
Some say that pure mathematicians in-
vented digital computers and then pro-
ceeded to ignore them for the better part
of half a century. In the past two decades,

this situation has changed with a vengeance.
Major symbolic mathematics and computer algebra

packages (see the sidebar), most notably Maple and
Mathematica, have reached a remarkable degree
of sophistication over the last 15 years. (We should
also allude to counterparts such as Axiom, Mac-
syma, Reduce, MuPad; Matlab; and other more
specialized packages such as GAP, Magma, or Cay-
ley [for group theoretic computation], Pari [for
number theory], KnotPlot [for knot theory], Snap-
Pea [for hyperbolic 3-manifolds], and SPlus [for
statistics].) This sophistication has relied on a con-
fluence of algorithmic breakthroughs, dramatically
increased processor power, almost limitless stor-
age capacity, and, most recently, network commu-
nication, excellent online databases, and Web-
distributed (often Java-based) computational tools.
Examples include the mathematics front end to the
Los Alamos Preprint ArXiv (http://front.math.
ucdavis.edu), mathematical reviews on the Web
(http://e-math.ams.org/mathscinet), Neil Sloane’s

encyclopedia of integer sequences (www.research.
att.com/personal/njas/sequences/eisonline.
html), our own inverse symbolic calculator
(www.cecm.sfu.ca/projects/ISC/ISCmain.html),
and integer relation finders (www.cecm.sfu.ca/ 
projects/IntegerRelations).

The relatively seamless integration of all these
components arguably represents the key challenge
for 21st-century computational mathematics. It’s
hard to think of mathematical problems where a
dramatic increase in computational speed and
scale would enable a presently intractable line of
research. It’s easy to give examples where it would
not—consider Clement W.H. Lam’s 1991 proof
(www.cecm.sfu.ca/organics/papers/lam/index.html)
of the nonexistence of a finite projective plane of
order 10 (a hunt for a configuration of n2 + n1 +1
points and lines). It involved thousands of hours
of computation. Lam’s estimate is that the next
case (n = 18) susceptible to his methods would take
millions of years on any conceivable architecture.
Although a certain class of mathematical enquiries
is susceptible to massively parallel Web-based
computation (for example, discovering Mersenne
primes of the form 2n – 1), these tend not to be
problems central to mathematics.

Computational excursions in
contemporary mathematics

Many researchers have made significant in-
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MATHEMATICAL COMPUTING

Almost all interesting mathematical algorithmic questions relate to NP-hard questions.
Such computation is prone to explode exponentially. The authors anticipate the greatest
benefit will come from mathematical platforms that allow for computer-assisted insight
generation, not from solutions of grand-challenge problems.
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roads into some rather difficult—previously
viewed as intractable—problems such as exact
integration of elementary functions. Some of the
most important mathematical algorithms of the
20th century include

• the fast Fourier transform, 
• lattice basis reduction methods and related

integer relation algorithms, 
• the Risch algorithm for indefinite integration, 
• the Gröbner basis computation for solving

algebraic equations, and 
• the Wilf/Zeilberger algorithms for hyper-

geometric summation and integration,
which rigorously prove very large classes of
identities. 

All these are—or soon will be—centrally incor-
porated into symbolic mathematics or computer
algebra packages. In fact, the first two were
counted among the 10 algorithms with “the
greatest influence on the development and prac-
tice of science and engineering in the 20th cen-
tury.”1 Of course, many of the others, such as the
sorting algorithms, are fundamental to the needs
of contemporary mathematics.

Such packages can now substantially deal with
large parts of the standard mathematics curricu-
lum—and can out-perform most of our under-
graduates to boot. They provide extraordinary
opportunities for research that most mathemati-
cians are only beginning to appreciate and di-
gest. They also provide access to sophisticated
mathematics to a very broad cross-section of sci-
entists and engineers.

The emergence of such packages—and their
integration into mathematical parole—repre-
sents the most significant part of a paradigm shift
in how mathematics is done. Certainly
these packages have already become a
central research tool in many subareas of
mathematics, both from an exploratory
and a formal point of view—it is accept-
able now to see a line in a proof that be-
gins “by a large calculation in Maple, we
see …” The first objective of symbolic al-
gebra packages was to do as much exact
mathematics as possible. A second, in-
creasingly important objective is to do it
very fast and to deal in an arbitrary-pre-
cision environment with the more stan-
dard algorithms of mathematical analy-
sis. Roughly, users would like to be able
to incorporate the usual methods of nu-
merical analysis into an exact environ-

ment or at least into an arbitrary-precision en-
vironment.

