Regulation of the uteroplacental renin–angiotensin system in human pregnancy

By

Yu Wang

Bachelor of Medical Science (Hons)

A thesis submitted in fulfilment of the requirements for the degree of Doctorate of Philosophy

> School of Biomedical Sciences & Pharmacy Faculty of Health and Medicine University of Newcastle Australia

> > on April 2013

Supervisor: Prof. Eugenie R. Lumbers, AM, FAA, FRSN, DSc, MDBS Co-Supervisor: Dr. Kirsty G. Pringle, PhD Co-Supervisor: Prof. Tamas Zakar, PhD

DECLARATION

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due references has been made in the text. I give consent for this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the *Copyright Act 1968*.

I hereby certify that the work embodied in this thesis has been done in collaboration with other researchers. I have included as part of the thesis a statement clearly outlining the extent of collaboration, with whom and under what auspices.

I hereby certify that the work embodied in this thesis contains 3 published papers and a paper submitted or prepared for submission of which I am a joint author. I have included as part of the thesis a written statement, endorsed by my supervisor, attesting to my contribution to the joint publications.

Signed:_____

Date: 3rd April 2013

STATEMENT OF CONTRIBUTION TO JOINT PUBLICATIONS

I, Yu Wang, attest that I have made a primary and original contribution to the publications, and manuscripts awaiting publication, included in this thesis, as detailed below and endorsed by my supervisors.

Chapter	Title	Status	Contribution
2	Regulation of the Renin–Angiotensin System (RAS) in BeWo and HTR– 8/SVneo trophoblast cell lines.	Published	Experimental design and procedures Data analysis Manuscript preparation
3	Fetal sex affects expression of Renin– Angiotensin System components in term human decidua.	Published	Experimental design and procedures Data analysis Manuscript preparation
4	The effects of cyclic AMP, sex steroids and global hypomethylation on the expression of genes controlling the activity of the Renin–Angiotensin System in placental cell lines.	Published	Experimental design and procedures Data analysis Manuscript preparation
5	Regulation of Renin–Angiotensin System (RAS) pathways in the Human Decidua	Submitted	Experimental design and procedures Data analysis Manuscript preparation
Signed (Car	ndidate):	Date:	[.] 3 rd April 2013
Signed (Sup	pervisor):	Date:	3 rd April 2013
Signed (Sup	pervisor):	Date:	3 rd April 2013
Signed (Sup	pervisor):	Date:	3 rd April 2013

I attest that Research Higher Degree candidate **Yu Wang** contributed to experimental design and procedures, data analysis and manuscript preparation to the paper/publication entitled "*Regulation of the Renin–Angiotensin System (RAS) in BeWo and HTR–8/SVneo trophoblast cell lines*"

Signature of Co-author: Name of Co-author: Kirsty G. Pringle Date: 3rd April 2013

Signature of Co-author: Name of Co-author: YuXia Chen Date: 3rd April 2013

Signature of Co-author: Name of Co-author: Tamas Zakar Date: 3rd April 2013

Signature of Co-author: Name of Co-author: Eugenie R. Lumbers Date: 3rd April 2013

I attest that Research Higher Degree candidate **Yu Wang** contributed to experimental design and procedures, data analysis and manuscript preparation to the paper/publication entitled "*The effects of cyclic AMP, sex steroids and global hypomethylation on the expression of genes controlling the activity of the Renin–Angiotensin System in placental cell lines*"

Signature of Co-author: Name of Co-author: Kirsty G. Pringle Date: 3rd April 2013

Signature of Co-author: Name of Co-author: Eugenie R. Lumbers Date: 3rd April 2013

I attest that Research Higher Degree candidate **Yu Wang** contributed to experimental design and procedures, data analysis and manuscript preparation to the paper/publication entitled "*Fetal sex affects expression of Renin–Angiotensin System components in term human decidua*"

Signature of Co-author: Name of Co-author: Kirsty G. Pringle Date: 3rd April 2013

Signature of Co-author: Name of Co-author: Shane D. Sykes Date: 3rd April 2013

Signature of Co-author: Name of Co-author: Francine Z. Marques Date: 3rd April 2013

Signature of Co-author: Name of Co-author: Brian J. Morris Date: 3rd April 2013

Signature of Co-author: Name of Co-author: Tamas Zakar Date: 3rd April 2013

Signature of Co-author: Name of Co-author: Eugenie R. Lumbers Date: 3rd April 2013

