Applied Informatics
Research Group

http://silverbullet.newcastle.edu.au/air/

A PRACTICAL TASK-BASED APPROACH TO ACCESS CONTROL
CONFIGURATIONS

Rukshan I. Athauda and Euijoon Ahn

Working Paper Series, Number 4, November 2013 ~ THE UNweRsiTY OF i alr ;

AAAAAAAAA

AIR WORKING PAPER SERIES NUMBER 4 | 2013

ABOUT THIS SERIES

The Applied Informatics Research (AIR) Group is a cross-disciplinary, multi-institutional collaboration
based in the School of Design, Communication & Information Technology at the University of
Newcastle, Australia. The principal aim of the AIR Group’s Working Paper Series is to disseminate the
research and/or technical output of the group in an easily accessible format. The content of Working
Papers generally falls into one of the following categories:

* Preliminary findings or results, the release of which is intended to stimulate debate and/or
discussion to assist in the further development of the research

* Technical reports associated with applied research that may be written in a less academic
style than usually published in academic journals

* Extended versions of published works, often containing additional implementation/
application detail, figures and tables.

The opinions or conclusions expressed in the Working Paper Series are those of the authors and do
not necessarily reflect the views of the AIR Group as a whole.

AIR WORKING PAPER SERIES NUMBER 4 | 2013

A PRACTICAL TASK-BASED APPROACH TO ACCESS CONTROL CONFIGURATIONS

Rukshan I. Athauda

School of Design, Communication, and Information Technology
The University of Newcastle
Callaghan 2308, NSW, Australia

Rukshan.Athauda@newcastle.edu.au

Euijoon Ahn
ECNESOFT PTY LTD

Unit 14, 20-30 Stubbs St,
Silverwater, NSW 2128

Osmond.ahn@ecnesoft.com.au

ABSTRACT

Configuring optimal access control is a difficult task in today’s complex IT environments. Too
restrictive access control leads to frustration by users, while excessive privileges leads to
vulnerabilities. Unfortunately, the problem of verifying safety — i.e. no rights can be leaked to an
unauthorised principal - for an arbitrary configuration of a general access model is shown to be
undecidable. In this paper, a practical methodology and framework is proposed to elicit access
control rights stealthily while users perform tasks in a test environment that mimic a real-production
environment. To illustrate the feasibility of the framework, a prototype is implemented and
presented.

1 Introduction

A typical enterprise today contains a multitude of heterogeneous IT systems that span across
different networks. The complexity of IT infrastructure makes configuring and maintaining such
systems increasingly challenging. This is especially true in terms of security configurations that need
to be tuned to optimize protection and to block prospective attacks, while also balancing security,
flexibility, and performance. This is “extremely burdensome” not only for regular users but also for
experienced administrators, who have to be “very lucky” to get things working right all the time [8].

A key task for IT administrators in configuring IT systems is providing access to resources required by
various users and groups (i.e. access control configurations). With a variety of systems, different user
groups and access rights configurations, this task is neither trivial nor straight-forward.
Misconfigurations with too excessive or too restrictive access control configurations are common. A
direct consequence of excessive access control configurations is access to unauthorised resources.
Unauthorised access to information and theft of proprietary information amounts to the largest
dollar amount of losses by type [3].

What is an optimal access control configuration? An optimal access control configuration should
allow access to only the required resources for authorised users. That is, in optimal access control
configurations, (1.) access is not too restrictive that it disallows access to required resources for
authorised users and (2.) it is not too excessive that it allows access to unauthorised resources.

Overly restrictive access control configurations result in usability issues. They are often disruptive,
time-consuming to resolve and frustrate users and result in additional workload to IT administrators
[4]. On the other hand, excessively permissive configurations results in vulnerabilities. A prominent
example of excessive permissive configuration is the “Memogate” scandal, where staffers from one
political party on the US Senate Judiciary Committee stole the opposing party’s confidential memos
from a file server that the two parties shared. This was possible in part due to an inexperienced
system administrator’s error in setting file permissions that provided access to unauthorised files
[15].

Typically, too restrictive access control configurations are discovered by users when performing tasks
and are fixed during system use. In contrast, excessive access-control configurations result in
vulnerabilities that may never be detected. Additionally, what is detected could be a small
percentage of the actual exploited vulnerabilities! As in the case of “Memogate”, the vulnerability
was exploited for over 18 months until detected after the excerpts of the stolen memos began
appearing in the press and were investigated [15]. It is possible in other cases that such exploited
vulnerabilities are never detected. Thus excessively permissive access control systems create
vulnerable systems that may be exploited and never detected!

