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Abstract

The proficiency of humanoid robot movement, which is currently quite elementary,
needs to be improved if humanoid robots are to fulfil most of their intended appli-
cations. Two of the more essential motor skills of a humanoid robot are related to
its ability to stand and walk. Enhancement of these abilities is the focus of the work
presented in this thesis.

We first investigate the use of the proprioceptive sense, in particular the joint
velocities, to perceive and quantify external perturbations to a standing humanoid
robot. A system consisting of an optimised threshold detector, a Support Vector
Machine and a pair of orthogonal Support Vector Regression models is developed to
utilise this proprioceptive sense. We demonstrate, through the implementation on a
physical robot, that the proposed system is able to detect, locate and estimate the
magnitude and direction of any given impact.

Next we consider improvements to humanoid robot walking through the enhance-
ment of walk optimisation techniques. To this end, in simulation, a meta–optimisation
is performed to determine: an appropriate set of tuning parameters for three different
optimisation algorithms, the most suitable optimisation algorithm, a relevant fitness
function and a pertinent parameter space. The optimisation algorithms we consider
include: Evolutionary Hill Climb with Line Search, Particle Swarm Optimisation
and Policy Gradient Reinforcement Learning (PGRL). We evaluated fitness functions
based on the walk speed, efficiency and Froude–number. The parameter space for the
walk engine was assessed with and without additional joint stiffness parameters. We
found that the best walk optimisation technique consisted of PGRL with an efficiency
based fitness function utilising additional joint stiffness parameters.

We achieved further improvements on the walk optimisation by applying the
safe redundancy concept to extend PGRL. PGRL is a local optimisation algorithm,
whereby incorporating safe redundancy allows the algorithm to escape from local ex-
trema. We also expanded the parameter space to include gait–phase dependent joint
stiffnesses. Furthermore, to facilitate a trade–off between the optimisation and the
stress placed on the physical hardware, a measure of the wear experienced by the
robot during the optimisation was introduced.

To verify the generality of the systems developed for the walk optimisation, they
are evaluated on several different humanoid robot platforms: a simulated nao, a phys-
ical nao and a darwin-op. The effectiveness of the proposed systems are demon-
strated through their implementation in physical humanoid robot hardware and ap-
plication to the RoboCup soccer competitions.

vi
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Science fiction often describes a future where humans and intelligent robots
live in collaboration to create a utopian–esque society. To thrive in a world
built for humans, the robots are humanoids. That is, they have an anthropo-
morphic shape and walk on two legs. The robot’s humanoid form allows it to
efficiently manipulate man–made objects. Furthermore, the familiarity of the
robot’s humanoid appearance improves the ability of humans to interact with
the robot [1, 2]. Consequently, humanoid robots have the potential to perform
many tasks and have almost limitless applications.

There are numerous humanoid robot projects underway [3], closing the gap
between fiction and reality. Notable examples include Honda’s ASIMO [4] and
AIST’s HRP-4 [5], both of which have human–like appearances and are able
to perform several simple tasks reasonably well.

There are many tangible applications for humanoid robots emerging in the
literature. Broadly, the applications can be categorised as either acting in an
assistive role, or as a replacement in a harsh environment, for humans. The
former application has the humanoid robot working closely with humans, while
the latter has the robot working more closely with the environment.

Possibly the largest potential application for humanoid robots is in health-
care. The humanoid robot could assume the role of a nurse or orderly [6],
especially for in–home care of elderly patients. It could also play a more
specialised role, for example, in the treatment of autism [7] or in the entertain-
ment of young patients [8]. A similar application for a humanoid robot is as
a personal assistant where the robot would play the role of a maid, nanny or
secretary [9, 10].

The other primary area of application for humanoid robots is in industry
and harsh environments. A humanoid robot has the potential to operate any
machine designed for humans, for example, the operation of a fork–lift [11].
Consequently, a humanoid robot could be used to replace humans operating
machines in dangerous environments, such as in mining or construction sites.
Furthermore, a humanoid robot could be used directly in harsh environments,
such as during a fire [12] and in space [13].

It is apparent that there are many potential applications for a capable
humanoid robot. However, to fulfil these applications the robot needs to be
able to stand and walk with a high level of proficiency. Presently, the state–
of–the–art of humanoid movement is not adequate to meet the requirements
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of most of the potential applications. This thesis addresses some of the issues
relating to improved humanoid robot movement.

1.1 RoboCup Soccer: Synthetic Application for
Humanoid Robots

RoboCup Soccer is an annual event where robots from across the world com-
pete against each other to win a robotic soccer tournament. The RoboCup
Soccer competition was created to inspire research in the areas of artificial
intelligence and robotics. The ultimate goal of the competition is to have a
robot team capable of winning against a world champion human team by the
mid–21st century [14].

The motivation behind the creation of the RoboCup Soccer competition
was two fold: to serve as a landmark project and to define a new standard
problem [15]. A landmark project is one whose completion has little direct im-
pact, however, the technological achievement of completing the project would
be a landmark in its field. The accomplishment of the ultimate goal of the
RoboCup Soccer competition would be a significant milestone in the field of
robotics. Furthermore, the technologies developed to achieve the ultimate goal
will have direct benefits through spinoff applications. Kitano et al. [15] saw the
Apollo missions as the epitome of landmark projects, where the technologies
developed to put a man on the moon have found applications in all areas of
modern society [16].

The RoboCup soccer competitions have been running since 1997 result-
ing in many scientific publications [17, 18] being produced. There are also
several publications where algorithms and techniques developed to succeed at
RoboCup have been applied to other research domains [19], for example in
robot design [20], machine learning [21], and localisation [22]. Thus, demon-
strating that spin–off applications for the technology developed in the pursuit
of the landmark are already being found.

The RoboCup Soccer competition is also an example of a standard prob-
lem. The RoboCup Soccer environment and criteria for success, are specified
by a strict set of rules, for example see [23, 24]. Kitano et al. [15] suggested
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Figure 1.1: RoboCup 2008 SPL.

that RoboCup Soccer be a replacement for computer chess as a standard arti-
ficial intelligence problem. As compared to computer chess, robot soccer is a
multi–agent system in a noisy real–world environment, requiring both artificial
intelligence and advanced physical robots.

The primary advantage of using a standard problem is that it allows for
efficient and effective comparison of algorithms. RoboCup Soccer has been
used as a standard problem for the software and walk optimisation techniques
presented in this thesis. Consequently, it facilitates the direct comparison
to the research of other teams at the RoboCup event itself, and the indirect
comparison through related publications attempting to solve the same standard
problem. Furthermore, the RoboCup Soccer competition is an external event,
thus the effectiveness of the work presented in this thesis can be demonstrated
outside the laboratory.

1.1.1 NUbots: University of Newcastle’s RoboCup Team

The University of Newcastle has a long history in RoboCup soccer. In partic-
ular, competing as the NUbots in the Standard Platform League (SPL) from
2002 to 2011 and in the Kid–size Humanoid League in 2012. In 2008–2011 the
nao humanoid robot [25] was used as the standard platform for the SPL, as
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pictured in Figure 1.1. In 2012 a team of darwin-op robots [26] were used to
enter the Kid–size Humanoid League.

The SPL is an interesting league because every team must use the same
robot. This reduces the standard problem to only include the artificial intelli-
gence component of the original RoboCup Soccer problem. Further strength-
ening the comparison of developed techniques and algorithms.

The University’s involvement in these two leagues has provided access to
two humanoid robots: the nao and the darwin-op. It is natural that these two
robots feature prominently as test–beds in this thesis. Furthermore, RoboCup
Soccer has been a synthetic application for the research performed in this
thesis, representing a readily available real–world–like application.

1.2 Software for Legged Robots

The brains of a robot is the software running on its processors. The software
takes sensory data and combines it with an internal state to generate output
actions, typically implemented as a sense–think–act loop. The large number
of sensors and actuators on a humanoid robot, and the complexity of the
think step, dictate the use of a software framework [27]. The actual artificial
intelligence of the robot is then built using the software framework.

A software framework is infrastructure that primarily organises the transfer
of information. The framework handles the transfer of data between sensors
and actuators hence it acts as an abstraction layer above the robotic hardware.
The abstraction of underlying robotic hardware is essential for code portability
and cross–robot support. The internal transfer of information between sub–
modules and the operating system is also handled by the framework.

Opportunities for Cross–Robot Software

There is a common trend in the field of robotics to only use a single robot
platform for the development, testing and verification of new algorithms and
techniques. This may be due to the expense and availability of robot hardware.
However, with more robots becoming commercially available at reduced costs,
it has become possible to own several different robots. This provides potential
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Figure 1.2: Robot platforms at the University of Newcastle. From left to right;
the HyKim [28], a modified CycloidII [29], the nao [30] and the darwin-op
[31].

for the implementation and verification of general techniques simultaneously
on several robots.

The Robotics Laboratory at the University of Newcastle is a good example
of this potential, where there are four similar robots available, as pictured in
Figure 1.2. The ability to run the same software system on each platform
would be of a great benefit.

The RoboCup Soccer competition provides motivation for the development
of an enormous body of code designed to win a soccer match. However, the
software written for RoboCup is typically not portable being tied to a specific
robot platform. Recently, there has been work by several RoboCup teams to
improve the portability of their software [32, 33], but the support for numerous
physical robot platforms and operating systems remains a challenge.

The ability to use the RoboCup software in other research projects would
both strengthen the quality of research in those projects and simplify the tran-
sition to spinoff applications that were behind the conception of RoboCup.
These two benefits can be achieved through the development of a suitable
software framework. A hardware abstraction layer can be used to isolate the
intelligent algorithms from the robot hardware and a carefully designed soft-
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ware architecture can be used to facilitate the transfer of algorithms between
research domains.

Summary of Motivations

The objectives for the development of a software framework can be summarised
as follows:

• to allow the development and verification of algorithms on multiple robot
platforms

• to allow the code developed in one research domain to be used in another

1.3 Stance for Humanoid Robots

Stance can be loosely separated into two sub–problems, the first being the
simple maintenance of an upright posture without perturbations, called quiet
stance. For a robot this is a relatively simple task as it corresponds to maintain-
ing a fixed position which is typically performed by low–level position control
loops.

The second, more difficult and interesting problem is perturbed stance,
where an upright posture must be maintained despite perturbations. Pertur-
bations come in several forms: they may be internal from the movement of
a limb [34], or external through the movement of the support surface [35] or
application of force [36, 37]. Furthermore, the perturbations can be either
continuous [38] or transient [37].

The particular type of perturbation considered in this thesis is the short
application of external force, or less formally: a push or impact. Typically, an
impact is characterised by a fast transfer of a relatively large amount of energy.
If an impact is of a significant magnitude a humanoid robot can quickly fall
over. The speed required for impact–recovery presents difficulties to current
perturbation sensing techniques.
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Limitations of Existing Perturbation Sensing

The Zero Moment Point (ZMP) [39, 40] is frequently used as an input to a
stance controller for a bipedal robot. The ZMP is the point on the ground
where the net moment of the inertial and gravity forces has no component
along the horizontal axes. A controller maintains the ZMP such that it is
inside the convex hull of the supporting feet, for example see [41, 42].

By definition the ZMP must remain inside the support polygon; when the
robot is falling, the ZMP moves to the edge of the foot about which the robot
is rotating. It gives no indication as to how fast the robot is falling and can no
longer be used by a controller [43]. This limitation of the ZMP is particularly
a problem for the short impacts under investigation here.

There have been extensions to the ZMP allowing it to move beyond the
support polygon, in particular, the Foot Rotation Indicator (FRI) [43], the
fictitious ZMP [39] and the generalised ZMP [44]. However, they are difficult
to measure outside of simulation and are only valid for flat surfaces [45]. Ad-
ditionally, the ZMP and related concepts do not extend well to compensatory
stepping. More recently, there has been research into learning compensatory
stepping responses to perturbations [46, 47, 48, 49].

It appears that some of the difficulty in controlling humanoid robot stance
stems from the limited amount of information available to the controller. For
example, none of the stability measures described above indicate where on
the body the impact occurred. In this thesis we seek to improve the quality of
stance controllers through improvements in perturbation sensing. Of particular
interest are the quantification of location, strength and direction of the impact.
Furthermore, as we are dealing with impacts the information must be estimated
as quickly as possible.

Chapter 2 reviews and compares the literature on human postural control
with typical controllers for humanoid robots. The most significant difference is
the dominance of the proprioceptive sense. Whereas, the robotics community
measures the ZMP using foot sensors [50, 51, 52] or using an accelerometer and
gyro [53, 54]. Proprioception is the sense that provides information about the
position and movement joints. A set of foot sensors is equivalent to the sense of
touch in the soles of the feet in humans, and the use an accelerometer and gyro
are comparable to the sense of balance provided by the inner ear. Consequently,
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a secondary motivation for this research on stance was to explore the utility of
the proprioceptive sense in the control of stance.

Summary of Motivations

The combination of the two limitations discussed above specifies the aim of
the research on perturbed stance for humanoid robots as follows:

• to detect and measure an external impact using only proprioceptive sen-
sors with sufficient detail and speed to allow the generation of a corrective
response

1.4 Walk Optimisation for Humanoid Robots

A walk engine is used to generate the intricate motion patterns required for
bipedal walking. Walk engines use a wide variety of methods to produce the
motion patterns, ranging from detailed models, to ad–hoc approaches [55, 56,
57, 58]. However, regardless of the type of walk engine, they all have a suite of
parameters that can be adjusted to tailor a walk engine to a particular robot.

Walk optimisation is the formal process of adjusting these parameters in a
systematic way to maximise the performance of a walk engine. The gait gen-
erated by a walk engine using a particular set of walk parameters is evaluated
through experiment and its performance quantified using a fitness function.
The result, along with the results of previous trials, is then used to generate a
new set of parameters to be evaluated. This iterative process is repeated until
a stopping criterion is satisfied, which is typically a fixed number of iterations
or period of time [59, 60].

Challenges of Walk Optimisation

The high dimensionality of the walk parameter space presents a challenge to
optimisation techniques. The number of walk parameters can range from 11
[61] to over 50 [56]. The size of the parameter space prevents the use of an
exhaustive search for an optimal set of parameters. The high dimensionality
also makes the calculation of the gradient at any point in the parameter space
difficult.
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The time required to evaluate the performance of a particular set of walk
parameters also presents a problem for optimisation. A single walk trial may
take up to a minute to complete, especially for omnidirectional walk engines
where it is necessary to test the walk in several directions [62, 63]. Furthermore,
as the notion of walk stability is of particular importance to bipedal walking,
a significant amount of time is required to throughly assess the stability of
a walk. The lengthy trial time limits the total number of trials to several
hundred, or a thousand at best [64, 59, 60].

The stress placed on humanoid robots during the walk optimisation process
also presents a challenge. A poor set of walk parameters will produce an
unstable gait which can result in the humanoid robot falling. This can occur
quite frequently in the walk optimisation process given that it is evaluating,
new, untested walk parameters. This places a large amount of stress on the
robot and can quickly result in damage.

A human operator [64, 59] or a harness [65] can be used to prevent the robot
from falling. Given the time consuming nature of walk optimisation, intense
human supervision should be avoided. Furthermore, a harness can limit and
effect the movement of a robot, particularly for small fast–moving humanoid
robots. Thus, minimising the number of falls during the optimisation procedure
is desirable.

The importance of reducing the stress placed on a humanoid robot during
optimisation was highlighted when attempting to perform walk optimisation
on early versions of the nao robots. Given their fragility, the number of falls
during the optimisation process needed to be reduced significantly for walk op-
timisation to even be possible. However, the potential for damage when falling
is a general concern with humanoid robots and becomes a more significant
problem for full–size robots.

Relative Performance of Algorithms and Fitness Functions

There are numerous examples of walk optimisation algorithms in the literature
[66, 67]. However, there are few examples where algorithms are compared on
the same hardware with the same walk engine. Kohl and Stone [68] compare
four algorithms for quadruped walk optimisation and Faber and Behnke [59]
compare two algorithms for walk optimisation on a humanoid robot. In both
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cases, values for the parameters which tailor an algorithm to a particular prob-
lem are selected arbitrarily. The selection of appropriate parameters greatly
effects the performance of algorithms [69, 70], thus the parameters should be
chosen rigorously through a meta–optimisation.