I attest that Research Higher Degree candidate **Yu Wang** contributed to experimental design and procedures, data analysis and manuscript preparation to the paper/publication entitled "*Regulation of the Renin–Angiotensin System (RAS)* pathways in the human decidua"

Signature of Co-author: Name of Co-author: Kirsty G. Pringle Date: 3rd April 2013

Signature of Co-author: Name of Co-author: Shane D. Sykes Date: 3rd April 2013

Signature of Co-author: Name of Co-author: Eugenie R. Lumbers Date: 3rd April 2013

ACKNOWLEDGEMENTS

I would like to take this opportunity to acknowledge the help and support of my dear supervisors, Eugenie Lumbers, Kirsty Pringle and Tamas Zakar, without whom none of this would be possible. Beyond their guidance and support with all things scientific, they have also had a great and positive impact on the person that I am now. Eugenie, I feel deeply inspired each time I see you, for I see boundless energy and passion. Kirsty, your patience and knowledge, has made each and every problem and puzzle seem less daunting. Tamas, I am very grateful for all of your help and guidance.

I would like to acknowledge the head of the Mothers and Babies research centre, Professor Roger Smith and the University of Newcastle for giving me the opportunity to do a PhD in Newcastle. In addition, note that this PhD was supported by the NHMRC and HMRI.

To all my friends and colleagues at the Mothers and Babies research centre, you have made everyday much more enjoyable and frustrating moments bearable. I am especially grateful to Annie and all those on the collection roster for organising and collecting samples.

To all my friends, thank you for putting up with me, I love you all, what more can I say. To my mum and dad, I am thankful everyday that I have been bless with such wonderful and loving parents.

TABLE OF CONTENT

Declaration	ii
Statement of contributions to joint publications	iii
Acknowledgements	viii
Abstract	xii
List of Figures	xiv
List of Publications	xvi
List of Conference Abstracts	xviii
List of Abbreviations	xx
Chapter One	
Overview	1
1.1 Human Placenta and the Renin–Angiotensin System	2
1.1.1 The Decidua	8
1.1.2 The Placenta	11
1.2 The Impact of Fetal Sex on Pregnancy Outcomes	15
1.3 The Renin–Angiotensin System	16
1.3.1 (Pro)renin Receptor	19
1.3.2 Promyelocytic Leukaemia Zinc Finger (PLZF) Protein	22
1.3.3 Ang 1–7 Mas Receptor	22
1.4 Regulation of the Renin–Angiotensin System	24
1.4.1 cAMP	25
1.4.2 Progesterone, Estradiol and hCG on the Renin–Angiotensin System	25
1.4.3 5–aza–2'–deoxycytidine (AZA)	26
1.5 Study overview	26

CHAPTER TWO

Regulation of the Renin–Angiotensin System (RAS) in BeWo and HTR– 8/SVneo trophoblast cell lines	30
2.1 Abstract	31
2.2 Introduction	32
2.3 Materials and Methods	34
2.4 Results	36
2.5 Discussion	45

CHAPTER THREE

The effects of cyclic AMP, sex steroids and global hypomethylation on the expression of genes controlling the activity of the Renin–	40
Angiotensin System in placental cell lines	49
2.1 Abstract	50
2.2 Introduction	51
2.3 Materials and Methods	53
2.4 Results	56
2.5 Discussion	65

CHAPTER FOUR

Fetal sex affects expression of Renin–Angiotensin system components in term human decidua70	
2.1 Abstract71	
2.2 Introduction72	
2.3 Materials and Methods74	
2.4 Results79	
2.5 Discussion85	

CHAPTER FIVE

The regulation of the Renin–Angiotensin System (RAS) pathways in the human decidua	90
2.1 Abstract	
2.2 Introduction	92

2.3 Materials and Methods	94
2.4 Results	99
2.5 Discussion	

CHAPTER SIX

Conclusion	111
6.1 Placental RAS	113
6.2 Decidual RAS	115
6.3 Conclusion	117
References	118
Appendices	
A) Description of the Denia Anniatonain O	(DAO) in $DaV(a)$ and

HTR-8/SVneo trophoblast cell lines	
B) The effects of cyclic AMP, sex steroids and global hypome on the expression of genes controlling the activity of the Re Angiotensin System in placental cell lines	enin–
C) Fetal sex affects expression of Renin–Angiotensin System components in term human decidua	
D) Copyright licences	XXIII

ABSTRACT

A renin–angiotensin system (RAS) exists within the decidua and the placenta and has been shown to play a significant role in the regulation of trophoblast proliferation, invasion and migration, angiogenesis and the modulation of blood flow.