The problems are obvious and hard. For ex-
ample, how do we do arbitrary precision nu-
merical quadrature? When do we switch meth-
ods with precision required or with different
analytic properties of the integrand? How do we
deal with branch cuts of analytic functions? How
do we deal consistently with log? More ambi-
tiously, how do we do a similar analysis for dif-
ferential equations? Ultimately, can we certify
that a given numeric or symbolic computation
is indeed a proof or even just correct? The goal is
to marry the algorithms of analysis with sym-
bolic and exact computation and to do this with
as little loss of speed as possible. Sometimes this
means we must first go back and speed up the
core algebraic calculations. 

Within this context, a number of very inter-
esting problems concerning the visualization of
mathematics arise. How do we actually “see”
what we are doing? Some say that Cartesian
graphing was the most important invention of
the last millennium. Certainly it changed how
we think about mathematics—the subsequent
development of differential calculus rested on it.
More subtle and complicated graphics, like those
of fractals, enable a previously impossible kind
of exploration. There are many issues to work
out at the interface of mathematics, pedagogy,
and even psychology that are important to get
right. An instructive example is the growing re-
liance of numerical analysts on graphic repre-
sentation of large sparse matrices—the pictures
show structure while numerical output is little
help. (An example is JavaView [www-sfb288.
math.tu-berlin.de/vgp/javaview/index.html] for
3D geometry on the Web.)

Some Significant Mathematical Packages
Axiom: www.axiomtek.com
Derive: www.derive.com
KnotPlot: www.pims.math.ca/knotplot
Macsyma: http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi? MACSYMA
Maple: www.maplesoft.com
Mathematica: www.wolfram.com
Matlab: www.mathworks.com
MuPad: www.mupad.com
Pari: www.cs.sunysb.edu/~algorith/implement/pari/implement.shtml
Reduce: www.uni-koeln.de/REDUCE
SnapPea: www.ptf.com/ptf/products/UNIX/current/0465.0.html
SPlus: www.insightful.com
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The twin successes of the symbolic algebra
packages have been their mathematical gener-
ality and ease of use. These packages deal most
successfully with algebraic problems whereas
many (perhaps most) serious applications re-
quire analytic objects such as definite integrals,
series, and differential equations. All the ele-
mentary notions of analysis, such as continuity
and differentiability, need precise computational
meaning. The first challenge to meeting this
need involves mathematical algorithmic devel-
opments to allow the handling of a variety of
these only partially handled problems—includ-
ing the analysis of functions given by programs.
Many of these relate to the difficult mathemat-
ical problems involved in automatic simplifica-
tion of complicated analytic formulae and
recognition of when two very different such ex-
pressions represent the same object. There is
also an intrinsic need to mix numeric and sym-
bolic (exact and inexact) methods. Human
mathematicians often criticize programs for
making dumb errors, but often these errors
(such as oversimplifying expressions, leaving out
hypotheses, or dividing by zero) are precisely
how we start when we do it ourselves. As Jacques
Hadamard noted almost a century ago, “The 
object of mathematical rigor is to sanction and
legitimize the conquests of intuition.”

The Reimann hypothesis
The question that a pure mathematician is

most likely to sell his soul to solve is the so-called
Riemann hypothesis, first described in 1859. The
bounty on its solution now exceeds $1 million.
At the Clay Mathematics Institute’s Web site
(www.claymath.org/prize_problems/rules.htm),
the problem is described in the following form: 

Some numbers have the special property that
they cannot be expressed as the product of two
smaller numbers, e.g. 2, 3, 5, 7, etc. Such num-
bers are called prime numbers, and they play an
important role, both in pure mathematics and its
applications. The distribution of such prime
numbers among all natural numbers does not fol-
low any regular pattern, however the German
mathematician G.F.B. Riemann (1826-1866) ob-
served that the frequency of prime numbers is
closely related to the behavior of an elaborate
function ζ(s) called the Riemann Zeta function.
The Riemann hypothesis asserts that all inter-
esting solutions of the equation ζ(s) = 0 lie on a
straight line. This has been checked for the first
1,500,000,000 solutions. A proof that it is true

for every interesting solution would shed light
on many of the mysteries surrounding the distri-
bution of prime numbers.

A little more precisely, the Riemann hypothe-
sis is usually formulated as 

All the zeros in the right half of the complex
plane of the analytic continuation of

lie on the vertical line ℜ (s) = 1/2.

(One of the most famous results in elementary
mathematics is Euler’s evaluation of ζ(2) = π2/6.) 