Furthermore, the performance of walk optimisation algorithms are typically
compared based on the number of iterations required to reach the ‘optimal’
walk parameters. This approach ignores the additional stress placed on the
robot by unsuccessful iterations where the robot falls, which is an important
consideration for the suitability of an algorithm for humanoid robot walk op-
timisation.

In the literature there are also many examples of fitness functions for hu-
manoid robot walk optimisation [67]. The two most common being the speed,
for example see [64, 59, 60] and the efficiency, for example see [71, 72, 73].
To the author’s best knowledge there have been no comparisons of the perfor-
mance of fitness functions on the same robot hardware.

In this thesis we seek to provide an accurate comparison of optimisation
algorithms and fitness functions for humanoid robot walking. The algorithms
are meta–optimised prior to their comparison and the relative merits of several
fitness functions are compared on the same humanoid robot. To reduce the
stress placed on the robot, the cumulative stress during the optimisation is
used in place of the iteration count.

Walk Optimisation and Redundant Fitness Functions

Local optimisers are often applied to the optimisation of humanoid robot walk-
ing. They are well suited to the problem because of their fast convergence speed
and iterative nature. Typically the optimisation process begins with a walk
from a manually selected starting point. However, local optimisers converge
to sub–optimal local extrema.

The wide variety of potential fitness functions presents an opportunity to
apply the concept of safe redundancy [74]. This concept uses several fitness
functions sharing a global extremum to escape local extrema. Each time the
optimisation stalls in a local extremum the fitness function is replaced by a
similar redundant function.



12 1.4. Walk Optimisation for Humanoid Robots

As part of the research conducted in this thesis we aim to apply safe redun-
dancy to extend a local optimisation algorithm. Thus, overcoming the primary
limitation of such algorithms.

Optimisation of Joint Stiffnesses

Every walk engine has a set of parameters which effect the joint trajectory
pattern produced by the engine, the traditional walk parameters. There is
a significant body of literature on human walking that suggests in addition
to the joint trajectories, the joint stiffnesses also play an important role [75,
76, 77]. In Chapter 2 we review the relevant literature on joint stiffnesses in
humans to highlight its significance. The importance in humans suggests that
the performance of humanoid robot walking could be improved through the
inclusion of joint stiffness patterns in walk engines.

The research conducted as part of this thesis explores joint stiffness for
humanoid robot walk engines. In particular, we expand the traditional walk
parameter space to include additional parameters that modify the joint stiff-
nesses. The stiffness parameters, along with the traditional parameters, are se-
lected through optimisation. The benefits of variable joint stiffness are demon-
strated by the improved performance of the walk engines when the stiffness
parameters are added to the walk optimisation.

Summary of Motivations

To summarise, the aims of the research on walk optimisation are:

• to compare the performance of optimisation algorithms and fitness func-
tions on a single humanoid robot

• to minimise the stress placed on a humanoid robot during the optimisa-
tion process without compromising the performance of the final optimised
walk

• to use the redundant fitness functions for humanoid robot walking to
improve local optimisers

• to investigate the benefits of variable joint stiffnesses as an addition to
trajectories generated by a walk engine
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1.5 Summary of Contributions and Publications

The main contributions of this thesis cover three areas: software frameworks
for robots, stance for humanoid robots, and walk optimisation for humanoid
robots. The contributions of the thesis to each area are:

Software Framework

• a cross–robot software framework that supports six different
robot platforms and allows code sharing between different
research topics

Stance

• a proprioception based impact perception system capable of
quickly estimating the location, strength and direction of im-
pacts to the upper and lower body of a humanoid robot

Walk Optimisation

• a cross–robot walk optimisation procedure designed to min-
imise the stress on a humanoid robot

• an improved walk optimisation algorithm using redundant
fitness functions to escape from local maxima

• an additional set of walk parameters that vary the joint stiff-
ness as a function of gait phase

1.5.1 Publications

Software

The software framework has been published in [K5] and has also appeared
in the NUbot team descriptions and reports since 2009 [78]. The software
framework is open–source and has been publicly available since inception at
[79].
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Standing

The research on stance, presented in Chapter 4, has been the basis of two
publications; [K9] and [K1].

Walking

There have been four publications relevant to the walk optimisation presented
in this thesis. The first, [K10], forms the basis for Chapter 5 and was an initial
investigation into the benefits of joint stiffness. Chapters 6 and 7 are based on
[K4] and [K6], respectively. Finally, Chapter 8 is based on [K8].

Publication List

[K1] Jason Kulk and James S. Welsh. Measuring impacts using support vector
machines on a standing humanoid robot. In International Joint Confer-
ence on Neural Networks, 2012.

[K2] Aaron S. W.Wong, Stephan K. Chalup, Shashank Bhatia, Arash Jalalian,
Jason Kulk, Steve Nicklin, and Michael J. Ostwald. Visual gaze analysis of
robotic pedestrians moving in urban space. Architectural Science Reviews,
2012.

[K3] Jason and James S. Welsh. Evaluation of machine learning techniques
for walk optimisation on the nao robot. In Distributed machine learning
and sparse representation with massive data sets, 2011.

[K4] Jason Kulk and James S. Welsh. Evaluation of walk optimisation tech-
niques for the nao robot. In IEEE Int. Conf. on Humanoid Robots, 2011.

[K5] Jason Kulk and James S. Welsh. A nuplatform for software on articulated
mobile robots. In 1st Int. ISoLA Workshop on Software Aspects of Robotic
Systems, 2011.

[K6] Jason Kulk and James S. Welsh. Using redundant fitness functions to im-
prove optimisers for humanoid walking. In IEEE Int. Conf. on Humanoid
Robots, 2011.
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[K7] Aaron S. W.Wong, Stephan K. Chalup, Shashank Bhatia, Arash Jalalian,
Jason Kulk, and Michael J. Ostwald. Humanoid robots for modelling and
analysing visual gaze dynamics of pedestrians moving in urban space. In
The 45th Annual Conf. of the Australian and New Zealand Architectural
Science Association (ANZASCA2011), 2011.

[K8] Jason Kulk and James S. Welsh. Autonomous optimisation of joint stiff-
nesses over the entire gait cycle for the nao robot. In Int. Symposium on
Robotics and Intelligent Sensors, 2010.

[K9] Jason Kulk and James S. Welsh. Perturbation sensing for humanoid
robots using a multiclass support vector machine. In Proc. IFAC Sympo-
sium on Mechatronic Systems, 2010.

[K10] Jason Kulk and James S. Welsh. A low power walk for the nao robot.
In Proc. of Australasian Conf. on Robotics and Automation, 2008.

1.6 Thesis Overview

A brief summary of each chapter in this thesis is presented below.

Chapter 2 reviews literature on human postural control relevant to the design
of the impact perception system described in Chapter 4. The chapter
also highlights concepts from human walking relevant to the chapters on
humanoid robot walk optimisation.

Chapter 3 describes the cross–robot software framework. The framework
employs both a blackboard and message–based system for data transfer
and hardware abstraction. A class hierarchy is used to maximise code
sharing between robot platforms and research projects. The software
described in Chapter 3 is used throughout the thesis, in particular, it
provides the cross–robot support for the development of the walk opti-
misation discussed in Chapters 5 to 8.

Chapter 4 presents the impact perception system for standing humanoid
robots. The system uses only joint velocities provided by the humanoid
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robot’s proprioceptive sense. The detection of the perturbation is per-
formed using a threshold detector. The localisation of the impact is
determined using a Support Vector Machine, while the strength and
direction are estimated using Support Vector Regression Models. The
developed system is applied to a typical humanoid robot.

Chapter 5 describes an initial investigation into the benefits of adjusting the
joint stiffness individually for each joint. This work was performed on
a physical robot with a walk engine whose traditional walk parameters
were particularly limited.

Chapter 6 presents a meta–optimisation, performed in simulation, to select
the best parameters for three walk optimisation algorithms. A further
meta–optimisation is then performed to select the best algorithm, the
best fitness function and most suitable parameter space for humanoid
robot walk optimisation. To make the results applicable to physical
robot hardware we incorporate the stress placed on the robot during
the optimisation in the metric for selecting the best combination. The
effectiveness of best combination is then verified using a physical robot.

Chapter 7 extends the optimisation algorithm selected in Chapter 6 to make
use of redundant fitness functions. Each time the optimisation becomes
trapped in a local maxima, the fitness function is replaced by a different
redundant function. The extension is verified in simulation and on two
different physical humanoid robots.

Chapter 8 extends the work on joint stiffness presented in Chapters 5 and
6 such that the stiffness is a function of gait cycle. The gait cycle is
split into four phases with the stiffness specified independently for each
phase. Upon optimisation on a physical humanoid robot, the gait–phase
dependent stiffnesses show an improvement.

Chapter 9 presents the conclusions of the work and suggests several avenues
for further research.
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2.1 Introduction

This chapter reviews literature on human motion, highlighting the significant
differences between human motion and the current state–of–the–art of hu-
manoid robot motion control. There are numerous examples in engineering
where looking at natural systems and biology for inspiration has proved worth-
while [80]. This is particularly true for robotics of all types [81, 82], ranging
from a robotic cheetah [83] to a robotic salamander [84].

There is a growing body of research where an examination of humans has
resulted in improved humanoid robots [85, 86, 87]. In this Chapter we fur-
ther examine human motion control in the hope that the ideas and principles
can improve the standing and walking of humanoid robots. Indeed, we will
see in Chapters 4–8 that this thesis provides more examples of the successful
application of biologically inspired concepts.

This chapter is organised as follows, firstly we examine quiet stance to
investigate which of the human senses are used to detect perturbations while
standing. We find that proprioception is generally the most important sense
for motion control and is an essential component for the maintenance of stance.
The examination of human quiet stance also reveals that the joint stiffnesses
in the legs are quite low.

The second section reviews literature on perturbed stance. In particular, we
investigate which properties of an external force effect the corrective responses
in humans. Here we find that the responses depend on the location, strength
and direction of the perturbation.

The final section in this chapter reviews two key features of human gait that
are relevant to the optimisation of humanoid robot walking in Chapters 5–8.
The first feature considered is the fitness function used by humans to select a
gait, where it appears a function based on energy minimisation is employed.
The second characteristic investigated is the joint stiffness used during walking.
We will see that the stiffnesses are both joint and gait–phase dependent.
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2.2 Human Quiet Stance

2.2.1 Joint Positions for Stance

An important consideration for stance control of humanoid robots is the natural
stance position employed prior to a perturbation. There is an extensive body of
literature on the pose adopted by humans during quiet stance, the key results
of which can be transferred to a humanoid robot.

A study of foot position showed that humans place their feet such that
their heel centres were 11.4% of their height apart [88]. It is difficult to use
such a pose on a humanoid robot due to their relatively large feet. For exam-
ple, consider the CycloidII robot, given its height of 42cm, an equivalent foot
separation would be 3.3cm. However, the CycloidII has feet which are 6cm
wide. Thus, a stance as narrow as possible should be used.

The centre of pressure is maintained by humans to be about 5.5cm in front
of the ankle joint [89]. As there is very little movement in quiet stance the
positions of the centre of pressure and projection of the centre of mass onto the
ground are equivalent. Using anthropometric data from [90] we can calculate
that the centre of mass is approximately 3.4° in front of the ankle. We can
configure a humanoid robot stance to have a similar centre of pressure by
rotating the ankle–pitch degree of freedom.

2.2.2 Proprioception for Detecting Perturbations

The human body has four senses which could be used to regulate stance; touch,
balance, sight and proprioception. To determine the contribution of each sense,
the measurement threshold and the effect on postural sway when each sense is
removed were considered. The measurement threshold of each sense can also
be used to specify requirements for an equivalent artificial sense for a humanoid
robot.

Touch

The literature on human stance suggests that the mechanoreceptors in the
feet are capable of measuring the centre of pressure, however, they are not
used by the central nervous system. There are over 100 mechanoreceptors
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scattered over the sole of the foot capable of measuring pressures ranging from
2µN/mm2 up to 22mN/mm2 [91]. The pressure under an average human foot
during stance is approximately 15mN/mm2, so the vast majority of receptors
in the sole are stimulated during quiet stance. Furthermore, as an ensemble
these sensors are capable of measuring the centre of pressure under the foot,
both statically and dynamically.

However, Meyer et al. [92] showed that changes in sway before and after
sole anaesthesia were imperceptible with eyes open and small with eyes closed.
This small impact implies that the centre of pressure, or ZMP, is not the
dominant control variable used during quiet stance. This is in stark contrast
to the robotics literature where the ZMP is effectively an industry standard.

Balance

There are at least three sources of our sense of balance, the first is well-known;
the inner ear. However, renal and vascular graviceptors contribute significantly
[93, 94], that is the distribution of blood and the kidneys provide information
which contributes to the human sense of balance. This means a person without
a functioning inner ear is not a person without a sense of balance.

The measurement threshold of the sense of balance can be calculated from
the data available in [95, 96, 97] to range from 0.3° to 1.2° at velocities of
2.5°s−1. Furthermore, Bringoux et al. [98] showed that at low velocities people
could be rotated by 4.5° to 6° before detecting the movement using the bal-
ance sense. These values are significantly higher than those experienced while
standing quietly, where the angle varies by ±0.35° at velocities of ±0.36°s−1.

Sight

The sense of sight is the first of the four senses that has a sufficient measurement
threshold capable of measuring the small movements that occur during quiet
stance. Fitzpatrick and McCloskey [99] performed a direct measurement of the
visual systems sway measurement threshold and found it to be well below that
of postural sway. This ability depends on the visual surround [100] where the
distance to the visual target effects both the anteroposterior and lateral sway.
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Proprioception

Proprioception is the most important sense for maintaining upright stance,
predominantly because of its ability to provide a large amount of parallel in-
formation about the position, velocity and acceleration of each joint. It is
clear that the measurement thresholds of proprioception are well below that
required to observe postural sway [99], and that removal of proprioception
from the legs results in a greater increase in sway than the removal of vision
[101, 102, 103, 104].

A particularly compelling case for the utility of proprioception is presented
by Sacks [105], where the profound effects of complete proprioception loss are
described. Even with a great deal of visual concentration the ability to sit,
stand, and walk are severely limited. Furthermore, when visual information is
also removed, sitting or standing is no longer possible. This demonstrates that
touch, balance and vision can not serve as a substitute for the information that
was provided by proprioception.

Typically, a humanoid robot will have accurate position sensors. For exam-
ple, the CycloidII and nao have angle sensors with measurement thresholds of
0.3° and 0.09°, respectively, which is comparable to the 0.17° threshold in the
human ankle.

It has been observed that joint velocity information is the most accurate
component of the proprioceptive sense [106]. A humanoid robot is typically
equipped with only position sensors hence the velocities are calculated through
differentiation. Consequently, the precision of the joint velocity information
available on a humanoid robot is not comparable to that of a human.

2.2.3 Joint Stiffness for Stance

The joint stiffness is defined as being a joint’s resistance to external movements
[107]. The intrinsic stiffness of a joint is the mechanical stiffness provided by
active muscle, tendon and connective tissue. The stiffness can be increased
through active contraction of muscles.

Studies of the human ankle have shown that the intrinsic stiffness in the
ankle is not sufficient to maintain stance [108, 109], being between 64% and
91% of the value required for marginal stability in the forward–backward plane.
The ankle muscles are continuously contracting and relaxing to dynamically
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maintain stance. The literature suggests that the hip stiffness is comparable
to the value required for marginal stability [37, 75, 110].

To put the human stiffness values into perspective, consider the default
settings for the CycloidII and nao. By default the ankle pitch joint on the
CycloidII is a little over 10 times stiffer than that of a human. The default
settings on the nao provide over 100 times more stiffness in the ankle than that
of a human. This demonstrates that the stiffnesses typically used on humanoid
robots are much higher than those used by humans.

2.3 Human Perturbed Stance

Quiet stance is a special case of the more general perturbed stance. The
principles that apply to quiet stance discussed in the previous section, equally
apply to perturbed stance. In particular, the proprioceptive sense is essential to
the control of stance. Recent evidence [111, 112, 113] suggests that information
originating in the torso, from both proprioception and balance, plays a vital
role in stance, and that many postural reactions are still present in avestibular
patients.

There is a large body of literature on human responses to perturbations.
We will use this literature to investigate which characteristics of the exter-
nal perturbations influence the corrective responses. The measurement of the
characteristics identified in this section will become the aim of the impact
perception system described in Chapter 4.