Why is optimal access control configuration not achieved in practice? To answer this we consider
how access control rights are configured in practice.

In a typical organisation, there are three main actors that play a role in access control configuration:
(1.) the administrator (trusted principal) who configures access control rights; (2.) the employee

==

AIR WORKING PAPER SERIES ~ NUMBER 4 | 2013

(principal) who performs authorised tasks; and (3.) typically a manager of the employee who

authorises tasks (task authoriser) - see Figure 1.

5

Manager
(Task Authoriser)

SN

oy

Administrator
(Trusted Principal)

Employee
(Principal)

Figure 1. Actors in typical access control

configuration environment

Information about authorised tasks that need to
be performed by employees (principal) is sent to
(trusted by the
respective managers (task authoriser) of the

administrators principal)
employees. The administrator configures relevant
access rights in the different IT systems enabling
the user to perform authorised tasks.

The manager (task authoriser) informs the
administrator of the authorised tasks needed by
the employees/users (e.g. generate a cash flow
report). The administrator is left with the non-

trivial role of translating the high-level authorised

tasks to low-level access control configurations in the complex mix of various IT systems and

networks.

A simplified scenario is presented in Box 1 to illustrate issues pertaining to eliciting access control

configuration requirements.

University Scenario:

This scenario discusses how privileges are granted to students by IT administrators in the Department of
IT. The academic staff members from the Department of IT submit requirements to the IT support staff at
the beginning of every semester so that the computer laboratories are configured to provide access to IT
resources for students. The requirements include installation and configuration of wide ranging software
on different OS platforms. These requirements are typically sent via email/web-based form to the IT
support staff. Before the images for the lab machines are deployed, the parent imaged machine is
available for IT academics for testing purposes.

Typically, the requirements pertaining to the specific software packages are tested and verified for
smooth functioning of lab work. However, security and access control requirements are rarely scrutinized.
There is a possibility for excessive permissive access configurations to exist undetected.

Consider the following instance where SQL Server (i.e. a database server), is installed on a Windows
Operating System in each lab machine. The laboratory requirements may require students to create
databases, users, logins for SQL databases and include backing up/restoring databases. These
specifications require students to have relevant privileges on SQL Server. There are a number of possible
ways to grant these privileges:

i. Option 1: Granting relevant privileges at SQL Server level to student logins/role.

ii. Option 2: Providing database administrator privileges to student logins/role which provides
unrestricted access to the SQL Server database server installed locally.

iii. Option 3: Providing Windows administrator privileges on the local machine. This automatically maps as
an administrator to the locally installed SQL Server in earlier versions of SQL Server.

It is clear that following option 2 (database administrator) and option 3 (Windows administrator)

approaches provide excessive access control than required to perform tasks in the laboratory resulting in

security vulnerabilities. Administrators however may choose option 2 or option 3 and option 3 pré dly
for a number of reasons.

3 AIR WORKING PAPER SERIES ~ NUMBER 4 | 2013

There are a number of reasons for non-optimal access control configurations by administrators.

* Inherent difficulty in specifying access control requirements: Optimal access control specification
requires an understanding of nature of the task, the application systems that these tasks might
affect, and the different access right configurations required to perform these tasks in the different
configurable systems. It is impractical to expect an administrator to be aware and consider all of
these aspects in configuring access rights. Even for a skilled administrator, the possibility for human
error is high in such complexity. To exacerbate, often information on tasks may be incomplete and
inconsistent.

For example, in the University scenario, the academic staff members are typically logged on with
administrator privileges on their office machines where they will be developing lab work, unaware of
the permissions needed in completing the exercises or an idea of the privilege requirements for such
work in a laboratory environment. Therefore, access requirements are not clearly specified to the IT
administrators. The administrator’s dilemma is then that too restrictive permissions will disrupt the
lab work and generate student and staff complaints, whereas excessively permissive configurations
will result in vulnerabilities.

A number of other reasons contribute to the difficulty in specifying optimal access control
configurations [9]:

* Complexity of today’s systems: With a multitude of configurable systems, hundreds of users/roles
and a large set of possible permutations, it can be overwhelming for IT administrators to keep track
of the different and changing access privilege configurations.