As the RAS is crucial for the normal progression of pregnancy, it naturally follows then; that disruptions to the uteroplacental RAS during pregnancy may contribute to pregnancy complications such as intrauterine growth restriction (IUGR) and preeclampsia. Although many studies have linked changes in the RAS to these pathologies, our understanding of how the RAS is involved in these physiological changes is lacking, as are adequate medical interventions. This thesis attempts to address how the RAS is regulated within the uteroplacental unit.

We explored the RAS in two trophoblast (*i.e.*, placental) cell lines, HTR– 8/SVneo and BeWo cells, to determine how they express the genes of the RAS and their proteins, in order to determine their value as models of the placental RAS. We found however, that HTR–8/SVneo cells expressed only the Angiotensin II (Ang II)/type 1 Ang II receptor (AT₁R) pathway, while the BeWo cells expressed only the Angiotensin 1–7 (Ang 1–7)/Mas receptor pathway. Therefore these cell lines are not good models for placental RAS, but they are useful for exploring the regulation of RAS pathways within the placenta. Our aim was then to determine if we could induce the RAS pathways not expressed, in those cell lines that lacked them.

We were also interested in the maternal decidua, as it is the main site of production of renin in the intrauterine tissues during human pregnancy and it plays a critical role in regulation of trophoblast invasion and placentation. We found that the expression of certain RAS genes within the decidua was sex specific. Decidua is a maternal tissue, yet the sex of the fetus determines the level of genes expression of the RAS pathway. This is extremely interesting since fetal sex is a major determinant of pregnancy outcome.

We then showed that the sex specific differences in (pro)renin gene expression (*REN*) was not due to maternal sex steroid exposure. In fact, *ex vivo*, prorenin protein, along with several other RAS genes were expressed in a sex specific manner. Based on these observations, we were interested in determining how the sex of the fetus could affect RAS gene expression of a maternal tissue. In addition, we wanted to show whether this sex difference could be attenuated with cAMP stimulation.

In conclusion, this thesis shows the RAS pathways within two trophoblast cell lines, establishes a decidual explant model that expresses the RAS and demonstrates that the decidual RAS is sexually dimorphic and finally discusses how these findings may contribute to our understanding of the role fetal sex plays in determining pregnancy outcome.

LIST OF FIGURES

Figure 1.1:	Cross-section of the pregnant uterus	3
Figure 1.2:	Trophoblast cell invasion and spiral artery remodelling in the first	
	trimester of pregnancy	6
Figure 1.3:	The 'classical' Renin–Angiotensin System pathways	13
Figure 1.4:	Immunohistochemical localisation of RAS proteins in the	
	uteroplacental unit	18
Figure 1.5:	Non-proteolytic and proteolytic activation of prorenin	20
Figure 1.6:	Ang 1–7 Mas receptor pathway of the RAS cascade	23
Figure 2.1:	mRNA abundance of RAS genes in HTR-8/SVneo cells	38
Figure 2.2:	mRNA abundance of RAS genes expressed in BeWo cells	39
Figure 2.3:	Prorenin protein in HTR-8/SVneo cells	41
Figure 2.4:	Net Ang II levels in HTR-8/SVneo and BeWo cells	43
Figure 2.5:	Net Ang 1–7 levels in HTR–8/SVneo and BeWo cells	44
Figure 3.1:	REN mRNA abundance in HTR-8/SVneo cells	58
Figure 3.2:	REN mRNA abundance in HTR-8/SVneo cells	60
Figure 3.3:	AGT mRNA abundance in HTR-8/SVneo cells	63
Figure 3.4:	AGT mRNA abundance in BeWo cells	64
Figure 4.1:	Sex differences in REN mRNA abundance in decidua	80
Figure 4.2:	Sex differences in REN mRNA abundance in decidua and prorenin	
	secretion in decidual explants	82
Figure 4.3:	Effects of fetal sex on mRNA levels for other genes of the RAS in	
	decidual explants	84