2.3.1 Responses to Perturbations

Location Dependence

The response to a perturbation is dependent on the location of the point of con-
tact on the body. Rietdyk et al. [37] noted that when sideward perturbations
were applied to either the trunk or pelvis, different responses were induced.
Therefore the system we develop must be capable of determining the location
of the impact on the body.
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Direction Dependence

It is clear that the response required to maintain stance differs depending
on the direction of the perturbation. One model for the generation of such
responses is that of muscle synergies [114, 115]. In this model, muscles are
activated in groups with a fixed relative magnitude and phase. A corrective
response is then a superposition of a small set of muscle synergies. Importantly,
there are orthogonal synergies for perturbations in the forward–backward plane
and the left–right plane. A perturbation which occurs in a direction other
than these two planes, results in a superposition of responses from each plane.
Consequently the measurement of the direction of an impact should form an
essential component of an impact perception system.

Strength Dependence

The response required to maintain stance is also dependent on the strength of
the perturbation. Meyer et al. [116] showed that perturbations of increasing
strength produced response patterns with similarly increasing amplitude. The
study suggests that the same response pattern is used for all perturbations in a
particular direction, simply scaled to match the estimated strength of the per-
turbation. Therefore, the strength of an impact forms a crucial characteristic
to be measured by the system we develop.

2.4 Human Walking

2.4.1 An Efficiency–based Fitness Function

There is significant evidence in the literature that a human’s gait is selected
primarily to minimise the energy consumption [117, 118, 119]. In particular,
the minimisation of the total energy used per unit distance travelled [120].

The optimisation of gaits for simulated human models is closely related to
the optimisation of humanoid robot walking. Essentially, it is the optimisation
of a forward walk, in simulation, for an anthropomorphic model. Typically, the
fitness function is based on either minimising the difference between motion
capture data and the generated gait [121], or the minimisation of the energy
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used [120, 122]. The latter case results in walks that are quite similar to that
of a human.

2.4.2 Joint Stiffness for Walking

We saw in Section 2.2 that the stiffness of each joint in the leg is different.
Additionally, studies on human gait suggest that the stiffness of each joint in
the leg may be phase dependent [123]. Furthermore, the stretch reflexes in the
lower leg are modulated as a function of gait cycle [76] where the stretch reflex
activity effects the effective joint stiffness. An artificial ankle which provides
a fixed stiffness is inadequate at fast walking speeds [124], suggesting that a
variable stiffness is required. Furthermore, modelling of a human gait can be
improved through the selection of optimal gait phase dependent joint stiffnesses
[77].

2.5 Summary

The literature on human stance highlights several features which can be applied
to improve the standing of humanoid robots. The joint stiffnesses used by
humans during quiet stance are quite low and in the case of the ankle, below
that required for marginal stability.

Proprioception appears to be the most dominant sense for perturbation
detection, in particular, the joint velocities appear to trigger postural correc-
tions. Furthermore, responses to perturbations of human stance depend on the
location, magnitude and direction of the external force.

The literature on human walking suggests that an efficiency–based fitness
function is employed to select a gait. In addition to joint motion patterns, the
literature suggests that humans use joint stiffness patterns while walking.
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3.1 Introduction

This chapter presents the cross–robot software framework designed to facili-
tate cross–robot development and code sharing between research projects. The
design and implementation of the software framework was a significant under-
taking due to the number of robots the software needed to support and the
variety of the tasks required of the robots. The framework has been used to
complete the work presented in the remaining chapters of this thesis and has
also served as the basis for the NUbot RoboCup soccer team and other research
projects, such as the modelling of pedestrians for gaze analysis [125].

In general, software for robotic systems examines incoming sensor data
to generate useful actions that are then executed by a set of actuators. The
development of the software is a long and expensive operation, typically with
contributions from many developers across a diverse range of fields. Given the
size of software systems for robots, a software framework which is portable,
configurable and maintainable is desirable.

Robots have numerous sensors and actuators, each requiring a driver to
communicate with the software system. Each robot has a unique set of sensors
and actuators, which in turn requires a unique set of drivers and a unique set
of inputs/outputs for the software system. Consequently, software written for
a robot is often tied to that particular robot.

Furthermore, a robotic software system is often comprised of several dis-
tinct modules, for example, a vision module, a world modelling module, a
behaviour module and a motion module. These modules may also be robot–
dependant if communication with the drivers is not done through a sufficient
hardware abstraction layer.

This chain of dependancies in the transfer of information from the hardware
to the high–level software results in a robot–dependent system. However, the
chain can be broken by inserting layers of abstraction which implement stan-
dard interfaces that are applicable to all robots. In particular, an abstraction
layer is required between the software and the robot hardware, and a standard
interface is required for inter–module communication.

The comparison of different versions of the same system module is a com-
mon task. This task can be accelerated by making the modules hot–swappable,
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as a hot–swappable module can be replaced without restarting the entire sys-
tem. Furthermore, a single robot platform may be required to perform several
unrelated tasks each requiring a specific set of modules. Hence, the ability to
swap some modules at runtime allows the robot to switch between tasks. For
example, the replacement of a behaviour module designed to play soccer, with
one designed to perform a human–robot interaction experiment.

In this chapter we develop a software framework that implements a hard-
ware abstraction layer providing a logical robot [126] to the software system
that is identical across robot platforms. The logical robot is presented to the
software system as a blackboard [127] which is capable of storing a large variety
of different sensor and actuator data. In addition to the data, the blackboard
stores information regarding the data’s validity that enables the software mod-
ules to detect and adapt to sensor or actuator faults.

The software framework also makes use of class hierarchies to both simplify
the development of modules and drivers, and to enforce standard interfaces
between submodules. In particular, the architecture is designed to keep the
robot drivers quite thin, minimising the robot dependent implementation.

The remainder of this chapter is structured as follows: firstly a review of
existing software frameworks for robots is presented, followed by an overview
of the system architecture of the system. Section 3.2 describes the blackboard
and message–based systems employed to standardise the transfer information.
Sections 3.3 and 3.4 describe the class hierarchies used to standardise the
development of robot drivers and the system modules, respectively. Section 3.6
discusses the successful application of the framework to six robot platforms.
Finally, 3.7 presents a summary of the conclusions.

3.1.1 Related Work

There are many software frameworks for robotic systems in the literature [27].
The transfer of information between hardware and system modules can be
categorised into two classes; those which are message–based and those which
use a blackboard.

A message–based approach excels in distributed systems, as a message can
be easily serialised and sent over a network. Notable examples of such systems
are ROS [128] and YARP [129], both of which provide an excellent framework
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for robot independent software. However, the serialisation of the message,
and the data copying on either end, adds overhead to the system. Also, the
transport of the message through a physical network adds latency, however,
on a single processor system shared memory can be used instead.

A blackboard is well suited to a single mobile processor system because
of its lightweight. Blackboards are frequently used in the RoboCup soccer
domains given the limited processing available on small mobile robots. Both
[130] and [131] use blackboards to share information between system modules.

The architecture proposed in this chapter also uses a blackboard, as many
of the target robots have limited processing power. The blackboard is similar
to that of [130], in that information is grouped into a small set of classes. The
blackboard also incorporates an actuator command queue similar to that of
NaoQi [30], enabling the storage of motion sequences and animations. However,
the blackboard used here has been generalised to encompass a wide variety of
sensors and actuators, which allows the support for multiple robot platforms.
In addition to the sensor information itself, the validity of the data is also
stored in the blackboard, allowing higher level software modules to detect and
adapt to sensor and actuator failure.

A hybrid blackboard–message based architecture is proposed in [132] to
take advantage of the strengths of both approaches. A similar feature is used
in the NUPlatform framework, where commands, called jobs, can either be
shared using the blackboard, or serialised and sent through a physical net-
work. Although, the messages used in the NUPlatform are aimed more toward
teleoperation than distributed computing.

Few frameworks provide hardware drivers or implementations of common
algorithms. Player [133] and ROS [128] are important exceptions, providing
a large software base. Both the Player and ROS frameworks are component–
based systems, where a robot is assembled from a set of existing software
components. The alternative approach is to use inheritance to allow imple-
mentation sharing between similar robot platforms. In the NUPlatform archi-
tecture we use a structured class hierarchy to minimise the implementation of
drivers and modules, and to enforce standard interfaces. This aspect of the
NUPlatform is conceptually similar to several software frameworks for robots,
in particular, RoboFrame [134].
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Figure 3.1: An overview of the software architecture and the transfer of infor-
mation between the hardware and software modules via the blackboard.

Given the dominant target robot platforms for the NUPlatform framework
are legged robots, the configuration of the motion system is important. It is
common to use a motion manager to select from a list of available motion
providers, which provider is going to control the robot [32, 135, 130]. The
NUPlatform framework uses the same general principle. However, each limb
can be controlled by a separate provider which, for example, frees the arms of
a biped to perform other tasks while walking. Additionally, a bridge pattern
[136] is used to separate the motion manager from the walk engine allowing the
implementation of vastly different engines, in particular, it caters for engines
of both biped and quadruped robots.

Finally, of all the robot software frameworks reviewed in this section, none
of them have support for the niche set of target robots used here. This was an
important consideration for the development of the software architecture.

3.1.2 Architecture Overview

Figure 3.1 outlines the NUPlatform software architecture. The key parts being
the blackboard, the system modules and the hardware drivers. The NUPlat-
form software is open source and has been publicly available since inception at
[79]. The entire system has been written in C++ for performance.

The blackboard is central to the system, all of the information transferred
between modules is done via the blackboard. The blackboard and its con-
stituent modules are described in Section 3.2.

The NUPlatform object handles the transfer of information between the
hardware and the blackboard. It populates the blackboard with sensor data
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Figure 3.2: A UML class diagram of the blackboard showing the seven con-
stituent parts.

received from hardware and issues the stored commands to the hardware. The
NUPlatform object and the associated hardware drivers are described in Sec-
tion 3.3.

The system modules; vision, localisation, behaviour and motion, also com-
municate using the blackboard. Sensor data is obtained from the blackboard
by the modules. Each module then operates on the data and stores the results
of its execution on the blackboard for other modules. The behaviour and mo-
tion modules described in Section 3.4 are the two of primary relevance to this
thesis.

3.2 The Blackboard

The purpose of a blackboard in a software system is to store data and share it
with any modules that require it. Given that the blackboard can be updated
and accessed from many threads, it needs to be thread–safe. The blackboard
is also used from within real–time threads, so it needs to be very efficient.
Furthermore, as it is an object that all developers will use frequently, it should
be user–friendly.

The blackboard used in the NUPlatform is shown in Figure 3.2. The in-
formation stored in the blackboard is grouped into seven classes based on the
source of the information. Each of the classes will be discussed below.
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Figure 3.3: A UML class diagram of the NUSensorsData, the class which stores
all of the sensor data on the blackboard.

3.2.1 Sensors

The purpose of the NUSensorsData is to store sensor data and provide a mech-
anism for the rest of the system to access this data. A Unified Modelling
Language (UML) class diagram of the sensor data store is shown in Figure 3.3.

Figure 3.3 shows that the interface to the sensor data consists of polymor-
phic get and set functions. The data produced by any sensor can be reduced
to one of the basic data types specified in this interface. This style of interface
was chosen to satisfy the requirements of simplicity and efficiency.

The information for individual sensors is accessed using a unique integer
identifier. An integer type was used to keep the CPU usage of the system as
small possible. However, this approach is not as general, or developer friendly,
as using a string identifier. Identifiers for groups of sensors are also provided,
for example, an identifier for accessing all of the joint angle sensors.

The data for an individual sensor is initialised as being invalid. When the
data is updated using the set function it becomes valid. Consequently, for
a sensor which is never updated, such as a sensor that is not present on a
particular robot platform, the data will remain invalid and the get function
will always indicate to the rest of the software that the sensor is not available.

Furthermore, it is possible for sensor data to be invalid even on a robot
platform that has the particular sensor. The data may become invalid because
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of a hardware fault, such as the loss of communication with a single sensor, or
by design, such as the kinematically calculated camera height for a humanoid
robot becoming invalid when the robot is no longer on the ground.

As an example, consider the measurement of the orientation of the torso
of a humanoid robot. The use of accelerometers and gyrometers placed in the
chest is the preferred method for measuring the orientation. However, if such
sensors either fail, or are not present on a particular platform, the orientation
can still be calculated using the kinematic chain of the supporting leg. The
result is the software can adapt to the particular robot platform, in real–time,
making the system more robust.

3.2.2 Actuators

The purpose of the NUActionatorsData is to store commands produced by the
software system for the robotic hardware. The command store shares several
properties with the sensor data store, and in fact inherits from the same base
class. A UML class diagram is shown in Figure 3.4.

Conceptually, a command consists of data describing an action and a
time that the action should be performed. This is encapsulated by the
ActionatorPoint object where the data accepted by hardware actuators is
stored along with the timestamp at which the action should be executed.

To simplify the higher–level software modules the Actionator object is
used to store a queue of ActionatorPoint objects. The queue is sorted based
on the timestamp for each command with interpolation performed by default
on numeric data between consecutive commands. Being able to queue com-
mands makes implementing sequences of actions straightforward, for example,
a motion script for a joint or an animation for an LED can be stored in an
Actionator.

Similar to the sensor data, a single actuator or a group of similar actuators
can be addressed using a unique identifier. In the case where a component of
the robot is both a sensor and an actuator, for example, a servo motor which
provides the ability to both move and sense the position of a link, the same
identifier can be used for addressing either the sensor or actuator.

Figure 3.4 shows that the interface to the command store consists of a
single polymorphic add function. The polymorphism covers both the type of
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Figure 3.4: A UML class diagram of the NUActionatorsData, the class which
holds all of the actions to be issued to the robotic platform.

data to be added, and the type of sequence used to specify the timestamps for
the commands.

To understand how the interface works, consider the following function
signature as an example

add(id_t id, vector<double> time, vector<float> data).
There are several ways a user might wish to use such a function. If the id_t

addresses a single actuator, then the timestamps, time, and command data,
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data, will be formatted as

[time0, time1, . . . , timeN ]

[data0, data1, . . . , dataN ].

In this instance, it is clear the user is specifying a sequence of commands to a
single actuator.

However, if the id_t addresses a group of actuators then the intention of
the user is ambiguous. If the timestamps and command data are formatted as

[time0, time1, . . . , timeM ]

[data0, data1, . . . , dataM ],

where M matches the number of actuators in the group, the user is applying a
single command to each actuator with a unique timestamp. If the timestamps
and data are formatted as

[time0, time1, . . . , timeM ]

[data0, data1, . . . , dataL],

where L 6= M , then the user is applying the same vector with a different times-
tamp to each actuator in the group. By applying logic to the interpretation
of commands specified by the user, the ambiguity in the command can be
removed.

A similar approach to the one described in the example above is applied to
each of the add functions. In the event that a command does not match any
of the possible formats, the command is discarded, and the user is alerted that
their command was incorrectly formatted.

This approach was chosen to keep the interface as simple as possible. From
the perspective of higher–level software modules there is only a single add that
is used to place any sort of command for the hardware on the blackboard.

3.2.3 Visual Information

Note that the research presented in subsequent chapters of this thesis does
not require a robot vision system. However, a robot’s vision system is the
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primary sense used to perceive its surroundings and is consequently extremely
important in other applications, such as RoboCup. A brief description of visual
information is included here for completeness.

The visual information is stored in the blackboard in two objects; the
NUImage and the FieldObjects. The NUImage stores the image data as YUV422
from the robot’s vision sensors. Relevant settings used by the vision sensors
at the time the images were captured, such as the resolution, exposure and
hue, are also stored in this object. The raw YUV422 image is stored to avoid
expensive colour conversions.

The FieldObjects stores the visual information extracted from the im-
ages after object detection. Each detected object stored in the FieldObjects

contains its relative position and velocity. This object serves as the primary
source of information for the world modelling.

3.2.4 Jobs

The purpose of the JobList in the blackboard is to store jobs that are to be
executed by a software module. This is distinct from the NUActionatorsData;
jobs in the JobList encapsulate a task at a much higher level, and are to be
executed by software modules, not by hardware.

Figure 3.5 shows a UML class diagram of a subset of the available jobs.
A class hierarchy is used to share implementation among similar jobs. An
iterator is implemented so that each software module can iterate over the jobs
in the list, and execute the jobs assigned to it.