For instance, access control rights may need to be granted at various system-levels (e.g. OS level,
database-level, application packages, etc.) and it is unrealistic to expect system administrators to be
proficient in all these levels and systems.

* Works fine: Unlike other types of configurations, an excessively configured access control system
may be undetected both by users and administrators, as everything seems to work fine. This makes
such non-optimal access configurations harder to detect.

* Unrewarding: Determining optimal access control configurations requires both time and effort,
but it is not demonstrable in functionality or tangible security improvements to management,
especially as there are no practical means for verification.

* Unaware of risks of excessively permissive systems: Typically, it is internal users with malicious
intent that tend to take advantage of poorly configured, excessively permissive access control
configurations. The management of such incidents internally has reduced awareness of this as a risk.

* Lack of time and effort for access control configurations: The wide range of system support tasks
required of IT administrators means that optimal access control configuration has less focus, lower
priority and therefore lacks investment of their time and effort.

Today’s access control configuration is, for the most part, a manual process that lacks methods and
tools to conveniently and flexibly identify and configure optimal access rights in IT environments.
Although default settings and configuration wizards with GUIs aim to assist in specific systems’
installation and configurations, the authors are unaware of any methodology or tool that aims to
provide optimal access control configurations. This paper proposes a methodology and a high-level
architecture for a system to elicit and configure access control configurations. A prototype
implementation of the proposed system is presented for a database server environment. The basic
idea for the methodology and system was initially presented in [9].

2 Verifying Safety

Previous work on the “safety” of configurations defines a configuration as “safe” when no rights can
be leaked to an unauthorised principal [7]. Unfortunately, the problem of verifying safety for an
arbitrary configuration of a general access model was shown to be undecidable [7]. To overcome this
problem, two approaches have been adopted: (1.) Restricting the access control model such that
safety can be proven in general for that model (e.g. [1]); and (2.) Augmenting the access control
models with expressions (i.e. constraints) that specify the safety requirements of any configuration
(e.g. [12-13]). In the first approach, restricted models are used which are typically static and
inflexible. In general, the access control policies are expressed only once by a trusted principal and
fixed for the life of the system (i.e. access control policies are safe by definition). Any flexibility that
may be added to these models introduces the possibility of safety problems [14]. For the second
approach, a number of issues exist, including the difficulty and complexity of specifying constraint
languages/models thus resulting in these constraint languages to be rarely used in practice by
administrators. Also, constraints are not fail-safe, as it is possible for a missing constraint to allow
unsafe configurations and possibility to add conflicts with security policies [13].

The approach presented in this paper is similar to the second approach in that no restrictions are
placed on the model. Instead of constraints to verify safety, the proposed approach aims to elicit all
access control rights required by users to perform authorised tasks. The proposed methodology
elicits access control rights in an automated manner while users still perform tasks in a test
environment, thus avoiding the need for administrators to manually determine access control rights.
The configured system aims to approximate optimal access control configurations (a best-fit model).

In the proposed approach, low-level access rights are based on high-level user “tasks”. Tasks are
abstracted and consequently easier to specify and verify for authorisation when compared to low-
level access rights. For example, a manager is able to verify that a particular financial report is
allowed to be generated by a particular employee or role, rather than verifying the access rights
needed for specific tables in a database or permissions to individual files and directories to perform
the task. The merits in using “tasks” as a paradigm for access control and authorisation is discussed
in [2,10-11]. The proposed approach is complementary, utilising tasks aimed at eliciting best-fit
access control rights.

Related work on detecting and resolving too restrictive access control rights exist. Bauer et. Al [4]
applied data mining to historical access control logs to identify possible missing access rights in order
to eliminate misconfigurations. Although present work focuses on missing low-level access rights,

==

5 AIR WORKING PAPER SERIES ~ NUMBER 4 | 2013

the authors see future work based on detecting and verifying missing authorised high-level “tasks” as
more relevant and complementary to the proposed approach.

3 Methodology

The fundamental idea underlying the proposed methodology is to elicit optimal access control
configurations while users perform authorised tasks in a test environment. The test environment
parallels the actual environment in that it is configured with all necessary software systems
(including all access control configurable systems — which we refer to as Monitored Systems - MSs).
With virtualization technologies, building such virtual test environments is more feasible than in the
past. Examples of MSs include Operating Systems, Database Servers (DBMS) and application systems.
In addition, Privilege Monitors (PMs) are configured for each Monitored System. PMs are programs
which observe actions of each monitored system (MS) and record access control rights needed to
perform these actions.

