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ABSTRACT. For the solution {u,} , to the polynomial recursion (n + 1)%upt1 —
3(2n + 1)(3n? + 3n + 1)(15n2 + 15n + 4)up, — 3n3(3n — 1)(3n + Dup—1 = 0, where
n = 1,2,..., with the initial data up = 1, u; = 12, we prove that all u,, are integers.
The numbers un, n = 0,1,2,..., are denominators of rational approximations to {(4)
(see math.NT/0201024)). We use Andrews’s generalization of Whipple’s transformation
of a terminating 7 Fg(1)-series and the method from math.NT/0311114.

Consider the following 3-term polynomial recursion:

(n+ 1)upi1 — 3(2n 4+ 1)(3n? + 3n + 1) (150 + 15n + 4)u,
—3033Bn—1)Bn+ Dup_1 =0  for n>1,

and take the two linearly independent solutions {u,}5%, and {v,}>°, determined
by the inicial conditions ug = 1, u; = 12 and vg = 0, v; = 13. In [Z1], we give a
hypergeometric interpretation of the sequence u,,((4) —v,, n =0,1,2, ..., from which
one obtains the limit
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where H; = Z;Zl j~1 are harmonic numbers. The integrality of all u,, (conjectured
in [Z1]) is not an immediate consequence of formula (1). In the recent work [KR]
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C. Krattenthaler and T. Rivoal prove (among several other useful theorems and beau-
tiful binomial identities) that
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from which one has the desired inclusions u,, € Z. The main objective of the present
note is to give a simpler proof of the formula for the numbers u,, as well as to indicate
some other representations that also show that all u,, are integers.

We use the standard notation
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r+1Fr
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for the generalized hypergeometric series; the notation (a); = a(a+1)---(a+1—1)
for 1 =1,2,... and (a)p = 1 stands for the Pochhammer symbol.

The following formula is due G.E. Andrews. Making the passage ¢ — 1 in [A,
Theorem 4] (see also [Z2] for a related application of the identity) we have: for s > 1
and m a non-negative integer,

%aa bl7 C1, b27 C2,
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Taking s =3, a=-n—2¢,by =by=bg=co=-n—¢,c1 =c3=n—c+1 and
m=mn,i=1y, j =11 +ls, we derive from Andrews’s formula
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Using the trivial equality

(1—n—2¢e), =

we may rewrite (2) in the form
1 n
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€
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Now, we tend € to 0. On the right hand side of (3) we only need to plug € = 0.
To proceed with the left hand side, we first note that A4;(0) = —A,_;(0) for all
[=0,1,...,n, hence

lim » " Ay(e) = > A)(0) =0 (4)
=0

e—0
1=0
and we may apply the I'Hopital rule:
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where on the last step we use the following consequences of (4):

n

> A(0)H, = Aj(0)Hzy = 0.
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after developing all Pochhammer symbols in the ¢ — 0 form of (3) we arrive at the
identity from [KR, Section 13]:
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Clearly, the left-hand side of Andrews’s formula is symmetric with respect to the
group of parameters by, cy,bs, co, bs, c3. Therefore, setting as before a = —n — 2¢,
m = n, and all the parameters of the group to be —n — ¢, except the following two:

(a) by =c1 =n—e+1;
) b2262:n—€+1;
(¢) bg=c3=n—cec+1;
) cpr=co=n—ec+1;
() co=c3=mn—e+1;
(f) e =cs=mn—e+1
(the last case corresponds to the above identity (5)), we arrive at the five more
representations of the left-hand side of (5):
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