For example, consider the WalkJob, which controls the movement of the
robot. A WalkJob is typically generated by the behaviour module. However,
a WalkJob can be generated on an external system and sent to a robot via
a network. In effect, this enables the robot to be easily remote controlled,
whether by a human operator, or by another artificial agent. Furthermore,
every robot is also capable of transmitting a WalkJob over a network, thus
enabling any robot to control any other robot.

3.2.5 Network Information

Information received from the network is stored in the blackboard in two ob-
jects; GameInformation and TeamInformation. The origin of the class names
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Figure 3.5: A UML class diagram of the JobList showing a subset of the class
hierarchy that makes up the available jobs.

stem from RoboCup soccer; the GameInformation encapsulating the state of
the soccer game [137], and the TeamInformation encapsulating the state of
each of a robot’s team mates. However, these concepts can be used in more
general domains.

The game need not be a soccer match, it could be any sort of task. A
referee is used at RoboCup to allow a human supervisor to control the basic
behaviour of the robot, such as starting, stopping and pausing. The same
referee is used for human supervision of other tasks.

The team can consist of robots performing any task. The TeamInformation
stores the last known position of each robot in the team, as well as the task it
was executing.

3.3 The Platform

Figure 3.6 shows the organisation of the robot dependent module of the soft-
ware system. The platform consists of four submodules; the NUPlatform,
NUCamera, NUSensors and NUActionators, each of which will be discussed
below.
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Figure 3.6: A UML class diagram of the NUPlatform showing how the class
hierarchy is organised with three example robot platforms.

The flow of information through the four modules is shown in Figure 3.7.
The NUCamera and NUSensors encapsulate the input sensors of the robot, while
the NUActionators encapsulates all the actuators. These three objects isolate
the high–level software modules from the robot hardware. Furthermore, the
NUPlatform encapsulates the underlying operating system. Consequently, the
high–level software modules can be made both robot and operating system
independent.

3.3.1 NUPlatform

The NUPlatform provides a robot and operating system independent interface
for system calls. This includes functions to access the time, threading, and
networking of the underlying operating system, as well as providing functions
regarding a robot’s identity. The class also contains the robot dependent cam-
era, sensor and actuator modules.
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Figure 3.7: An overview of the transfer of data between the software modules
and hardware using the NUPlatform framework.

3.3.2 NUCamera

The NUCamera provides an interface to the vision sensor of the robot. As
noted previously, the vision system of the robot is not required by the work
presented in this thesis, however, it is included for completeness and is relevant
to the framework’s application to other projects. The NUCamera has the simple
purpose of copying the raw image to the NUImage on the blackboard. A simple
interface to modify the camera settings is also provided by this class.

The implementation of the class itself is robot dependent. The implemen-
tation may be inherited from a generic NUOpenCVCamera or NUV4LCamera, or it
may be robot specific, as is the case with the NAOCamera. The implementation
is separated from the NUSensors as vision processing requires a large amount of
memory and processing power. The separation allows specialisations to reduce
the overhead of storing the image in the blackboard.

3.3.3 NUSensors

The primary role of the NUSensors module is to copy data produced by hard-
ware sensors into the NUSensorsData on the blackboard. Before copying the
data the NUSensors module converts the data into the appropriate format to
be stored on the blackboard. The formatting includes both the reduction of
the data to one of the accepted types as well as the necessary scaling and
ordering to ensure unit and sign conventions are preserved.
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The secondary role of the NUSensors is to calculate soft sensors and select
the best sensor readings to provide a particular sense. For example, consider
the orientation of the torso of a humanoid robot. The orientation may be pro-
vided by an IMU, in which case this sensor is used. However, the hardware may
only have accelerometers and gyrometers, in which case the orientation needs
to be calculated. Furthermore, the orientation of the torso can be calculated
using the kinematic chain of the supporting leg. When both accelerometers
and kinematics are valid, a Kalman filter is used to fuse the information to-
gether. However, when there is a sensor fault with accelerometers, or the robot
is not on the ground, only the single valid sensor readings are used.

3.3.4 NUActionators

The purpose of the NUActionators is to copy the commands, stored in the
NUActionatorsData on the blackboard, to the actuators. Like the NUSensors,
the data stored on the blackboard needs to be converted into the proper format
expected by the hardware. This process, along with the actual data transfer,
is robot dependent.

3.4 The Software Modules

3.4.1 Behaviour

The goal of the behaviour software module is to provide task orientated be-
haviour for a robot. The behaviour required of a robot is very specific to a
target application, and the target applications may be vastly different. To
provide behaviour for a wide variety of tasks the system outlined in Figure 3.8
is used.

The system has a single Behaviour class which serves as a manager, al-
lowing the selection of a BehaviourProvider to implement the task orientated
behaviour. The selection of an appropriate behaviour can be done at compile–
time, using a button interface while the robot is operating or via a network.
The latter approaches are extremely useful when using robots in the field.

The online behaviour switching is done at the beginning of a behaviour
cycle. The Behaviour class checks if another behaviour has been requested. If
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Figure 3.8: A UML class diagram of the Behaviour system showing a subset
of the available behaviour providers.

so, the new behaviour is created, set as the current behaviour, and then the
previous behaviour is terminated.

The design of the behaviour module in this way effectively reduces the
implementation of task and environment specific code to the implementation
of a single robot behaviour. For example, the walk optimisation presented in
Chapters 6–8 is implemented as a single behaviour alongside a soccer playing
behaviour for RoboCup, and many other behaviours for other research projects.

3.4.2 Motion

The motion system provides the robot with a means to move around in its
environment. Figure 3.9 shows an overview of the modules that make up the
motion system. The general principle behind the system is to have a motion
manager select which motion providers should be running at any given time
from a list of providers capable of controlling the robot.

The NUMotion class is the motion manager. The motion manager divides
the joints of the robot into three groups; the head, arms and legs. The manager
selects a motion provider for each group of joints where the same provider may
be used to control multiple groups if desired. For example, a walk engine is a
motion provider that specifies trajectories for both the arms and legs. Usually
it will be the active provider for both the arms and legs, however, it is possible
for the motion manger to use a different provider to control the arms while the
walk engine continues to control the legs.
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Figure 3.9: A UML class diagram of the Motion system showing the hierarchy
of motion providers.

The manager decides which provider to execute based on information in
the NUSensorsData and the JobList. For example, the sensor data is used
to determine when the FallProtection and Getup providers should interrupt
the current motion providers. The jobs provide a much smoother transition
between providers, waiting for one provider to finish before starting the next.

The motion modules need to be suitable for each of the target robot plat-
forms. The NUHead provider controls the motion of the head in a robot indepen-
dent manner, providing an interface to perform common tasks such as panning
and tracking an object. In the case of the Script, Getup, and FallProtection

providers, robot dependent configuration files are used to tailor the motions to
a specific robot.

The NUWalk provider is the most difficult provider to port to each robot
platform given the vastly different methods of robot locomotion. A bridge
pattern [136] is used to separate the motion manager from the walk engine
implementations. It is desirable to use the same walk engine on different
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robots [32], however, this is not always possible. For example, a walk engine
may only run on a single robot, such as Aldebaran Robotics’ walk engine for
the nao, or the robots are too dissimilar, such is the case between wheeled
and legged robots.

The NUWalk provider selects the appropriate engine to be used with each
platform. In the case that multiple engines can be used, the selection is left to
the user, and robot specific walk parameters are used to tailor an engine to a
particular robot.

The design discussed in this section was vital to the success of the walk
optimisation on the three different humanoid robots in Chapter 7. Each of the
three robots required a different walk engine, this modules makes that possible.

3.5 System Configuration

The software system is configured using CMake [138]. Each robot platform
has a configuration file specifying the required external libraries and platform
dependent source files, as well as default values for miscellaneous configuration
variables. The result of this is that the system can be built for a particular
target using simple commands like make NAO or make Cycloid.

The user is also able to configure many aspects of the build. In particular,
the user can select which system modules to include in the build, that is, the
user is able to select whether vision, localisation, behaviour and motion should
be compiled. In the instance where multiple implementations of the same
module are provided, the user is able to select which implementation to use.
For example, the particular walk engine to compile can be selected.

3.6 Applications of NUPlatform

There are currently six platforms supported by the NUPlatform software frame-
work. This includes the four physical robots shown in Figure 3.10, three bipeds
and one quadruped. In addition to these robots the framework also supports
the Webots simulation package [139], and a generic Webcam. The amount of
platform specific code is quite small, at approximately 500 lines per supported
platform.
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Figure 3.10: The physical robots currently running the NUPlatform. From
left to right; the HyKim [28], a modified CycloidII [29], the NAO [30] and the
DARwIn [31].

The Webots and Webcam platforms have also been successfully used under
the Linux, Mac OS-X and Windows operating systems. However, all of the
physical robots run Linux.

One of the primary goals of the work presented in this thesis was to develop
algorithms and techniques that could be verified on multiple robot platforms.
The software framework presented in this chapter makes such development
possible. The CycloidII is used in Chapter 4, the darwin-op is used in Chapter
7, and the nao is used in Chapter 5 and Chapters 6–8. The Webots simulator
is used extensively in Chapters 6 and 7.

The software framework has also be used in a range of projects outside
the work presented in this thesis. The first major project was the NUbot’s
RoboCup soccer team [140] where the framework was used on the nao in the
SPL between 2010 and 2012, and on the darwin-op in the Humanoid league
in 2012. The generic Webcam platform was also used under this project for
vision development.

The other major project to use the framework was the design of urban
spaces through pedestrian analysis [125], where robot pedestrians were used
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as an intermediate step between simulation and real–world experiments. This
project made use of both the nao and the HyKim.

3.7 Conclusion

The NUPlatform software framework provides a robot and operating system
independent framework for the development of robot software. In particular,
a robot independent method for the transfer of information from hardware to
high–level modules is provided.

A structured class hierarchy is used to minimise the amount of robot de-
pendent implementation. The class hierarchy also allows the interchange of
different implementations of the same modules.

The NUPlatform’s flexibility has been demonstrated through its applica-
tion to six different platforms, including four different physical robots. The
framework has also been used in several different projects to provide vastly
different robot behaviours.

The software framework described in this chapter has been used as the ba-
sis for the implementation of the software required for each subsequent chap-
ter in this thesis. In particular, the framework excelled in chapter 6 where
the same walk optimisation technique was applied to three different walk en-
gines on three different humanoid robot platforms. Furthermore, the software
framework has served as a basis for the NUbot’s participation in the RoboCup
soccer competitions from 2010. This included the transition from the nao to
the darwin-op in 2012.
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4.1 Introduction

In this chapter we develop a system that uses only the proprioceptive sense of
a standing humanoid robot to determine the location, direction and strength
of external impacts. The system consists of an optimised threshold detector for
the detection of impacts, a Support Vector Machine (SVM) for the classification
of the location of impacts, and two orthogonal Support Vector Regression
(SVR) models for estimating the direction and magnitude.

We saw in Chapter 2 that the motion control system of a human relies
heavily on the proprioceptive sense. In particular, proprioceptive sensors trig-
ger postural corrections in human stance. Humanoid robots are equipped with
a good proprioceptive sense. The servo motors within a humanoid robot pro-
vide information about the movement of each joint. A typical humanoid robot
has many degrees of freedom in the arms and legs, each of which has a servo
motor with a high precision position sensor producing measurements at ap-
proximately 100Hz. This provides a large amount of precise information, with
a low latency, and hence forms a good proprioceptive sense.

In the literature, the calculation of the ZMP is a common use of the propri-
oceptive information on humanoid robots. Chapter 1 discussed the limitations
of the ZMP for sensing external impacts and Chapter 2 provided evidence that
the ZMP is not used by humans to maintain stance. Thus, an alternative use
of the proprioceptive sense is required.

Furthermore, Chapter 2 illustrated that the location, direction and strength
of perturbations influenced the corrective responses in humans. Therefore, we
focus on measuring these properties using the proprioceptive sense.

The perturbation sensing provided by the system developed in this chapter
could then be used to generate a better response to perturbations. Addition-
ally, a sense of ‘touch’ would also be provided without the need for a tactile
sensor skin, allowing the robot to better interact with its surroundings.

4.1.1 Review of Related Work

There have been no attempts in the literature to characterise perturbations
to stance using proprioception. However, the problem is similar to that of
detecting collisions, which has been studied previously. For example, collision
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detection during walking for both quadruped [141] and humanoid [142] robots
has been considered.

The approaches described in the literature are similar, a detector is created
by training a model on the expected proprioceptive sensor readings [141, 142,
143, 144]. A perturbation is then detected as a large deviation from the ex-
pected sensor readings. The model may be an SVM [144], a Neural Network
[142], or other expert system [141, 143].

Importantly, the aforementioned work does not quantify the external in-
fluence. It is typical for a collision detection system to only produce a binary
output [141, 143], where the robot is either perturbed or not. There is no
estimate of the strength or location of the perturbation. The detection delay
for the two approaches [141, 143] is approximately 0.3s, as both rely on the
observation of positive detections over several motion frames.

A binary output for each joint is produced by [142]. This information
could be used to localise the perturbation, nonetheless, neither the magnitude
nor direction of the perturbation are estimated. The detection delay for this
approach is at least 50ms, however, accurate truth data for the perturbations
was not collected.

4.1.2 System Overview

The system we propose consists of three components; the detector, the classifier
and the estimator. The detector produces a simple binary output as to whether
the robot is currently perturbed or not. To detect the perturbation, a norm
is applied to the joint velocities, if the norm exceeds a threshold, the robot is
considered to be perturbed. The detector is described in detail in Section 4.3.

The problem of determining the location of a perturbation is posed as a
classification problem. The location estimate is discretised into 16 categories;
8 on the upper body, and 8 on the lower body. Essentially, the perturbation
location is discretised to individual limbs. This approximation is reasonable
because a humanoid robot is made of rigid limbs and motors with only a
single degree of freedom. The application of force anywhere along such a limb
produces a similar effect, since the limb effectively acts like a lever.

The classification itself is performed by a multi–class SVM [145] on the joint
velocity samples after the initial detection of the perturbation. The parameters
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for the SVM and radial basis function are optimised to maximise classification
success. The classifier is outlined in Section 4.4.

The final component of the system is the estimator, which determines the
direction and strength of the perturbations to the upper body. The estimator
also uses the joint velocity samples after the initial detection. It is composed
of two SVR models, one for the forward–backward plane, the other for the
left–right plane. The parameters for the two SVR models are optimised in-
dependently to minimise the mean–squared error. The estimator is discussed
further in Section 4.5.

In order to train the SVM and SVR models, truth data for the perturba-
tions was required. The force applied to the robot during a perturbation was
measured using 16 pressure sensors placed on the upper and lower body of the
robot. These sensors provide truth data in regards to the timing of the per-
turbation, which is used in Section 4.3 to optimiser the detector. The sensors
also provide the location and strength of the impact which is used to train the
SVM in Section 4.4 and the SVR models in Section 4.5. The collection of the
data is described in the next section.

4.2 Equipment and Data Collection

The humanoid robotic platform used for this work was a CycloidII [29]. The
CycloidII was used because of its availability and it being representative of
a typical small humanoid robot constructed from servo motors. It is 41cm in
height, weighs 2.8kg and has 23 degrees of freedom; 6 in each leg, 4 in each arm,
2 in the torso and 1 in the head. The robot has been modified to accommodate
a Geode CPU running Linux and the NUPlatform software architecture. The
software system was configured to calculate the joint velocities by differenti-
ating the positions provided by the servo motors at 50Hz. An α–β filter [146]
was applied to the derivative to reduce noise.

Prior to a perturbation the robot is standing quietly in the position shown
in Figure 4.1. The position was configured to mimic the identified features of
human stance described in Section 2.2.

Section 2.2 also highlighted the low joint stiffnesses of humans during quiet
stance. To achieve comparable stiffness on the robot the joint stiffnesses were
selected to be as low as possible, whilst retaining the ability to stand without
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Figure 4.1: The standing position of the CycloidII prior to perturbation. The
knees are locked straight and the arms are left to swing freely. The orientation
was selected such that minimal torque is required at the ankles and hips.

active changes to the servo inputs. This procedure results in stiffnesses close to
that required for marginal stability, which was seen to be the case for humans.
The controller gain for each servo motor was used to specify the stiffness for
each joint.