Test Environment

T TTTTTTTTmmm e e H
1 1
' Privilege | Monitored !
' Monitor; System, H
)
i
1 1
' Privilege | Monitored !
! Monitor, Systema !
Privilege / >
<+—>» Manager : :
Console ! 1 Test
1 H 1
1 : | User
Administrator \ Privilege | Monitored i
(Trusted Principal) ' Monitor, System, '
1
1
1
1
1
1

Figure 2. High-level architecture of system

The “test” user/employee performs authorised tasks. The test user is provided with unrestricted
access in the test environment. The PMs observe and record all access control rights needed by MSs
to complete the authorised tasks. These access rights are transmitted to the Privilege Monitor
Console (PMC), which is the interface used by the administrator for evaluation of generated access
control configurations, and approves them for deployment. Figure 2 illustrates the high-level
architecture of the proposed system.

The steps in the process are discussed in detail below:

e Step 1: Initially, the test environment is configured with Monitored Systems (MSs) and
Privilege Monitors (PMs).

* Step 2: Next, a test user (who is the task authoriser or a delegated user) from each user
group/role performs authorised tasks in the test environment. The test user is provided with
unrestricted access to the test environment. Providing unrestricted access in the test
environment for the process of eliciting access rights does not pose a risk to the real

environment. This step is repeated for all authorised tasks of the user to generate a complete list
of access control rights for the user group. PMs observe the actions for the user tasks and
records the access rights needed in MSs to perform such actions.

* Step 3: Privilege Monitor Console (PMC) interacts with the PMs to obtain the access control
rights and display them to the IT Administrator in a user-friendly, flexible manner to be reviewed
and approved. As discussed later the verification process may be partially automated with
constraints. At this stage, the IT administrator may add or remove additional privileges and even
seek clarifications from the test user. Finally, the IT administrator approves the access control
configurations for deployment in the real environment.

Note that the steps 2-3 may be repeated for different user groups/roles as needed.

The methodology elicits best-fit optimal access control configuration requirements in a flexible and
convenient manner. In this approach, the manual translation of high-level tasks to low-level access
control configurations is avoided! The PMs map the high-level tasks to low-level access control rights
needed to perform the authorised user tasks in the different configurable IT systems.

We revisit the conditions for optimal access control configurations in order to discuss how the
proposed methodology aims to satisfy them:

* Condition 1: “Not too restrictive” — ensure that all access rights to perform authorised tasks
are granted.
In this approach, if all authorised tasks needed by users (or roles) in the real-environment have been

performed in the test environment, then this process generates a complete list of access control
rights satisfying condition 1.

* Condition 2: “Not too unrestrictive” — ensure that access rights for unauthorised resources
are not granted.

In this approach, PMs observe actions on the configurable systems for the tasks performed in the
test environment and generate access control rights to perform such actions. Therefore, access
control rights for any other actions are not generated, thus aiming to be minimal. If only authorised
tasks are performed in the test environment, we can safely assume that the access control rights to
be restricted to perform only authorised tasks. In practice, methods to verify whether high-level
tasks performed in the test environment are authorised or not is still needed. Typically, a trusted
user such as the task authoriser, or a delegate of the task authoriser, may perform tasks in practice.

The notion of “access control spaces” is introduced in [14]. An access control space is the set of all
possible permission assignments of a subject (or role). The three main subspaces include: (1) the
permissible subspace — those assignments known to be allowed; (2) the prohibited subspace — those
assignments known to be prohibited; and (3) the unknown subspace — those assignments which are
neither permitted nor prohibited. The proposed approach aims to generate all permissible access
rights for a user/role by performing all authorised tasks in the test environment. At the end of this
process, a complete set of access control rights required by the user/role is generated. Thus, all
access rights that are not generated through this process belong to the prohibited subspace (i.e.
unauthorised tasks). The unknown subspace is eliminated. In future, if another task is deemed as
authorised for the user/role, then a similar process (i.e. task-based approach in a test environment)

==

7 AIR WORKING PAPER SERIES NUMBER 4 | 2013
can be used to determine access control rights required to perform such tasks and the access control
rights added to the permissible subspace.