Figure 5.1:	Fetal sex differences in decidual <i>REN</i> mRNA abundance, prorenin	
	level and renin activity	.101
Figure 5.2:	Sex differences in RAS expression in decidual explants	.104
Figure 5.3:	Ang II peptide levels in decidual explants supernatant	.106

LIST OF PUBLICATIONS INCLUDED AS PART OF THIS THESIS

Wang Y, Pringle KG, Sykes SD, Marques FZ, Morris BJ, Zakar T, Lumbers ER, 2012

Fetal sex affects expression of Renin–Angiotensin System components in term human decidua. *Endocrinology* 153:462-468

Wang Y, Pringle KG, Chen YX, Zakar T, Lumbers ER, 2012

Regulation of the Renin–Angiotensin System (RAS) in BeWo and HTR–8/SVneo trophoblast cell lines. *Placenta* 33:634-639

Wang Y, Pringle KG, Lumbers ER, 2013

The effects of cyclic AMP, sex steroids and global hypomethylation on the expression of genes controlling the activity of the Renin–Angiotensin System in placental cell lines. *Placenta* 34:275-280

Wang Y, Pringle KG, Sykes SD, Lumbers ER

Regulation of Renin–Angiotensin System (RAS) pathways in the Human Decidua (Submitted to *Endocrinology*)

LIST OF PUBLICATIONS INCLUDED AS PART OF THIS THESIS

Sykes SD, Mitchell C, Pringle KG, Wang Y, Zakar T, Lumbers ER

Transgestational DNA methylation in the regulation of the human intrauterine Renin– Angiotensin System and prorenin processing enzymes (Submitted to *Human Reproduction*)

Lumbers ER, Pringle KG, Wang Y, Gibson KJ

The Renin–Angiotensin System from conception to old age: the good, the bad and the ugly. (Submitted to *Clinical and Experimental Pharmacology and Physiology*)

LIST OF CONFERENCE ABSTRACTS

Wang Y, Pringle KG, Sykes SD, Zakar T, Lumbers ER, 2012

Renin regulation in the BeWo and HTR–8/SVneo Trophoblast cell lines. *Fetal and Neonatal Physiology Workshop, Sydney, Australia.*

Wang Y, Pringle KG, Lumbers ER, 2012

Effects of cAMP on sexually determined renin expression and secretion by human decidual explants16th Annual conference of the Perinatal Society of Australia and New Zealand (PSANZ), Sydney, Australia.

Pringle KG, Sykes SD, Wang Y, Dekker G, Roberts CT, Lumbers ER, 2012

Fetal sex alters the expression of the uteroplacental and maternal circulating Renin– Angiotensin System; implications for maternal cardiovascular function and fetal outcome. *Gordon Research Conference on Angiotensins, Ventura, CA, USA.*

Wang Y, Pringle KG, Sykes SD, Zakar T, Lumbers ER, 2012

Regulation of Renin–Angiotensin System (RAS) pathways in BeWo and HTR–8/SVneo Trophoblast cell lines and the Human Decidua. *Gordon Research Conference on Angiotensins, Ventura CA, USA.*

Wang Y, Pringle KG, Lumbers ER, Scott RS, 2011

Interactions between Renin–Angiotensin System components in an endometrial cancer cell line; evidence for positive feedback in a tissue renin angiotensin system? *Gordon Research Symposium on Angiotensins. Ventura CA, USA.*

Wang Y, Pringle KG, Zakar T, Lumbers ER, 2011

Regulation of the Renin–Angiotensin System (RAS) pathway by cAMP in BeWo and HTR– 8/SVneo trophoblast cells. *Renin-angiotensin system club, Melbourne, Australia.*

Wang Y, Pringle KG, Zakar T, Lumbers ER, 2011

Identification of Renin–Angiotensin System (RAS) pathways in BeWo and HTR–8/SVneo cells. *Society for Reproductive Biology (SRB), Cairns, Australia.*

Wang Y, Pringle KG, Sykes SD, Zakar T, Lumbers ER, 2011

Effects of fetal sex on prorenin production by the decidua. *Fetal and Neonatal Physiological Society (FNPS), Cairns, Australia.*

Wang Y, Pringle KG, Chen YX, Zakar T, Lumbers ER, 2010

Regulation of the renin angiotensin system (RAS) in a trophoblast cell line by cyclic adenosine monophosphate (cAMP) and 5'-aza-2'-deoxycytidine (AZA). Society for Reproductive Biology (SRB), Sydney, Australia.