The robot stance with anthropomorphic positions and stiffnesses was very
compliant and allowed the robot to move significantly during perturbations,
as opposed to simply rotating about an edge of a foot.

Force sensors were placed at 16 locations on the robot to collect the truth
data of the perturbation. The sensors were placed at 8 locations on the upper
body, and 8 locations on the lower body, as shown in Figure 4.2. The force
sensors were connected to an external computer using a data acquisition card
and recorded at 75Hz.

Figure 4.3 shows two examples of the force measured during a perturbation.
The perturbation consists of a force lasting approximately 0.25s. The impulse
of the impacts ranged from 0.3Ns to 2.0Ns, with a mean of 0.9Ns. Experiments
involving similar perturbations have been performed on humans to investigate
their posture control [37], where the impulse of impacts ranged from 13Ns to
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Figure 4.2: The placement of the force sensors used to collected training data.
Sensors were also placed on the right side in the same configuration as those
shown in the figure.

Figure 4.3: Two impacts showing the force measured by the sensors attached
to the robot. The first impact is applied to a single sensor, a member of the
orthogonal perturbation–set. The second impact is applied to two orthogonal
sensors and is a member of the omni–directional perturbation–set.
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31Ns. The impulses applied to the robot, scaled to account for its smaller mass,
are approximately equivalent to impulses on a human of 7Ns to 50Ns. Thus,
the range used here appears suitable for the development of anthropomorphic
perturbation sensing. Furthermore, the physical effect of the perturbations on
the robot range from it moving slightly, but remaining standing, to the robot
falling over quickly. Similar effects were observed in [37] for humans.

Perturbation data where force was applied to a single sensor was collected
for the training of the location classifier and strength estimator. Perturbations
in this subset are either in the direction of the sagittal (forward–backward) or
coronal (left–right) plane. This subset of data will be called the orthogonal
perturbation–set.

Perturbation data where force was applied to a sensor in both the sagittal
and coronal planes was collected for the training and verification of the strength
estimators. Through the application of varying amounts of force in both planes
we can emulate perturbations in any direction with any magnitude. This subset
of data will be called the omnidirectional perturbation–set.

After each perturbation the robot is manually returned to its quiet stance
pose and given a short period to settle before the application of the next
impact. The data recording is performed continuously throughout the experi-
ment until all of the perturbations have been applied. This procedure enables
approximately 15 perturbations to be captured per minute. The raw data is
then processed offline. The manual repositioning is removed from the data
and the samples belonging to each perturbation are extracted. The samples
between the manual repositioning and the next perturbation are also extracted
for selecting the detection threshold.

The dataset collected for the impact perception consisted of 603 perturba-
tions; 270 on the upper body, 220 on the lower body and 113 perturbations of
multiple sensors on the upper body. A small selection of the joint velocities
and perturbation forces for several perturbations is shown in Figure 4.4.

The direction and magnitude of the perturbations collected for both the
orthogonal and omni–directional perturbation–sets are shown in Figure 4.5.
Since a humanoid robot is inherently less robust to backward perturbations,
and more resilient to forward perturbations, the range of perturbation strength
was slightly smaller in the backward direction than in the forward direction.
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Figure 4.5: A polar diagram of the perturbations. The perturbations applied to
a single sensor are black, and lie along the axes. The perturbations applied to
two sensors are shown in blue. An angle of 0° represents a forward perturbation,
that is a perturbation where the robot was pushed forward from behind. The
magnitude of the perturbation is in Newton seconds (Ns).

4.3 Detecting a Perturbation

4.3.1 An Optimised Threshold Detector

To detect whether the robot has been perturbed we use a weighted sum of
the rotational joint velocities, d(Θ̇k) where Θ̇k = {θ̇ki }23i=1 is the rotational
velocities of each of the 23 joints at the kth time sample. When the sum
exceeds a threshold, T , the robot is deemed to have been perturbed.

There are many choices for the function d(Θ̇k). The two functions consid-
ered here were the weighted Manhattan norm,

d(Θ̇k) =
23∑
i=1

wi

∣∣∣θ̇ki ∣∣∣ (4.1)
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and a weighted seminorm,

d(Θ̇k) =

∣∣∣∣∣
23∑
i=1

wiθ̇
k
i

∣∣∣∣∣ . (4.2)

There are two aspects of the detector that can be adjusted; the threshold,
T , and the weights, w ∈ R23. The selection of T is based on the maximum
d(Θ̇k) that was observed in all of the unperturbed samples collected. T is then
set to 110% of this maximum value, resulting in a false positive detection rate
of zero over the collected data. Mathematically, the threshold is given by

T = 1.1 ·max
k

d(Θ̇k), for all k ∈ Unperturbed–set.

The weights, w, specify the amount each joint contributes to the detection
norm. There inclusion allows the adjustment of the norm to give greater in-
fluence to particular joints. The selection of the weights poses an optimisation
problem, where the objective is to minimise the average detection time, t0.
Formally, we can write the optimisation problem for finding w as

min
w

t0

subject to: wi ∈ [0, 1] for i = 1, . . . , 23.

The detection time is calculated as the time between the initial onset of force,
as measured by the force sensor, to the time the norm crosses the detection
threshold. For each set of w the detection threshold is recalculated.

Due to the non–convexity of the problem, Particle Swarm Optimisation
[147] was used to determine the optimal weights. The dimensionality of the
problem was reduced by constraining the weights for joints on the left and
right sides to be equal. Several degrees of freedom, one in the chest and two
in each arm, do not move during any impacts and were given weights of zero.

The average detection time after optimisation over the entire dataset of
perturbations was 138ms and 163ms using (4.1) and (4.2), respectively. The
weights selected by the optimiser for both norms are shown in Table 4.1. Note
that the average detection time was 175ms when wi = 1 for all i for both (4.1)
and (4.2).
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Table 4.1: Joint Weights Selected through Optimisation
(a) Weights for (4.1)

Joint Weight
ShoulderPitch 0
ShoulderRoll 0.40

HipRoll 1
HipYaw 0.71
HipPitch 0.16
KneePitch 0.19
AnklePitch 1
AnkleRoll 0.83
TorsoYaw 0.22

(b) Weights for (4.2)

Joint Weight
ShoulderPitch 0.29
ShoulderRoll 0.17

HipRoll 0.76
HipYaw 0.41
HipPitch 0.04
KneePitch 0.21
AnklePitch 0.95
AnkleRoll 1.0
TorsoYaw 0.55

In terms of detection time, the weighted Manhattan norm (4.1) outper-
forms the seminorm (4.2). Thus, (4.1) is used as the detection function in the
remainder of this chapter.

4.3.2 Discussion of Detection Results

It is evident from Tables 4.1(a) and 4.1(b) that the weights are similar for both
detection functions. The hip roll, ankle pitch and ankle roll joints are the most
dominant sources of information used by the detector. This is due to these
joints having lower joint stiffnesses than, for example, the hip and knee pitch
joints, allowing more movement when a perturbation occurs.

The improvement due to the optimisation of the weights for (4.1) is shown
in Figure 4.6. It is apparent that the optimisation is able to significantly reduce
the threshold.

The average detection time for perturbations of the upper and lower body
were significantly different, being 95ms and 215ms respectively. The perturba-
tions of the lower body are more difficult to detect because fewer joints move
as a result of the perturbation. Furthermore, the robot’s feet have a tendency
to slip easily when perturbations are applied to the lower body. Both of these
factors contribute to there being less information available for the detection of
impacts.

In some instances the velocity norm is slow to cross the threshold, reducing
the performance of the detector. Figure 4.7 shows several impacts where the
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Figure 4.6: The norm (4.1) of the joint velocities before and after optimisa-
tion. The thresholds selected before and after optimisation are shown by the
horizontal lines. The force measured by the pressure sensor is also shown.

detection delay is much greater than the average. It is clear from the figure
that there is a significant delay between the measurement of the force and any
resultant motion. This effect is especially prevalent for impacts to the lower
body and explains why the detector performs worse for that subset.

There are several causes for the observed measurement delay, the first being
the force sensor mountings. The force sensors are secured to the robot using
double-sided tape, which is essentially foam. This presents a small delay be-
tween the transfer of the force from the sensor to the robot itself. There is also
a small amount of backlash in the robot’s joints and limbs, this movement can
not be measured using the servo motors. Finally, a small delay is introduced
by the α–β filter.

It is difficult to compare the performance of the proposed detector to those
in the literature. Collision detection is frequently used to modify a robot’s be-
haviour, where the detection delay is not critical to the success of the detector.
Consequently, ad–hoc measurements of the detection delay are presented in
[141, 142, 143]. The mean detection time of 138ms achieved by the proposed
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Figure 4.7: Impacts where the detection delay is large. The individual joint
velocities are included to illustrate that the delay is a physical delay and not
caused by the calculation of the norm.

system is comparable to the delay observed on humans of between 125ms and
200ms [37, 116].

The perturbation detection system proposed in this section could also be
applied to other humanoid robots that have accurate joint sensors. The Cy-
cloidII has 10-bit joint position sensors that can be recorded at a frequency
of 50Hz. This is not a particularly high for a humanoid robot, for example,
both the nao [148] and darwin-op [149] have 12-bit position sensors that can
be recorded at 100Hz. The improved resolution and capture frequency should
enable a lower latency between the perturbation and its detection.

For the application of the system to another humanoid robot the external
force sensors would need to be attached during data collection. The weights for
the velocity norm would need to be re–optimised for the new data and robot.
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4.4 Perceiving the Location of a Perturbation

4.4.1 Classification of Location Using an SVM

The problem of localising the point of impact can be simplified into a clas-
sification problem by discretising the location into a set of possible contact
points. We categorise the location into a set of 16 classes, Y`, over the upper
and lower body of the humanoid robot, where

Y` = {FrontRightTorso, FrontLeftTorso,

RightShoulder, LeftShoulder, LeftArm, RightArm,

BackRightTorso, BackLeftTorso,

FrontRightThigh, FrontLeftThigh, FrontRightShin, FrontLeftShin,

RightShin, LeftShin, BackLeftShin, BackRightShin}.

A force sensor was placed at each of these locations as shown in Figure 4.2.
The input vector for the SVM is a vector of joint velocities xk. The vector is

formed from three consecutive samples of the velocity from each joint. Formally
the kth vector xk is given by

xk = {Θ̇k, Θ̇k−1, Θ̇k−2} (4.3)

where Θ̇k is the kth vector of the velocities {θ̇i}23i=1 from every joint. This
forms a 69 dimensional input vector. The joint velocities are also normalised
such that the values for each joint range between ±1.

We use three consecutive velocity samples to provide a pattern on which
to perform the classification. We note that the three samples span 60ms,
whilst the average detection delay is 138ms. Including samples prior to the
detection provides a diminishing amount of information, thus further increasing
the number of velocity samples per vector does not improve performance.

The orthogonal perturbation–set, described in Section 4.2, was used as the
training dataset for the classification. In particular, we use the first five xk

vectors after the detection of each perturbation for the training of the SVM,
as shown in Figure 4.8. We use the first five vectors as we aim to classify
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Figure 4.8: A diagram showing the formation of the training data used for
classification of the perturbation location.

the location immediately after the perturbation. Each xk is assigned a label,
yk ∈ Y`, using the truth values collected via the force sensors.

A one-against-one multi-class SVM [150] with a radial basis function kernel
performs the classification. In particular, the LIBSVM [145] implementation
is used. There are two parameters that can be adjusted to improve the perfor-
mance of the classification. The first is C > 0, the penalty parameter of the
error term in the primal form [151]

min
w,b,ξ

1

2
wTw + C

l∑
i=1

ξi

subject to: yi(w · xi + b) ≥ 1− ξi

where ξi ≥ 0 is the slack variable. The second is γ > 0, the parameter of the
radial basis function kernel

K(xi,xj) = exp(−γ||xi − xj ||2)

where xi is the ith sample vector. A grid search was employed to select the
parameters C and γ to minimise the error rate of a 10-fold cross validation.

After selection of suitable SVM parameters the error rate of a 10-fold cross
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validation was less than 0.2%, with only 4 errors in the 2435 samples. An
example confusion matrix is shown in Table 4.2. The small number of errors
occur only in impacts on the lower body, in particular, the front left thigh and
the front right shin. The classification performs flawlessly on the upper body.

To overcome the small number of errors in the lower body a simple voting
system is used. If two consecutive vectors, xk and xk+1, are both classified as
belonging to the same class, then the location of the perturbation becomes this
class. However, if the two vectors disagree, a third vector xk+2 is used to cast
the deciding vote. This simple strategy works well here as no perturbation has
more than a single classification error.

Overall, the classifier is able to localise an impact to the upper body using
only a single sample, thus the average delay is the same as the detection de-
lay, 95ms. The addition of the voting strategy to impacts on the lower body
increases the time taken to correctly localise the impact by 20ms, taking the
average classification delay from 215ms to 235ms.

4.4.2 Discussion of Classification Results

The computational load of the classification is quite low. A single classification
can be performed on the Cycloid’s CPU in approximately 1.5ms, comfortably
allowing the system to run in real–time.

To gain insight into why the classification is capable of achieving near
perfect accuracy, Principal Components Analysis (PCA) was performed on the
joint velocity vectors used for classification. Figure 4.9(a) shows that there is a
large degree of separation inherent in the data collected for the perturbations
to the upper body. Figure 4.9(b) shows that there is a smaller amount of
separation of the impacts on the lower body, hence the reduced performance
of the classifier on the lower body.

The perturbation locations chosen for classification are quite generic and
could equally be applied to most humanoid robots. Furthermore, the location
and configuration of each joint is not unique to the CycloidII, most humanoid
robots have similar degrees of freedom in the legs and arms. Thus, the move-
ment caused by perturbations at each location should ‘look’ similar on most
humanoid robots, and produce fairly unique motion pattern that can be easily
classified. However, for the system to be applied to another robot new data
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(a) A Biplot for perturbations to the upper body.

RS: Right Shoulder FR: Front Right Torso FL: Front Left Torso
LS: Left Shoulder LA: Left Arm RA: Right Arm
BR: Back Right Torso BL: Back Left Torso

(b) A Biplot for perturbations to the lower body.

FRT: Front Right Thigh FLT: Front Left Thigh FRS: Front Right Shin
FLS: Front Left Shin RS: Right Shin LS: Left Shin
BLS: Back Left Shin BRS: Back Right Shin

Figure 4.9: Biplots of the first two components found by PCA on the xk
samples.
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would need to be collected and the SVM would need to be retrained to fit the
new data and robot.

4.5 Estimating the Direction and Strength of a
Perturbation

4.5.1 Estimation of a Perturbation Using SVR Models

In this section we are interested in quantifying both the strength and the di-
rection of a perturbation using only the joint sensor information. The impulse
of a perturbation is a commonly used measure of strength in the literature on
human stance [116, 37] and is easily measured by integrating the force mea-
surements of a pressure sensor. Therefore, we use the impulse to characterise
the strength of a perturbation. The direction of the perturbation is the vector
parallel to the ground along which the force was applied to the robot.

To simplify the estimation of the magnitude and direction we decompose
the force into components in the orthogonal sagittal and coronal planes, mx

and my, respectively. The two components are then used to form a total
magnitude and a direction via

mag =
√
m2
x +m2

y

dir = arctan
my

mx
.

Formally, we need to fit two models; one for the impulse in the sagittal
plane, Mx : xk 7→ mx; and another for the impulse in the coronal plane
My : xk 7→ my. An individual SVR model is used to represent each map, in
particular, the ν-SVR [152] with a radial basis function kernel is used.

Section 4.2 described the collection of orthogonal and omnidirectional
perturbation–sets, which were shown in Figure 4.5. The orthogonal
perturbation–set was used for training, and the omnidirectional perturbation–
set was used for testing and verification. Essentially, the SVR models were
trained on perturbations where force is applied purely in the sagittal and coro-
nal planes and then tested on perturbations that have forces applied in mixed
directions. Only the perturbations to the upper body were included because of
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the difficulties associated with collecting the lower body dataset as discussed
in Section 4.3.

The truth value for the impulse of each perturbation is calculated by in-
tegrating the measured force. Since the sensors themselves are placed on the
robot such that they measure force in either the sagittal or coronal planes, the
measured impulse is already decomposed into components in the two orthog-
onal planes.

The input vector used for the estimation was the same as that used for
the classification described in Section 4.4, where xk was composed of three
consecutive joint velocity samples. However, the subset of the data used for
training was slightly different, only a single xk vector per perturbation was
used.