As illustrated below in the context of the University scenario, the overhead of a test environment
may not necessarily be burdensome.

Applying methodology in the University Scenario:

In the University scenario, the lecturer installs and configures PMs in their office machines (i.e. test
environment). This achieves step 1 of methodology. The lecturers enable the PMs to monitor the pre-
configured systems during creation of labs materials on their office machines. Since the academic staff have
administrator privileges on their own machines, this provides unlimited access in their test environment.
The PMs identify and records all access control rights needed for completion of tasks (tutorials or lab
exercises) in the monitored systems (step 2). Finally, when the academic staff emails/submit the software
configurations for lab setup of their courses for the oncoming semester, they also attach the different PMs’
output files, which consists of access control rights required by students to complete the labs using the
different configured systems. The administrator is able to review the PMs’ output files using the PMC,
determine the access control rights needed by students in completing the labs for the semester, and also
deploy them to the computer image (step 3).

The methodology can be adopted in a real-environment with minimal impact on existing processes.
The academic staff need not specify access control requirements, rather PMs extract this information
based on the tasks performed during the development of lab exercises. The IT administrators are able to

determine optimal access control configurations to different systems required by different student groups

(for courses) with minimal effort.

4 Prototype Implementation

This section discusses a prototype implementation of a Privilege Manager Console (PMC) and a
Privilege Manager for SQL Server (PM for SQL

SQL statement i
Ej e UH%\ Server). SQL Server [5], as a commercial

User Database = Management System (DBMS)

Client

SQL Server ; tools installable on Windows platforms, allows access

1—F

Privilege Monitor

control rights to be configured to both database
objects and actions performed on the database.

A number of reasons led to the use of SQL

forSQt Server Server as a Monitored System in the
SQL profle Trace development of the PM including (i.) familiarity
Applicati Permission Grant/Deny with the product; (||) use of SQL Server for
ZStiZKZ BACKUP DATABASE j database courses in the university courses the
SQL Server | CREATE LOGIN v

Privileges displayed to IT Administrator via a UthO rs are fa m | I |a r W|th, th us prOVid | ng an
Privilege Manager Console

environment to empirically verify in a real-

environment; (iii.) SQL language provides well-
Figure 3. High-level flow diagram of PM for (iii) SQ guage p

defined language constructs for specifyin
SQL Server guag P ying

access control rights using the GRANT, REVOKE
and DENY statements, thus simplifying the implementation of the PM for SQL Server and (iv.)

8 AIR WORKING PAPER SERIES ~ NUMBER 4 | 2013

availability of tools such SQL Profiler [6], which enable the convenient capture of actions performed
on SQL Server.

The prototype implementation of PM for SQL Server was developed as a separate module without
the need to modify SQL Server database engine or its implementation. SQL Server is a client-server
database server where all user actions are transmitted as Transact-SQL (T-SQL), a dialect of SQL,
statements from clients to the database server. The implementation uses SQL Server Profiler [6], a
tool provided with SQL Server, which can be configured to monitor T-SQL commands passed to the
server. The Privilege Monitor for SQL Server is able to decipher the trace files generated by SQL
Server Profiler and determine the required privileges for user actions. Figure 3 depicts a high-level
flow diagram of our implementation.

PM for SQL Server reads an XML Trace file from SQL Profiler. Next, it parses T-SQL text and generates
GRANT statements specifying the required access control right to perform such actions as T-SQL
statements. The output of the PM for SQL Server is sent as an XML file to the PMC. The PMC then
displays the access control configuration for SQL Server as a script and as a grid. Sample interfaces of
the PMC are shown in Figure 4.