Without doubt this is one of the “grand chal-
lenge” problems of mathematics and for good
reason. Large tracts of mathematics fall into
place if the Riemann hypothesis is true: while
the proof methods may be tremendously signif-
icant, the truth of the Riemann hypothesis is
central—its falseness would be disquieting.
Most mathematicians believe the Riemann hy-
pothesis to be true, although there are notable
dissenters. John Littlewood, one of the last cen-
tury’s great analytic number theorists, has hy-
pothesized its falseness.2 Of course, finding just
one nontrivial zero off the line ℜ (s) = 1/2,
should it exist, is worth $1 million, and this
might provide additional motivation to extend
this particular mountain’s climb. (Perhaps the
prize is only for a proof, not a disproof—cer-
tainly a proof is more interesting.) The fact that
more than the first billion zeros are known, by
computation, to satisfy the Riemann hypothe-
sis might be considered “strong numerical evi-
dence.” However, it is far from overwhelming—
there are subtle phenomena in this branch of
mathematics that only manifest themselves far
outside present computer range.

One reason to extend such computations—
which are neither easy nor obvious and rely on
some fairly subtle mathematics—is the hope that
someone will uncover delicate phenomena that
give insight for a proof. Greatly more ambitious
is the possibility that, in the very long run, it will
be possible to machine-generate a proof—even
for problems as difficult as this one.

P vs. NP
Of the seven $1 million “Millennium Prize”

problems on the Clay Web site, the one that is
most germane to this discussion is the so-called
P ≠ NP problem. Again, from the site:

ζ ( ):s
ns

n

=
=

∞

∑ 1

0



MAY/JUNE 2001 51

It is Saturday evening and you arrive at a big
party. Feeling shy, you wonder whether you al-
ready know anyone in the room. Your host pro-
poses that you must certainly know Rose, the
lady in the corner next to the dessert tray. In 
a fraction of a second you are able to cast a
glance and verify that your host is correct.
However, in the absence of such a suggestion,
you are obliged to make a tour of the whole
room, checking out each person one by one, to
see if there is anyone you recognize. This is an
example of the general phenomenon that gen-
erating a solution to a problem often takes far
longer than verifying that a given solution is
correct. Similarly, if someone tells you that the
number 13,717,421 can be written as the prod-
uct of two smaller numbers, you might not
know whether to believe him, but if he tells you
that it can be factored as 3,607 × 3,803, you can
easily check that it is true using a hand calcula-
tor. One of the outstanding problems in logic
and computer science is determining whether
questions exist whose answer can be quickly
checked (for example by computer), but which
require a much longer time to solve from
scratch (without knowing the answer). There
certainly seem to be many such questions. But
so far no one has proved that any of them really
does require a long time to solve; it may be that
we simply have not yet discovered how to solve
them quickly. Stephen Cook formulated the P
versus NP problem in 1971.

Although in many instances you could ques-
tion the practical distinction between polyno-
mial and nonpolynomial algorithms, this prob-
lem is central to our current understanding of
computing. Roughly, it conjectures that many of
the problems we currently find computationally
difficult must perforce be that way. It is a ques-
tion about methods, not about actual computa-
tions, but it underlies many of the challenge
problems we can imagine posing. A question
that requests us to “compute such and such a
sized incidence of this or that phenomena” al-
ways risks having the answer “it’s just not possi-
ble” because P ≠ NP.

Two specific challenges

With the caveat that although factoring is dif-
ficult, it is not generally assumed to be in the
class of NP-hard problems, let us offer two chal-
lenges that are far-fetched but not inconceivable
goals for the next few decades.

Design an algorithm that can reliably factor a
random thousand-digit integer

Even with a huge effort, current algorithms
get stuck at about 150 digits. (See www.rsasecurity.
com/rsalabs/challenges/factoring/index.html for
a list of current factoring challenges.) And there
is a $100,000 cash prize offered for any reliable
10-million-digit prime (www.mersenne.org/
prime.htm).

Primality checking is cur-
rently easier than factoring, and
there are some very fast and
powerful probabilistic primal-
ity tests—much faster than
those providing certificates.
Given that any computation
has potential errors due to sub-
tle (or even not-so-subtle) pro-
gramming bugs, compiler er-
rors, software errors, or un-
detected hardware integrity er-
rors, it may be pointless to dis-
tinguish between these two types of primality tests.
Many would take their chances with a (1 – 10–100)
probability statistic over a proof any day.

These questions are intimately related to the
Riemann hypothesis, although not obviously so
to the nonafficionado. They are also critical to
issues of Internet security—learn how to factor
large numbers, and most current security sys-
tems are crackable.

Find the minima in the merit factor problem
up to size 100

There are many old problems that lend
themselves to extensive numerical exploration.
For example, in signal processing there is the
merit factor problem, which is due to Marcel Go-
lay with closely related versions due to Little-
wood and Paul Erdös. Its pedigree is long, but
not as long as the Riemann hypothesis (see
http://athene.nat.uni-magdeburg.de/~mertens
for recent records and references).