In a similar manner as that for classification, the parameters C, γ and
ν for the SVR models were selected using a grid search, with a 10–fold cross
validation to prevent over fitting. The metric used for selecting the parameters
was based on minimising the mean squared error (MSE) between the true and
predicted impulse of the perturbation in each plane.

Upon selection of the best parameters for the two SVR models, the MSE for
the magnitude was 0.087 Ns, and the MSE for the direction was 4.2°. Scatter
plots of the magnitude and direction are shown in Figure 4.10 and Figure 4.11,
respectively. The estimated magnitude and direction are strongly correlated
with the true values, having Pearson’s correlation coefficients of 0.62 (p <
0.001) and 0.99 (p < 0.001) respectively.

4.5.2 Discussion of Estimation Results

It is apparent that the two SVR models are much better at predicting the
direction of the perturbation, than the magnitude, from the velocity patterns.
Given the same models are used to perform both estimations, and that the
direction is more important than magnitude, this result is reasonable.

Initially the SVR models were trained on both the orthogonal and om-
nidirectional perturbation–sets. However, it was noted that the use of the
omni–directional perturbation–set during training was unnecessary. A model
fitted on only the orthogonal perturbation–set performed just as well as a
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Figure 4.10: A scatter plot of the true and estimated perturbation magnitude.

Figure 4.11: A scatter plot of the true and estimated perturbation direction.
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model fitted to both datasets. The apparent independence of perturbations in
the two planes stems from the configuration of the robot.

The humanoid robot is constructed from servo motors which are only able
to rotate around a single axis, and in most cases that axis is either the sagit-
tal or coronal plane. Consequently, a perturbation in the sagittal plane only
causes the motors in the sagittal plane to move, and vice versa. This property
is not unique to the CycloidII, all humanoid robots have joints in a similar
configuration simply because humans also have this property.

A single xk vector is used for the calculation of the magnitude and direction,
thus the estimation can occur immediately after the perturbation is detected.
That is, the mean delay for the perturbation estimation is 138ms.

The estimation of the magnitude and direction of the perturbation can
be calculated on the robot in approximately 1.5ms. Combining this with the
1.5ms required to perform the classification, the total time required to execute
the system on the robot is 3ms. Given the proprioception refresh rate on the
CycloidII is 50Hz, the proposed system uses 15% of the CPU.

4.6 Effect of Low Joint Stiffness on Performance

We saw in Chapter 2 that one of the key properties of human stance is that
each joint has quite low stiffness. We previously mentioned in Section 4.2 that
to emulate this the robot was given joint stiffnesses as low as possible.

To investigate the importance of low joint stiffness for proprioception based
impact perception we collected data at two additional joint stiffness levels;
‘medium’ and ‘high’. The high setting is the default stiffness for the Cy-
cloidII and the medium setting was chosen to be midway between the low
setting, used elsewhere in this chapter, and the high setting. Only an orthog-
onal perturbation–set was collected for each of the higher stiffness settings,
consequently only the performance of the detection and location stages are
considered here.

The procedures described in sections 4.3 and 4.4 were repeated for the two
new datasets. A new detector and classifier were trained and optimised for
each of the two new settings. The performance of the system with the two new
stiffness settings is compared to the low stiffness setting in Table 4.3.
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Table 4.3: Effect of Joint Stiffness on System Performance

Stiffness Avg. Time Classification
(ms) (%)

Low 138 99.8
Medium 190 95.3
High 199 95.6

It is clear that the performance of the system decreases as the joint stiff-
nesses are increased. The average detection time of a perturbation increases
significantly and the location classification success rate reduces. This result
suggests that the increased stiffness reduces the movement of the joints, thus
reducing the amount of proprioception information available to the system.
This reduction in information then limits the performance of the system. Thus,
a proprioception based sensing system should use the lowest possible stiffness
settings.

The reduction of performance as stiffness is increased is the greatest limita-
tion for the system to be applicable to all humanoid robots. For the system to
work, there needs to be considerably movement of the joints upon application
of an external force. However, most humanoid robots have adjustable stiffness
that can be reduced. For example, the nao also has adjustable stiffness, early
versions of the nao could not be set with a sufficiently low stiffness, particu-
larly in the arms, but later versions of the nao were improved to support lower
stiffnesses.

4.7 Conclusion

This chapter presents a sensing system capable of detecting, localising and
estimating the strength of an external impact to a standing humanoid robot.
The proposed system makes use of only proprioceptive information from the
robot’s servo motors, in particular, the joint velocities. The system was ap-
plied to a physical CycloidII humanoid robot where the system performed
extremely well, quickly detecting and characterising external forces, as well as
being computationally efficient.
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The detection of the perturbation is performed through thresholding on a
weighted norm of the joint velocities. The weights were optimised to minimise
the mean detection time for the upper and lower body, resulting in a detection
delay of 138ms. The mean detection delay for perturbations on the upper body
was 95ms, while the delay for the lower body was 215ms.

The localisation of the impact was reduced to a classification problem by
discretising the possible locations to a set of 16; 8 on the upper body, and 8 on
the lower body. A Support Vector Machine was able to classify each impact to
the upper body with a perfect 100% accuracy. The addition of a simple voting
strategy to the output of the SVM was required to achieve perfect accuracy
on the lower body, due to difficulties inherent to the robot hardware.

The direction and strength of the impact were estimated using a pair of
orthogonal Support Vector Regression models. After the models were fitted to
the data, the mean squared error between the true and predicted values were
0.087Ns for the impulse, and 4.2° for the direction.
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5.1 Introduction

The literature on human locomotion reviewed in Chapter 2 showed that in
addition to the the joint trajectories, the joint stiffnesses play a vital role.
Recall that the literature showed that the stiffness of each joint is different [75]
and that the stiffness varies as a function of gait phase [123, 76, 77].

It then follows that one should optimise both the walk parameters that
effect the calculated trajectories and the parameters that effect the stiffnesses.
In humanoid robots, the joints are typically controlled by a low–level position
control loop; typically a PID controller. It is common for the joint stiffness of
humans to be modelled as a PD controller [153]. Thus, the stiffness of each
joint on a humanoid robot can be manipulated by modifying the gains of the
low–level position controller.

There have been several attempts in the literature to emulate low joint
stiffness which typically involve modifications to the high-level controller, for
example, an impedance controller [154], or a variable compliance controller
[155, 156, 157]. Both of these approaches are implemented with stiff low–level
position controllers. However, modelling and sensing errors occur in imple-
menting a compliant controller with hard position tracking. By placing the
stiffness control in the low–level controller these errors can be avoided.

In this chapter we explore the advantages of low joint stiffness by adjusting
the gains of the low–level position control on a physical nao robot. We compare
a low stiffness walk to two high stiffness walks in terms of walk speed, efficiency
and stability. We find that the reduced joint stiffness improves all three areas
of the walk.

The optimisation of joint stiffnesses for humanoid robot walking is exam-
ined further in Chapters 6 and 8. Chapter 6 examines the advantages of low
stiffness with optimised walk parameters from within the context of the meta–
optimisation of walk optimisation techniques. Chapter 8 extends the available
joint stiffnesses further by allowing the stiffnesses to be gait–phase dependent.

The remainder of this chapter is organised as follows: firstly, the equipment
and the method used to select the reduced stiffness values for each joint is de-
scribed. The observed improvements in the walk speed, efficiency and stability
are then presented, followed by a discussion of the results.
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Figure 5.1: The nao v2 RoboCup edition.

5.2 Equipment and Method

5.2.1 Hardware and Software

The work in this chapter was performed on an early 2008 nao (v2) humanoid
robot, as shown in Figure 5.1, in preparation for RoboCup 2008. At the
time, the only walk engine available for the nao was an alpha version of the
Aldebaran walk engine. Being an alpha version the walk engine was quite
limited; it had no sensor feedback for walk stabilisation and had few walk
parameters. The few available walk parameters could only be adjusted over
a limited range and could not be adjusted in real–time. The walk engine was
also unable to walk in an omnidirectional, or even continuous, manner.

The nao uses a PID controller, with very high gains, for the low–level con-
trol of the joint positions of the form shown in Figure 5.2. The proportional
(KP ), integral (KI), and derivative (KD) gains are fixed, however, the param-
eter KS can be adjusted. Consequently, KS can be used to specify the joint
stiffness on the nao. Since KS is applied after the saturation element it also
reduces the maximum torque available to each joint.

Each motor in the nao is equipped with a current sensor, and the battery
has both a voltage and current sensor. These sensors are used to record the
current drain in each motor and to calculate the energy used by the robot
during a walk trial.
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Figure 5.2: A block diagram of the low-level positional control used by the
nao.

5.2.2 Optimisation Algorithm and Parameter Space

Due to the limitations of the nao and the walk engine provided circa 2008, the
implementation of an autonomous optimisation procedure was not possible.
Consequently, a simple optimisation algorithm was developed that could be
performed manually by a human operator.

To achieve this Powell’s method [158] was employed. Essentially, the algo-
rithm adjusts a single walk parameter until a local maxima is reached, after
which the algorithm begins adjusting the next parameter. The procedure is
repeated until all parameters have simultaneously reached local maxima. The
algorithm also uses a fixed relative step size for each parameter which simplifies
its manual implementation.

The walk parameter space available for optimisation is shown in Table
5.1. There are 8 traditional walk parameters that effect the calculated joint
trajectories. With stiffness included in the optimisation there are an additional
6 stiffness parameters, as the same parameters are used for both the left and
right legs.

In this chapter there are three sets of walk parameters discussed. The first
set is the default parameters provided by Aldebaran used with a global stiffness
of 100%. The second set is the ‘high–stiffness’ walk which has been selected
through optimisation using only the traditional walk parameters. Finally, the
‘low–stiffness’ walk has been selected through optimisation using a parame-
ter space including both the traditional walk parameters and the additional
stiffness parameters.
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Table 5.1: Walk Parameter Space for 2008 nao

Parameter Min Max
StepLength (cm) 0 10

StepFrequency (Hz) 1.5 3
StepHeight (cm) 0 3
ZMPX (cm) -3 3
ZMPY (cm) -3 3
HipHack (rad) 0 0.3
TorsoPitch (rad) -0.2 0.4
TorsoHeight (cm) 19 27

HipStiffness [25,25] [100,100]
YawStiffness 25 100
KneeStiffness 25 100
AnkleStiffness [25,25] [100,100]

5.2.3 Optimisation Path and Fitness Function

Due to the limitations of the walk engine only the forward walk was optimised.
Each walk was trialled over a straight path of length 400cm. The robot was
allowed to have a moving start and was not required to stop at the end of
the path. This allowed the robot to be walking at its maximum speed for the
entire length of the path.

The fitness function used for the selection of the best walk parameters was
the average speed over the path. The time required to complete the path was
measured manually from which the speed was then computed.

5.3 Results

The walk parameters selected by the optimisation process, along with the de-
fault settings, are shown in Table 5.2. The table shows that the joint stiffnesses
for the low–stiffness walk are significantly different from their default values.
Furthermore, upon comparison of the low and high stiffness walk parameters,
significant increases in step length and frequency are only possible once the
additional stiffness parameters have been introduced.
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Table 5.2: Optimised Walk Parameters

Parameter low–stiffness high–stiffness default
StepLength (cm) 5.7 4.5 4.0

StepFrequency (Hz) 2.4 2.2 2.0
StepHeight (cm) 1.2 1.1 1.5
ZMPX (cm) 0 1.0 1.0
ZMPY (cm) 1.0 2.0 1.5
HipHack (rad) 0.03 0.07 0.07
TorsoPitch (rad) 0.02 0.09 0.09
TorsoHeight (cm) 23 19 19

HipStiffness [30,70] [100,100] [100,100]
YawStiffness 60 100 100
KneeStiffness 30 100 100
AnkleStiffness [30,25] [100,100] [100,100]

Table 5.3: Comparison of Walk Performance

Walk Speed (cm/s) Cost of Transport (J/Nm)
low–stiffness 13.9 5.8
high–stiffness 11.3 8.6

default 8.7 11.0

5.3.1 Speed

The speeds of the low–stiffness, high–stiffness and default walks are shown in
Table 5.3. The speed of the low–stiffness walk was measured to be 13.9±0.2
cm/s. The speeds of the two high stiffness walks were 8.7±0.1cm/s for the
default walk, and 11.3±0.2cm/s for the high–stiffness walk. This means that
the low–stiffness walk was 60% faster than the Aldebaran walk, and 23% faster
than the high–stiffness walk.

5.3.2 Efficiency

A useful quantity to represent the walk efficiency is the specific cost of transport
cet [87], given by

cet =
E

mgP
, (5.1)

where E is the energy used, m is the mass, and P is the distance travelled.
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The cost of transport of each walk is shown in Table 5.3. In terms of cost
of transport, the low–stiffness walk represents a 33% and 47% improvement
compared to the high–stiffness and default walks, respectively.

Figure 5.3 shows the current drain from the battery while the nao was
walking the length of the optimisation path. The current drawn by the mi-
croprocessors was approximately 0.9A and is included in the values shown in
the figure. It is clear from the figure that the current consumption of the low–
stiffness walk is significantly lower than the two high stiffness walks, implying
that the low stiffness walk uses less energy per unit time.

Furthermore, Figure 5.3 shows that the current drain is much smoother for
the low–stiffness walk, with only a small difference between peak and average
currents. The standard deviations of the unfiltered currents in the figure were
0.14A, 0.27A and 0.25A for the low–stiffness, high–stiffness and default walks,
respectively.

The energy used as a function of distance is shown in Figure 5.4. The energy
used by the processors (approx. 20W) has been removed from the recorded
values for all three walks. The figure demonstrates that the low stiffness walk
is also significantly more efficient per unit distance travelled.

A practical result of this improvement in efficiency is the distance the robot
can now walk on a single battery charge. The high–stiffness and default walks
allow the robot to travel 520m and 415m respectively, while the low–stiffness
walk enables the robot to cover 815m, nearly twice the original distance.

The energy consumed by each motor in the left leg is shown in Figures 5.5
and 5.6. The figures show that the energy used as a function of distance is
significantly lower in every joint when using low joint stiffness. Furthermore,
the energy consumed by each joint is much smoother when the joint stiffness
is lowered. This is particularly apparent in Figures 5.5(b) and 5.6(b) where
the large spikes in the energy consumption are significantly reduced in the
low–stiffness walk.

Table 5.4 summarises the improvement in efficiency of each joint between
the low–stiffness and default walks. The reduction of the energy used per
centimetre travelled by the CPU is also shown in the table for comparison.

The largest improvements came from the knee, ankle and hip pitch joints,
where the efficiencies improved by 68%, 64% and 48% respectively. Of the
joints in the leg, the pitch joints move the furtherest while walking forward



76 5.3. Results

Figure 5.3: The current drain from the battery while walking. The thin lines
represent unfiltered current values, and the thick lines represent filtered cur-
rents with a moving 2s–window mean. Note that the plots for the two high–
stiffness walks are longer because they take more time to cover the optimisation
path.

and thus present the greatest opportunity for improvements in efficiency. It
is apparent from Table 5.2 that the introduction of low stiffness enabled a
significant increase in the height of the centre of mass. This increase is achieved
by straightening the legs which also contributes to the reduction of the energy
used by the pitch joints.

Table 5.4 also shows which components of the robot use the most energy.
The CPU is the greatest consumer of energy, using almost half of the total
energy. The knee pitch joint is the next biggest consumer, the primary cause
for this is that the robot walks with bent knees. Consequently, the knee requires
constant energy to support the robot’s weight.

5.3.3 Stability

A heuristic measure of stability was used to compare the low and high stiffness
walks. We found the heuristic: the walk is stable if it can complete the straight
optimisation path without falling, to be acceptable.
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Figure 5.4: The energy per centimetre used by the robot while walking. The
thin lines are the unfiltered values, and the thick lines are the moving 2s-
window means.

Table 5.4: Improvements in Efficiency of Individual Components

W Low–stiffness (J/cm) Default (J/cm) Improvement (%)
HipRoll 0.28 0.46 38
HipPitch 0.28 0.54 48

HipYawPitch 0.086 0.14 38
KneePitch 0.32 1.0 68
AnkleRoll 0.23 0.34 32
AnklePitch 0.19 0.54 64

CPU 1.4 2.3 38
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(a) The hip roll joint.