</Event> P =
</TracedEvents> ENIEETES —
</ProfilerU1> File View
</Header>

<Events>
- <Event id="65534" name="Trace Start'> CREATE ROLE StudentRole g Save Scrint

<Column id="14" name="StartTime" >2008-12-30T16:39:31.1+09:00</Column> 90 e
</Event> ‘j;("""‘”’ TR Grigview
- <Event id="12" name="SQL:BatchCompleted"> AT CRATE TAETO Sl =
<Column id="1" name="TextData">use tempdb</Column> -
<Column id="11" name="LoginName">0Osmond-PC\Osmond </Column> GRANT SELECT ON customer TO StudentRole|
<Column id="12" name="SPID">53</Column>

%

GRANT INSERT ON person TO StudentRole
me="SQL:BatchCompleted">

name=TextData">create table person (id int, age float) </Column> =
* name="LoginName">0Osmond-PC\Osmond</Column>

" name="SPID'>53 </ Column> ; AT LEATE) O peraon 10 Sfentinle

g
GRANT DELETE ON person TO StudentRole

</Event>
- <Event id="12" name="SQL:BatchCompleted">
<Column id="1" name="TextData" >select * from customer; </Column>
<Column * name="LoginName' >0smond-PC\Osmond</Column>

" name="SPID">53 </Column>

" name="SQL:BatchCompleted">
name="TextData">insert into person values (1, 34) </Column>

* name="LoginName">0smond-PC\Osmond </Column>
<Column id="12" name="SPID">53 </Column>
</Event>
- <Event id:

me="SQL:BatchCompleted">

e:”TexlIl)alaBd?Iete 'I'OT per\son where id ‘= 1</Column> (b)
(a.) i

. . | Grant/Deny Permission Object Subject | scriptview
Figure 4. (a.) XML file generated by SQL | /&y qerre: -

1 GRANT INSERT person StudentRole

GRANT DELETE StudentRols

Profiler; (b.) Access control rights specified as YT e A

; (b.

T-SQL script; and (c.) Access control rights
displayed in a grid view

(c.)

Future research is intended for the development of PMs for other configurable systems (e.g. OS).

5 Discussion

A major implication of this approach is the use of tasks as a means for configuring access control
rights in systems. The authors believe that, with research, development and acceptance of task-

alr

9 AIR WORKING PAPER SERIES ~ NUMBER 4 | 2013

based modelling for access control configuration, manual low-level access configuration control can
be minimised or even made obsolete in future. PMs and similar programs will decide access control
rights based on tasks, thus eliminating the need to manually tinker with low-level access control
rights.

Although the proposed approach aims to elicit optimal access control configurations, it is important
to note that practically implementing PMs to generate optimal access control rights may not be
straight-forward, or even possible (i.e. verifying safety in an arbitrary configuration is
undecidable[7]). A simple example is used to illustrate this fact.

Example: Consider the following scenario where a manger is allowed to approve travel expenses for
employees but not his/her own travel expenses. Assume that the travel expenses are maintained in
the database table TravelExpenses, where an attribute approverld specifies the person who approves
travel expenses and submitterld specifies the person submitting the travel expense claim. The
relational schema of the table is shown below:

TravelExpense(submitterld, dateSubmitted, description, amount, dateApproved, approverld)

PMs may observe the task of approving a travel expense, which is an update operation on
TravelExpense table, and may generate the access control right for the manager's tasks, which is an
UPDATE operation, as follows:

GRANT UPDATE(approverld, dateApproved)
ON TravelExpense
TO ManagerRole

Note that the above statement provides access control rights for the manager to update the
approverld and dateApproved columns in the TravelExpense table. However, it does not provide any
means for disallowing approving his/her own expenses (i.e. it provides excessive access control
rights). It is unreasonable to expect PMs to determine such business rules by observing user tasks in
the test environment. Such business rules need to be specified as constraints in the database or
application. This fact also brings out an important point: that is, the proposed methodology provides
a practical approach to eliciting access control configuration requirements, but does not replace the
need for constraints. While aiming to elicit “best-fit” optimal access control requirements, the
proposed approach does not guarantee optimal access control configurations.

Another area where constraints are required is in the delegation of tasks to principals. It is possible
that, in certain situations, access rights of tasks may be delegated to principals. Then it is important
to have means to enforce “task safety”; that is, tasks are not delegated to unauthorised principals.
Similar to constraints in [12], where safety of configurations are verified by constraint expression,
the authors perceive a need for constraint verification for task safety. Future work on task safety and
constraint languages is needed.

10 AIR WORKING PAPER SERIES ~ NUMBER 4 | 2013

The applicability of the proposed technique is not limited to access control configurations in a stand-
alone environment but in many other areas (e.g. collaborative environment [9]). Such work is left for
future investigation.

6 Conclusion

In this paper, the severity of access control configurations was discussed. In practice, access control
configurations are rarely configured optimally, resulting in either excessively permissive systems or
fewer access rights configured than required. The latter reason causes usability issues while the
former cause vulnerabilities.