LIST OF ABBREVIATIONS

μL	Microlitre
hð	Microgram
P9 (P)RR	(pro)renin receptor
ACE	Angiotensin converting enzyme
ACE1	Angiotensin converting enzyme gene
ACE2	Angiotensin converting enzyme 2
ACE2	Angiotensin converting enzyme 2 gene
AGT	Angiotensinogen
AGT	Angiotensinogen gene
AGTR1	Angiotensin II type 1 receptor gene
AGTR2	Angiotensin II type 2 receptor gene
Ang 1–7	Angiotensin 1–7
Ang 1–9	Angiotensin 1–9
Ang I	Angiotensin I
Ang II	Angiotensin II
Ang III	Angiotensin III
Ang IV	Angiotensin IV
ANOVA	Analysis of variance
APA	Aminopeptidase A
ARBs	Angiotensin receptor blockers
AT₁R	Angiotensin II type 1 receptor
AT ₂ R	Angiotensin II type 2 receptor
ATP6AP2	(Pro)renin receptor gene
AZA	5 ⁻ aza-2 ² -deoxycytidine
BeWo	Choriocarcinoma derived cell line
c.p.m	Counts per minute
cAMP	Cyclic adenosine monophosphate
CRE	cAMP response element
CREB	cAMP response element-binding protein
CRH	Corticotropin releasing hormone
DNA	Deoxyribonucleic acid
DNMT	DNA methyltransferase
E ₂	Estradiol–17β
ECM	Extracellular matrix
EDTA	Ethylenediaminetetraacetic acid
ELISA	Enzyme linked immunosorbent assay
eNOS	Endothelial nitric oxide synthase
ERK1	Extracellular signal-related protein kinase 1
ERK2	Extracellular signal–related protein kinase 2
	Ç I T

EVT	Extravillous trophoblast cell
h	Hour
hCG	Human chorionic gonadotropin
HEPES	4– (2–hydroxyethyl) –1–piperazineethanesulfonic acid
HESCs	Human endometrial stromal cells
HSP	Heat shock protein
HTR-8/SVneo	Transformed first trimester extravillous trophoblast cell line
IGFBP–1	Insulin-like growth factor binding protein-1 gene
IGFBP–1	Insulin-like growth factor binding protein–1
JG	Juxtaglomerular
JNK	c–jun N terminal kinase
KAI1	Gene for the transmembrane glycoprotein of the tetraspanin
	family
LDH	Lactate dehydrogenase
LH	Luteinizing hormone
MAPK	Mitogen-activated protein kinase
MAS1	Protooncogene receptor gene
MMP	Metalloproteinase
MPA	Medroxyprogesterone acetate
Mas	Protooncogene receptor
mL	Millilitre
mRNA	Messenger RNA
mg	Milligram
miRNA	Micro RNA
NaHCO ₃	Sodium bicarbonate
NEP	Neutral endopeptidase
ng	Nanogram
nm	Nanometre
NSP	Nephrectomised sheep plasma
OD	Optical density
PAI	Plasminogen activator inhibitor
PEP	Prolylendopeptidase
pg	Picogram
PGHS–2	Prostaglandin H synthase–2
PI3K	Phosphatidylinositol-3 kinase
Pit–1	Positive transcription factor 1
PLZF	Promyelocytic Leukaemia zinc finger protein
PMSF	Phenylmethylsulfonyl fluoride
PRL	Prolactin
qRT PCR	Real-time quantitative reverse transcription polymerase
	chain reaction

RAS	Renin-Angiotensin System
REN	Renin gene
RIA	Radioimmunoassay
RNA	Ribonucleic Acid
SPSS	Software package for statistical analysis
SRY	Sex determining region Y gene
TGF–β₁	Transforming growth factor beta 1
TIMP	Tissue inhibitors of metalloproteinase
ТМВ	3,3,5,5–tetramethylbenzidine
V–ATPase	Vacuolar H ⁺ –adenosine triphosphatase
VEGF	Vascular endothelial growth factor
VSMC	Vascular smooth muscle cells

RIGHTS AND PERMISSIONS

I warrant that I have obtained, where necessary, permission from the copyright owners to use any third party copyright material reproduced in the thesis (*e.g.*, questionnaires, artwork, unpublished letters), or to use any of my own published work (*e.g.*, journal articles) in which the copyright is held by another party (*e.g.*, publisher, co-author). (Please refer to appendix D)