(b) The hip pitch joint.

(c) The hip yaw pitch joint.

Figure 5.5: The energy used by the upper three joints in the left leg per
centimetre travelled while the robot walked along the optimisation path.
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(a) The knee pitch joint.

(b) The ankle pitch joint.

(c) The ankle roll joint.

Figure 5.6: The energy used by the lower three joints in the left leg per cen-
timetre travelled while the robot walked along the optimisation path.
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Both the default and low–stiffness walks never caused the robot to fall over
while traversing the path, post–optimisation, during the collection of speed
and efficiency data. This means the robot walked for approximately 100m
without falling over. However, the high stiffness walk was not stable. The
robot required assistance approximately 30% of the time to prevent it from
falling over which was considered acceptable because this particular walk was
only constructed for comparative purposes.

The major improvement between the default walk and low–stiffness walk
was the robustness to external disturbances. To demonstrate, and quantify,
this observation a short length of uneven surface was constructed. The surface
was approximately 3m long and had irregularities of amplitude up to 1 cm.
The default and low–stiffness walks were each trialled over this surface five
times. With the low–stiffness walk the robot successfully completed the path
over the irregular surface four out of five times, while with the default walk it
completed the course only once in its five trials.

5.4 Discussion

The manufacturer’s recommended current drain for the battery was 1.5A.
Figure 5.3 shows that the only walk within this recommendation is the low–
stiffness walk. Both the default and high stiffness walks are constantly drawing
more than the recommended current. Furthermore, Figure 5.3 also shows cur-
rent peaks of over 2.6A for the two high stiffness walks which is greater than
the maximum rated current of the battery. In fact, the robot shut itself down
once during testing of the high–stiffness walk to protect the battery.

The inclusion of Ks for each joint as an additional optimisation parameter
made tuning the walk easier. It was observed that with a maximum stiffness,
it was difficult to find a set of walk parameters that are stable.

One explanation as to why the low stiffness walk is more efficient, is that
the low joint stiffnesses prevent the robot from rigidly tracking imperfect tra-
jectories produced by the walk engine. Instead it exploits the natural dynamics
of the system, allowing the robot to ‘settle’ into a more efficient gait, rather
than rigidly adhering to the calculated trajectory.

The smoothness of the motion contributes to the improved stability and
robustness of the walk. Consider the hip pitch joint during the swing phase.
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With stiff tracking the leg is abruptly accelerated forward at the beginning of
the swing, the moment exerted on the rest of the body can be great enough
to induce slip in the supporting foot, hence rotating the entire robot. This
can potentially result in the swing leg hitting the ground, or the robot becom-
ing unbalanced and falling sideways. As the amount of slip is unpredictable
this can present a problem. A similar effect was noticed at the end of the
swing phase. Reducing the stiffness in the hip pitch joint smoothed out these
accelerations and consequently improved the stability of the walk.

The robustness of the walk was also improved by the compliance introduced
through the low stiffness in the ankle. When the foot comes into contact with
the ground the low stiffness allows the foot to conform to the irregularities in
the floor, without effecting the orientation of the rest of the leg. If the robot
is not falling over, the leg will be approximately vertical. Thus, when the foot
becomes the single support, the support leg will remain approximately vertical,
held in place by the controller and the friction in the joint itself. In contrast,
stiff tracking would actively rotate the leg, through the ankle, on contact such
that it is perpendicular to the ground. This will result in the robot falling over
if the ground is not perpendicular to the gravity vector.

5.5 Conclusion

The reduction of the stiffness in the low–level position control vastly improves
the walk of the nao. Improvements in speed, efficiency and stability were
observed and quantified. The reduction in stiffness of each joint reduces the
rigidity at which the walk pattern trajectory is tracked. This prevents the
robot attempting to perfectly track a non-ideal gait, instead allowing it to
‘settle’ into a more natural and efficient gait. The reduction in stiffness also
makes the walk more robust to external influences as the low stiffness in the
position tracking prevents the joint from exerting too much torque against an
obstacle.

The low stiffness walk was found to be 60% faster than the default walk and
47% more efficient. An uneven surface was used to demonstrate that the low
stiffness walk was also significantly more robust. To investigate the effect of the
reduction in stiffness alone, an improved high stiffness walk was also created
for comparative purposes. Compared to this walk the low–stiffness walk was
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23% faster, and 33% more efficient. This demonstrates that the majority of
the improvement was due to the reduction in the stiffness.

The improved speed and stability of the low–stiffness walk proved to be
advantageous at RoboCup 2008. The low–stiffness walk was significantly faster
than the other walks, demonstrated at the competition, whose speeds ranged
between that of the default walk and the improved high stiffness walk. The
low–stiffness walk presented in this chapter was a major factor in the NUbot’s
victory at the 2008 RoboCup two-legged standard platform league.
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6.1 Introduction

This chapter presents the design of a walk optimiser through the comparison
and meta–optimisation of existing techniques. The design has been performed
exclusively in simulation with the final meta–optimised system being applied to
a physical robot. At each stage of the design, measures have been implemented
to minimise the stress placed on the robot during the optimisation process.
Furthermore, priority has been given to maximising the stability of the final
optimised walk.

There are three core components of a walk optimiser; the optimisation
algorithm, the fitness function and the walk parameter space. In this chapter
we examine each component and develop a complete walk optimisation system.

To begin we determine the most suitable optimisation algorithm by compar-
ing three algorithms; Evolutionary Hill Climbing with Line Search (EHCLS)
[144], Policy Gradient Reinforcement Learning (PGRL) [159] and Gaussian
Particle Swarm Optimisation (GPSO) [147]. Each algorithm was meta–
optimised prior to the comparison to both maximise the performance of each
algorithm and to enable a fair comparison.

Next we investigate which property of the walk it is best to optimise by
comparing three different fitness functions. Fitness functions based on the
average speed, efficiency and Froude–number, were evaluated over a predefined
path that required omnidirectional walking.

Finally, we compare the performance of two different parameter spaces.
The first parameter space consisted of only the traditional walk parameters
that effect the joint trajectories calculated by the walk engine. The second
parameter space included both the traditional walk parameters and additional
parameters to specify the stiffness of each joint in the leg.

The optimisation algorithms, fitness functions and parameter spaces are
compared based on the performance of the resultant optimised walks. The
speed, efficiency and stability of the walk selected after the robot has experi-
enced a fixed amount of stress during the optimisation process are the primary
basis for comparison. The repeatability of the optimisation process with a par-
ticular combination of algorithm, fitness function and parameter space is also
considered, where a small variance between successive optimisation episodes is
preferred.
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The remainder of this chapter, firstly describes the equipment used and
the optimisation process itself. The meta–optimisation of the existing algo-
rithms is then presented, followed by the comparison of the algorithms, fitness
functions and parameter spaces. Finally, the best combination of algorithm,
fitness function and parameter space is applied to a physical robot to verify
the effectiveness of the proposed optimisation system.

6.2 Equipment and Method

6.2.1 Hardware and Software

The work in this chapter was performed on Aldebaran’s nao robot. This robot
was used because it is typical of small humanoid robots and comes equipped
with an omnidirectional walk engine. The nao was also used in the SPL at
RoboCup in 2008–2012, thus providing an external application for the opti-
mised walks produced in this chapter.

In particular, a simulated version of Aldebaran’s nao robot, run using
the Webots software package [139] was used for the meta–optimisation and
comparison. The model of the nao provided with the simulation software was
modified to more accurately reflect the masses of the limbs of the physical
robot. The simulation model was supplemented with additional sensors to
measure the energy consumed while walking, including a simulation of the
energy used by the internal CPU of the nao.

The physical robot used to validate the optimisation system designed in
simulation was a 2010 nao (v3.2). The two humanoid robot platforms are
shown in Figure 6.1.

The NUPlatform software framework discussed in Chapter 3 was used on
both platforms. The NUPlatform software framework had been developed to
allow the same software to be executed on different robot platforms. This
allows identical walk optimisation techniques to be evaluated across multiple
robot platforms without the need to modify or rewrite the software.

The proprietary walk engine of Aldebaran [61] was used for the physical
nao. As this walk engine is closed–source and limited to running only within
Aldebaran’s own middleware, an alternative walk engine was required for the
simulator. An open–source walk engine based on a Zero Moment Point preview
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Figure 6.1: The physical and simulated nao robot. The physical nao (v3.2)
is pictured with an overhead ssl–vision marker.

controller [160] was selected for both its similarity to the proprietary engine
and its availability [135]. The walk parameters and their corresponding ranges,
for the two walk engines, are shown in Table 6.1.

The initial walk parameters for the simulated nao were selected manually.
This was necessary for the simulated nao because there was no existing set of
stable parameters suitable for the platform. The default walk parameters for
the physical nao were sufficient to be used as a starting point for optimisation.

6.2.2 Optimisation Path

It is common to only optimise the forward walk of a humanoid robot [64,
59, 60, 161]. However, here we are concerned with the optimisation of an
omnidirectional walk.

One approach to the optimisation of an omnidirectional walk engine is to
independently optimise a discrete set of walk directions and then use interpo-
lation [62]. This approach significantly increases the number of trials required
to perform the walk optimisation. Furthermore, smooth interpolation between
different parameter sets is not always possible, for example, interpolating be-
tween different centre of mass heights and step frequencies is difficult.

An alternative approach is to use a single set of parameters for every walk
direction. A circular path is used in [162] to optimise an omnidirectional walk
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Table 6.1: Walk Parameters

Simulator Physical
Parameter Min Max Min Max
Velocities [0,0,0] [70,70,2] [0,0,0] [30,30,2]

Accelerations [0,0,0] [140,140,4] [0,0,0] [140,140,4]
StepFrequency 1 Hz 5 Hz 1.6 Hz 4.5 Hz
StepHeight 0 cm 8 cm 0.5 cm 6 cm
ZMPStatic 0 1 - -
ZMPOffset 0 cm 7 cm - -
SensorGain [0,0] [0.2,0.2] - -
SensorSpring [0,0] [1000,1000] - -
DSFraction 0.1 0.8 - -
HipHack 0 rad 0.3 rad 0 rad 0.2 rad
FootLift -0.4 rad 0.4 rad - -

TorsoPitch -0.2 rad 0.4 rad -0.15 rad 0.15 rad
TorsoHeight 25 cm 32 cm 27 cm 32 cm
HipStiffness [30,30] [100,100] [30,30] [100,100]
YawStiffness 30 100 30 100
KneeStiffness 30 100 30 100
AnkleStiffness [30,30] [100,100] [30,30] [100,100]

engine. However, this path fails to encompass all of the possible walk prim-
itives, for example, sideward walking. A much more elaborate technique is
employed by [163], where an omnidirectional walk is optimised over many dif-
ferent paths. This optimisation was performed in simulation, and consequently,
little regard was given to the time required to perform the optimisation and
the stress placed on the robot.

For the research conducted here, the fitness of a set of parameters was
evaluated using the path shown in Figure 6.2. The path was designed to
include forward, sideward and diagonal movements, as well as an omnidirec-
tional backward spin. Additionally, the robot is required to stop and start at
the endpoints, further testing the agility of the walk.

To follow the path, a localisation system is required. In the simulator an
artificial GPS and compass sensor are used to provide accurate information to
control the robots movement. On the physical robot the overhead ssl–vision
tracking system [164] is used to provide the same information. The robot’s
vision system is not used as it is inaccurate and consumes most of the available
processing power.
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Figure 6.2: The path over which the fitness of a set of walk parameters is
determined. The black line indicates the desired path, the dotted line displays
a typical path travelled by a robot, and the dashed line emanating from the
robot indicates its orientation.

During optimisation a walk trial is ended when either the last waypoint is
reached, or the robot falls. If the last waypoint is reached, the next trial is
started immediately with the waypoints mirrored. This allows the optimisation
process to run continuously without the need to reset the robot to a particular
starting position. If the robot falls, a get–up routine is executed, and the robot
returns to the starting point to begin the next trial.

6.2.3 Optimisation Expense

To reflect the stress placed on the robot during the optimisation process we
introduce an expense measure. The expense of the optimisation process, E ,
after i walk trials and f falls, is given by

E = i+ 9f. (6.1)
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The 1:9 ratio between successful and unsuccessful iterations was selected based
on the relative maintenance costs of the wear associated with completing the
path and with falling.

We use the expense in place of the iteration count and a fixed expense of E =

2000 is used as a stopping criterion for the optimisation process. By using this
measure of expense in the meta–optimisation of parameters for optimisation
algorithms, we select a combination that reduces the stress placed on the robot
during the optimisation process. Effectively, the 1:9 expense ratio penalises the
optimisation 9 times more for a trial where the robot falls as compared to a
successful trial.

The expense measure is also used throughout the comparison of optimisa-
tion techniques. Using the expense allows for an effective comparison between
techniques that have a significantly different number of unsuccessful trials.

6.3 Optimisation Algorithms

There are numerous algorithms for walk optimisation [66, 67], of which some
are more suitable for application to humanoid robots. The algorithms in the
literature can be separated into three categories; local, hybrid and global op-
timisers.

A local optimiser starts from an initial set of parameters and iteratively
moves to a local extremum. For walk optimisation, the requirement of an initial
starting point translates to finding an initially stable walk. The preference for
an initially stable walk improves convergence and reduces the stress on the
robot, especially in the early stages of optimisation. However, finding such a
parameter set is nontrivial. Another problem with local optimisers is that they
only converge to a local extremum, which may be far from the global optimum.

A hybrid optimiser is a local optimiser that has been modified to escape
from local extrema. Typically, the modification involves a reset phase where
the optimisation is either restarted from a different point, or the algorithm
backtracks to a previous point and searches in a new direction.

A global optimiser seeks a global extremum through a much wider search of
the parameter space compared to both the local and hybrid optimisers. Typ-
ically, a global optimiser does not require a starting point, or is not highly
dependent on a good starting point. This is beneficial for walk optimisation
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because one does not need to manually search for a good starting walk. How-
ever, compared to local optimisers, global optimisers have significantly slower
convergence speed.

Three algorithms were chosen from the literature to represent each cate-
gory; PGRL, a purely local optimiser; EHCLS, a hybrid optimiser; and GPSO,
a global optimiser.

The PGRL algorithm is a gradient ascent approach, where the gradient
is estimated from a small set of experiments at each iteration. The PGRL
algorithm was chosen to represent the local optimisation class because it has
been shown to perform quite well in the domain of walk optimisation [159, 68,
59, 162].

The EHCLS algorithm, as the name suggests, is a simple hill climbing
algorithm with an additional gradient ascent component. The algorithm also
includes a reset phase to help escape from local extrema, making the algorithm
an example of a hybrid optimiser. This algorithm has also been shown to
perform well in the walk optimisation domain [165, 144, 66].

The GPSO algorithm is an example of a global optimiser and was chosen
for its high convergence speed and simplicity. The algorithm does not need a
starting point, thus avoiding the initial manual search for a stable set of walk
parameters that could bias the final optimised walk.

6.3.1 Evolutionary Hill Climbing with Line Search

A modified version of the EHCLS algorithm proposed in [144] was used. The
calculation of the size of the mutation in each dimension was modified to
explicitly use the limits of the parameter space in that dimension. With this
modification, the size of the mutation is specified intuitively and does not
require meta–optimisation. The pseudo–code for the algorithm is shown in
Algorithm 1.

6.3.2 Policy Gradient Reinforcement Learning

A modified version of the PGRL algorithm proposed in [159] was used. The
algorithm includes a modified calculation of the adjustment vector A. The
vector is compressed using a sigmoid function in place of the normalisation in
the original algorithm. Primarily, this modification improves the ability of the



91 6.3. Optimisation Algorithms

Algorithm 1 EHCLS
θbest = θ = InitialParameters
loop
F = calculateFitness(θ)
if F > Fbest then
θpreviousbest = θbest
θbest = θ
Icurr = F − Fbest
α = 0.95 tanh

(
Icurr

Iprev

)
end if
if StallCount > L then
Fbest = ρFbest
α = 0

end if
θ = θbest+α(θbest−θpreviousbest)+(1−α) ·N (0, η exp

(
StallCount

L − 1
)
) ·range(θ)

end loop

where

θ = current set of walk parameters
θbest, θpreviousbest = current and previous best sets of walk
parameters
Icurr, Iprev = current and previous improvement in best fitness
F ,Fbest = current and best fitness of walk parameters
calculateFitness(θ) = walk fitness evaluation function
N (a, b) = normal distribution with mean a and variance b
range(θ) = {θmax − θmin}D1 the size of the parameter space for
each dimension D

and the following are parameters to be meta–optimised

η = size of the mutation at each iteration
L = limit at which a stall is detected
ρ = amount to reset after a stall.
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algorithm to handle large differences in fitness between policies. In particular,
policies that have a near zero fitness which occur frequently when a policy
results in the robot falling. The pseudo–code for the algorithm can be found
in Algorithm 2.