Although optimal access control configuration is elusive (i.e. verifying “safety” for an arbitrary
configuration which was proven to be undecidable [7]), there aren’t any “practical” means (i.e.
methods and tools) for approximating optimal access control configurations. Thus, access control
configuration remains to be a manual task performed by IT administrators. This paper presented a
practical methodology and architecture for a system that aims to elicit access control configurations
automatically based on tasks performed by users in a test environment. A high-level architecture and
prototype implementation of the proposed system for a database environment was presented. A
university scenario was used to illustrate the applicability of the methodology.

A major implication of the proposed methodology is the use of tasks to determine access control
rights. The authors believe that further work in this area can lead to minimising or making obsolete
the manual low-level access control configurations currently performed by administrators.

Future research directions include development of PMs for complex configurable access control
systems (e.g. OSs) and developing easy to use environments for administrators to flexibly configure
and manage permissions across heterogeneous IT systems.

Acknowledgements

This research was partly funded under The University of Newcastle’s - Faculty of Science and
IT’s Undergraduate Summer Scholarship program 2008.

7 References

[1] D. Bell and L. L. Padula, "Secure computer systems: Mathematical Foundations," Vol. 1. Tech.
Rep. ESD-TR-73-278. Mitre Corporation, 1973.

[2] K. Irwin, T. Yu, and W. H. Winsborough, "Enforcing security properties in task-based systems," in
Proceedings of the 13th ACM Symposium on Access Control Models and Technologies. Estes Park,
CO, USA: ACM, 2008, pp. 41-50.

[3] L. A. Gordon, M. P. Loeb, W. Lucyshyn, and R. Richardson, "CSI/FBI Computer Crime and Security
Survey," Computer Security Institute 2005.

11 AIR WORKING PAPER SERIES ~ NUMBER 4 | 2013

[4] L. Bauer, S. Garriss, and M. K. Reiter, "Detecting and Resolving Policy Misconfigurations in
Access-Control Systems," in Proceedings of the ACM Symposium on Access Control Models and
Technologies. Estes Park, CO, USA: ACM, 2008, pp. 185-194

[5] Microsoft Corporation’s SQL Server, "SQL Server Home Page", Microsoft Corporation. [Online]
Available: http://www.microsoft.com/sqlserver.

[6] Microsoft Corporation’s SQL Server Profiler, "SQL Server Profiler", Microsoft Corporation.
[Online] Available: http://msdn.microsoft.com/en-us/library/ms173757.aspx

[7] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman, "Protection in operating systems," Communications
of the ACM, vol. 19, pp. 461-471, 1976.

[8] NSF Workshop on Assurable and Usable Security Configuration, Fairfax, Virginia, USA, Aug 11-12,
2008. Available: http://www.safeconfig.org/.

[9] R. Athauda, G. Skinner, and B. Regan, "A Methodology to Minimise Excessively Permissive
Security Configurations," in Proceedings of the 8th WSEAS International Conference on Applied
Computer Science (ACS'08). Venice, Italy: WSEAS Press, 2008, pp. 187-192.

[10]R. K. Thomas and R. S. Sandhu, "Towards a task-based paradigm for flexible and adaptable access
control in distributed applications," in Sixth National Computer Security Conference. Baltimore,
MD, USA: ACM, 1993, pp. 138-142.

[11]R. K. Thomas and R. S. Sandhu, "Task-based Authorization Controls (TBAC): A Family of Models
for Active and Enterprise-oriented Authorization Management," in Proceedings of the IFIP
WG11.3 Workshop on Database Security. Lake Tahoe: Chapman & Hall, 1997, pp. 166-181.

[12]R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, "Role-Based Access Control Models,"
IEEE Computer, vol. 29, pp. 38-47, 1996.

[13]T. Jaeger and J. E. Tidswell, "Practical safety in flexible access control models," ACM Transactions
on Information and System Security, vol. 4, pp. 158-190, 2001

[14]T. Jaeger, X. Zhang, and A. Edwards, "Policy management using access control spaces," ACM
Transactions on Information and System Security, vol. 6, pp. 327-364, 2003.

[15]U. S. Senate Sergeant at Arms, "Report on the investigation into improper access to the Senate
Judiciary Committee's Computer System," U.S. Senate March 4, 2004.

