method used was highly simplified. More sophisticated 

regionalisation methods could be used to give better estimates at locations where 

measured data does not exist for calibration. 

 

The temperature, evaporation, soil moisture relationship was also only examined using 

two days of data. It is known that the role of soil moisture on potential ET is different 

for energy limited and water limited environments. The relationship could be further 

studied using data from different climates and for multiple days. In this way, the 

influence of the change in soil moisture and atmospheric conditions on ET rates and 

temperature could be more fully explored. 

 

Climate change may affect more than just temperatures. The change in humidity, wind 

speed and radiation will also influence ET rates. These influences can be further 

examined, both individually and together, using GCM output. 
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 Concluding Remarks 9.5

This thesis has developed a novel stochastic sunshine hour based model for estimating 

distributions of global, direct and diffuse radiation. This model accounts for the 

uncertainty in the radiation estimate due to the timing of the bright sunshine hours 

during the day, and the external influences on the radiation such as the unknown 

properties of clouds. The global radiation distributions were used to determine the 

influence of the uncertainty in the radiation on evapotranspiration estimates. The 

resulting uncertainty in the evapotranspiration estimates was found to range from ±4% 

for the FAO-56-Penman-Monteith model to ±31% for the radiation-based models. This 

thesis then examined the relationship between evapotranspiration and temperature. It 

was illustrated that soil moisture, along with the available net radiation, influences the 

maximum temperature that can be reached during the day. Importantly, temperature 

increases were shown to have minor influences on evaporation rates. Consequently, 

temperature-based models were shown to lead to unreasonable estimates of evaporation 

when temperatures are increased. 
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