We can formulate it as follows. Suppose (a0 :=
1, a1, ..., an) is a sequence of length n + 1, where
each ai is either 1 or –1. If

(1)

then the problem is, for each fixed n, to minimize:
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We can find exact minima up to about n = 50.
The search space of sequences at size 50 is 250,
which is about today’s limit for a very large-scale
calculation. In fact, the records use a branch-
and-bound algorithm that more or less grows
like 1.8n. This is marginally better than the naive

2n of a completely exhaustive
search, but it is still painfully
exponential.

The best hope for a solu-
tion is better algorithms. The
problem is widely acknowl-
edged as a very hard problem
in combinatorial optimiza-
tion, but it isn’t known to be
in one of the recognized hard
classes like NP. The next best
hope is radically different com-

puters, perhaps quantum computers. And there
is always a remote chance that analysis will lead to
a mathematical solution.

A concrete example

Let’s examine some of the mathematical chal-
lenges in a specific problem Donald Knuth re-
cently proposed. He asked solvers to evaluate the
following sum:3

. (3)

We answer Knuth’s question in the following
steps.

1. A very rapid Maple computation yielded
–0.08406950872765600... as the first 16 dig-
its of the sum. 

2. The inverse symbolic calculator has a “smart
lookup” feature—alternatively, we could 
use a sufficiently robust integer relation
finder—that replied that this was probably

. 
3. Checking this to 50 digits provided ample

experimental confirmation. Thus, within
minutes we knew the answer.

4. So why did these numerical and symbolic
numbers match? A clue was provided by
the surprising speed with which Maple
computed the slowly convergent infinite
sum. The package clearly knew something
the user did not. Peering under the covers
revealed that it used the LambertW func-
tion, W, which is the inverse of w = z

exp(z). (A search for “Lambert W function”
on MathSciNet provided nine references—
all since 1997 when the function appears
named for the first time in Maple and
Mathematica.)

5. The presence of ζ(1/2) and standard Euler-
MacLaurin techniques, using Stirling’s for-
mula (as might be anticipated from the

(4)

where the binomial coefficients are those in
the series for 

.

Now Equation 4 is a formula Maple can
prove.

6. However, we still need to show

. (5)

7. Guided by the presence of W and its series

,

an appeal to Abel’s limit theorem lets us de-
duce the need to evaluate

. (6)

Again, Maple can establish Equation 6.

Of course, this all took a fair amount of human
mediation and insight.

In 1996, discussing the philosophy and 
practice of experimental mathematics, we
wrote4

As mathematics has continued to grow there has
been a recognition that the age of the mathe-
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matical generalist is long over. What has not
been so readily acknowledged is just how spe-
cialized mathematics has become. As we have al-
ready observed, subfields of mathematics have
become more and more isolated from each other.
At some level, this isolation is inherent but it is
imperative that communications between fields
should be left as wide open as possible. As fields
mature, speciation occurs. The communication
of sophisticated proofs will never transcend all
boundaries since many boundaries mark true
conceptual difficulties. But experimental mathe-
matics, centering on the use of computers in
mathematics, would seem to provide a common
ground for the transmission of many insights.

This common ground continues to increase
and extends throughout the sciences and engi-
neering.

The corresponding need is to retain the 
robustness and unusually long-livedness of the
rigorous mathematical literature. Doron Zeil-
berger’s proposed Abstract of the Future chal-
lenges this in many ways: “We show in a certain
precise sense that the Goldbach conjecture
(where every even number is the sum of two
primes) is true with probability larger than
0.99999 and that its complete truth could be de-
termined with a budget of 10 billion.”4

He goes on to suggest that only the Riemann
hypothesis merits paying really big bucks for
certainty. Relatedly, Greg Chaitin argued that
we should introduce the Riemann hypothesis
as an axiom: “I believe that elementary num-
ber theory and the rest of mathematics should
be pursued more in the spirit of experimental
science, and that you should be willing to
adopt new principles. I believe that Euclid’s
statement that an axiom is a self-evident truth
is a big mistake. The Schrödinger equation
certainly isn’t a self-evident truth! And the Rie-
mann hypothesis isn’t self-evident either, but
it’s very useful. A physicist would say that there
is ample experimental evidence for the Rie-
mann hypothesis and would go ahead and take
it as a working assumption.”4

How do we reconcile these somewhat com-
bative challenges with the inarguable power of
the deductive method? How do we continue to
produce rigorous mathematics when more re-
search will be performed in large computational
environments where we might or might not be
able to determine what the system has done or
why? This is often described as “relying on proof
by ‘Von Neumann says’.”

At another level we see the core challenge for
mathematical computing to be the construction
of workspaces that largely or completely auto-
mate the diverse steps illustrated in Knuth’s and
similar problems.
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