Algorithm 2 PGRL
θ = InitialParameters
loop
{θ}N1 = generatePolicies(θ, ε)
F = calculateFitness({θ}N1 )
for i = 0 to D do
Avgi+ε ← average fitness for all θk that have

a positive perturbation in dimension i
Avgi0 ← average fitness for all θk that have

no perturbation in dimension i
Avgi−ε ← average fitness for all θk that have

a negative perturbation in dimension i
if Avgi0 > Avgi+ε and Avgi0 > Avgi−ε then
Ai = 0

else
Ai = Avgi+ε −Avgi−ε

end if
end for
A = η tanh(A) · range(θ)
θ = θ +A

end loop

where

{θ}N1 = set of N walk parameter sets
D = dimension of θ
generatePolicies(a,b) = generates N walk parameter sets
such that θk = {θ1 + δk1 , . . . , θD + δkD} where each δki is chosen
randomly from {−εi, 0, εi} where εi = ε · range(θi)
A = adjustment vector range(θ) = {θmax − θmin}D1 the size of
the parameter space for each dimension D

and the following are parameters to be meta–optimised

η = specified the step size
ε = size of the perturbation applied to each dimension
N = number of policies
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6.3.3 Gaussian Particle Swarm Optimisation

The GPSO algorithm in [147] was used with an initial swarm randomly dis-
tributed over the entire search space. The particle values are restricted such
that θmini ≤ θi ≤ θmaxi for all i, and the particle velocities are restricted such
that |θ̇i| ≤ 0.5(θmaxi − θmini ). The pseudo–code for the algorithm is shown in
Algorithm 3.

Algorithm 3 GPSO
{θ}N1 = generateParticles(N)
loop
F = calculateFitness({θ}N1 )
{pbest}N1 ← personal best for each particle
gbest ← global best of all particles
{θ̇}N1 = |N (0, 1)|({pbest}N1 − {θ}N1 ) + |N (0, 1)|(gbest − {θ}N1 )
{θ}N1 = {θ}N1 + {θ̇}N1

end loop

where

generateParticles(N) = generates N randomly distributed
particles N (0, 1) = normal distribution with mean 0 and vari-
ance 1

and the following parameter is to be meta–optimised

N = number of particles

6.4 Fitness Functions for Optimisation

There are many aspects that can be considered in determining the fitness of
a gait. The three core components of most fitness functions are the speed,
efficiency and stability of a set of parameters.

An argument can be made for optimising the walk speed of a robot in a
competitive environment, as often the first robot to complete the task is the
winner. RoboCup’s humanoid soccer leagues are examples of such an envi-
ronment, where being the first robot to the ball offers a significant advantage.
Furthermore, in other applications improving the walk speed can maximise the
amount of work performed by the robot in a given amount of time.
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The efficiency of a walk is also an important property as it dictates the
distance the robot can travel on a single battery charge. There are other
advantages to an improved efficiency including lower operating temperatures
and lower energy costs.

Here we propose three fitness functions based on the speed, the efficiency
and the Froude–number. The stability of a set of parameters is measured
implicitly in each fitness function by the ability to complete the relatively long
optimisation path described in Section 6.2.2.

6.4.1 Speed

The speed–based fitness function, FS , is given by:

FS =

D
P ·

0.5D
T if path not completed

P
T if path completed

(6.2)

where D is the distance travelled, P is the distance of the desired path shown
in Figure 6.2 and T is the time required to complete the path.

For a set of walk parameters that successfully complete the path, the fitness
is simply the average speed. The path distance is used instead of the actual
distance travelled to avoid rewarding the robot for deviating from the path.
However, if the path is not completed, the fitness is reduced by a half, to
penalise the parameter set for being unstable. It is also scaled by the ratio of
the distance travelled and the complete path distance, to penalise parameters
that cause the robot to fall quickly.

6.4.2 Efficiency

The cost of transport [87], cet, is given by:

cet =

P
D ·

E
0.5mgP · if path not completed

E
mgP if path completed

(6.3)

where E is the total amount of energy consumed completing the path and m
is the mass of the robot. The energy is calculated using voltage and current
measurements from the battery and motors.
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The cet is then used to calculate the efficiency–based fitness function, FC ,
using:

FC =
180

4 + cet
. (6.4)

Note that this fitness function was designed to give FC similar numerical prop-
erties to FS , that is, it has a comparable range of values and is a maximum
when the efficiency is the highest. This scaling allows the fitness functions to
be interchanged without modifications to the optimisation algorithms.

6.4.3 Froude–Number

The fitness function based on the Froude–number for bipedal walking [166] is
given by:

FF = 20
F2
S

g`
(6.5)

where ` is the leg length of the robot and is measured kinematically for each set
of parameters. The scaling factor of 20 is used to give this function a similar
range to that of FS and FC .

The primary difference between FF and FS is the introduction of the leg
length. The effective leg length is adjusted by bending the knee, and can vary
over quite a large range for the humanoid robots considered here.

6.5 Parameter Spaces for Optimisation

It was shown Chapter 5 by a preliminary investigation that the reduction of
joint stiffness improves the walk in every aspect. The same additional joint
stiffness parameters are used in this chapter where their effect is more rigor-
ously analysed through simulation.

Formally, the traditional walk parameters are the set

Wp = {p1, p2, . . . , pD}

where D is the number of walk parameters for a particular walk engine, either
11 or 19 for the two walk engines considered in this chapter.
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The stiffness parameters, si, for a single joint specify the percentage of the
maximum controller gain,

Ws = {s1, s2, . . . , sM}

where M is the number of joints. We adjust the joint stiffnesses such that the
values for the left and right legs are the same, thus M = 6 for each humanoid
robot considered here.

The two parameter spaces considered here are then the traditional walk
parameter space, Wp, and the combined traditional and stiffness parameter
space, Wp ∪Ws.

We should note that in Chapter 5 a v2 nao was used whereas in this
chapter a v3.2 nao was used. There were many improvements to the nao

between these two versions, however, the PID controller shown in Figure 5.2
was used in both versions. Thus, the joint stiffness can be adjusted through
the manipulation of Ks.

The simulated nao uses a proportional controller for low–level joint posi-
tion control whose KP can be adjusted at every simulation step. Thus, the
joint stiffness is adjusted via the proportional gain in simulation.

6.6 Meta-optimisation of Algorithms

To adequately compare the optimisation algorithms, each needs to be meta–
optimised. For the purposes of meta–optimisation the algorithms attempted
to improve the speed based fitness function, FS , with the parameter space
including the additional stiffnesses parameters (Wp ∪Ws).

Given the small number of algorithm parameters requiring meta–
optimisation, a grid search was used. Four to six instances of the simula-
tion at each grid point were run in parallel to improve the certainty of the
measurement. The fitness function used to evaluate the performance of the al-
gorithm parameters during the meta–optimisation was the mean speed of the
final optimised gaits, over the four to six instances, after a fixed expenditure
of E = 2000.
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Table 6.2: Parameters Selected by the Meta–Optimisation
(a) EHCLS

Parameter Value
η 0.1
L 5
ρ 0.995

(b) PGRL

Parameter Value
η 0.05
ε 0.05
N 12

(c) GPSO

Parameter Value
N 30

Recall, η is the step size and N is the number of policies/particles. L and ρ are the reset
limit and reset fraction for the EHCLS, respectively, and ε is the perturbation size for
PGRL.

The parameters selected for each of the three algorithms can be found in
Table 6.2. The reader is referred to Section 6.3 where algorithms 1, 2 and 3
describe the relevant tuning parameters for each of the three algorithms.

The EHCLS algorithm performed best with a low L and a high ρ, indicating
that the algorithm quickly resets and discards the gradient component when
it fails to result in further improvements.

The PGRL algorithm performed best when the two parameters η and ε

have similar values. This prevents the algorithm from overstepping the area
under which its gradient estimate is useful. The selection of N is a trade–off
between increasing the convergence speed and improving the quality of the
estimated gradient.

The GPSO algorithm has only a single parameter that can be meta–
optimised reducing the grid search to a simple one–dimensional interval search.
The algorithm performed best with a swarm size of N = 30, slightly larger than
the number of dimensions.

6.7 Design of the Comparison of Walk Optimisation
Techniques

To effectively compare the algorithms, fitness functions and parameter spaces a
complete factorial design was used to evaluate each component over all combi-
nations. A graph representing the design of the comparison is shown in Figure
6.3. Essentially, each optimisation algorithm is tested with every combina-
tion of fitness function and parameter space. Similarly, each fitness function
is tested with every combination of algorithm and parameter space; and each
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Figure 6.3: The complete factorial design of the comparison of algorithms,
fitness functions and parameter spaces.

(a) Algorithm (b) Fitness Function (c) Parameter Space

Figure 6.4: Example graphs illustrating how the complete factorial design re-
lates to the individual comparison of algorithms, fitness functions and param-
eter spaces. The combinations relevant to the first algorithm, fitness function
and parameter space are shown.

parameter space is tested with every combination of algorithm and fitness func-
tion. There are a total of 18 combinations of algorithms, fitness functions and
parameter spaces in the comparison.

Figure 6.4 further illustrates the design through an example for each com-
ponent. For a particular algorithm there are 6 combinations of fitness functions
and parameter spaces. The performance of an individual algorithm is then the
median of the performances of each combination. This experimental design of-
fers the advantage of providing both an insight into the specific performance of
the algorithms with each combination and their performance in general. Sim-
ilarly, there are 6 and 9 combinations for each fitness function and parameter
space, respectively.
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As each algorithm has a stochastic component and the fact that noise is
added to the sensors in the simulator, there is a variation in performance
between experiments with the same combination of algorithm, fitness function
and parameter space. To assess the variance of each combination, 12 simulation
trials were conducted for each combination. The performance of an individual
combination is then the median over the 12 simulation trials. Recall, that there
were 18 combinations of algorithms, fitness functions and parameter spaces,
thus a total of 216 simulation trials were conducted to compare each component
of the walk optimiser.

A summary of the results from the 216 simulation trials can be found in
Figures 6.5–6.10. Each figure illustrates the median speed and efficiency for
a single algorithm–fitness–space combination as a function of expense. The
median is used due to its robustness to outliers. The variation between trials
for each combination is also shown in the figures. The shaded region indicates
this variation with the 25th and 75th percentiles.

Sections 6.8, 6.9 and 6.10 draw results from this complete factorial design.
Essentially, the median performance from the relevant combinations in Figures
6.5–6.10 is used to compare the algorithms, fitness functions and parameter
spaces directly.

6.8 Comparison of Algorithms

Figures 6.5–6.10 show that after meta–optimisation all of the algorithms per-
form well with each combination of fitness function and parameter space; im-
proving the walk speed and efficiency significantly compared to the initial walk
parameters. We note that this is the case even though the meta–optimisation
of algorithm parameters was performed using only FS and the parameter space
Wp ∪Ws.

Figure 6.11 and Table 6.3 compare the three algorithms directly. Figure
6.11 shows the evolution of the median speed and efficiency of all of the combi-
nations shown in figures 6.5–6.10 for each of the three algorithms. The figure
shows that the GPSO algorithm has a significantly slower convergence in the
early stages of the optimisation, while the EHCLS and PGRL are quite similar
throughout.
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Figure 6.5: The evolution of walk performance for each algorithm when FS is
used without the additional stiffness parameters (Wp). The median speed and
efficiency are shown, with the shaded regions bounded by the 25th and 75th
percentiles.
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Figure 6.6: The evolution of walk performance for each algorithm when FS is
used with the additional stiffness parameters (Wp ∪ Ws). The median speed
and efficiency are shown, with the shaded regions bounded by the 25th and
75th percentiles.
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Figure 6.7: The evolution of walk performance for each algorithm when FC is
used without the additional stiffness parameters (Wp).The median speed and
efficiency are shown, with the shaded regions bounded by the 25th and 75th
percentiles.
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Figure 6.8: The evolution of walk performance for each algorithm when FC is
used with the additional stiffness parameters (Wp ∪ Ws). The median speed
and efficiency are shown, with the shaded regions bounded by the 25th and
75th percentiles.
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Figure 6.9: The evolution of walk performance for each algorithm when FF is
used without the additional stiffness parameters (Wp). The median speed and
efficiency are shown, with the shaded regions bounded by the 25th and 75th
percentiles.
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Figure 6.10: The evolution of walk performance for each algorithm when FF
is used with the additional stiffness parameters (Wp ∪Ws). The median speed
and efficiency are shown, with the shaded regions bounded by the 25th and
75th percentiles.
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Figure 6.11: The evolution of the walk speed and efficiency for the three op-
timisation algorithms evaluated. The median speed and efficiency are plotted
for each algorithm.

Table 6.3: Comparison of Algorithms

Algorithm Speed (cm/s) Cost of Transport (J/Nm) Falls (%)
EHCLS 18.3 (0.8) 4.04 (0.31) 16.3
PGRL 19.4 (0.6) 3.89 (0.18) 8.7
GPSO 18.3 (0.8) 4.29 (0.28) 11.9

Table 6.3 shows the median speed and efficiency of the final optimised
walks from each combination of fitness function and parameter space for the
three algorithms. It also includes the variance between the simulation runs
in parentheses. The final column is the median average fall percentage and
provides a measure of the stability of a gait. For example, the EHCLS has a
fall percentage of 16.3%. This means that on average, the best gaits selected by
the EHCLS, have a 16.3% chance of causing the robot to fall while traversing
the optimisation path. The fall percentage was measured for each of the final
optimised gaits by using each set to complete the path repeatedly over a 20
minute period.
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The results show the PGRL algorithm performs better in terms of improv-
ing the walk speed and efficiency by a significant margin. PGRL also has less
variation between the fitness of the optimised gaits and has a lower fall per-
centage, implying that the gaits are more stable than those selected by either
EHCLS or GPSO. This improvement in stability is achieved even though each
algorithm is using the same implicit stability measure in the fitness functions.

The observed improvement in stability of the walks selected by PGRL
stems from the averaging of several nearby policies to estimate the gradient.
As PGRL uses the outcome of several walk evaluations to calculate the next
set of parameters it avoids areas where the walks may be fast, but are either
unreliable, or sensitive to small changes in the walk parameters that result in
instability.

In contrast, EHCLS has a tendency to select unstable walk parameters as
an unstable walk may be able to complete the optimisation path occasionally.
The EHCLS algorithm effectively tests a single set of parameters repeatedly
until an improvement is achieved. This tends to allow the algorithm to drift
toward walks which are fast but erratic, because the walk need only complete
the path a single time to be used to calculate the next set of parameters.

The GPSO has the disadvantage of starting from an initial distribution of
walk parameters where the majority of the parameters are unstable. Hence,
the algorithm is heavily penalised until all of the particles converge toward
stable walks. This is evident in Figure 6.11 where it is not until an expense of
1000 that the GPSO algorithm begins to produce comparable walks.

The EHCLS, PGRL and GPSO algorithms were able to complete 540, 1000
and 660 iterations, on average, before using all of the available expenditure.
Therefore, it is possible that the ratio between the cost of a successful iteration
and a fall may influence the comparison. However, the effect was observed to
be reasonably small, when the comparison was performed using ratios of 1:7
and 1:13; similar results were achieved, as shown in Figure 6.12.

Finally, Figure 6.11 shows that the choice of terminating expenditure has
little impact on the comparison. Provided the allocated expenditure exceeds
1000, all three algorithms continue to improve the walk at approximately the
same rate, with PGRL performing slightly better.
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Figure 6.12: The effect of varying the expense ratio between successful and
unsuccessful trial. The top figure uses a ratio of 1:7 and the bottom figure uses
a ratio of 1:13.

6.9 Comparison of Fitness Functions

Recall that Figures 6.5 to 6.10 also show the specific performance of the fitness
functions with each combination of algorithm and parameter space. The figures
show that each fitness function performs well in improving walk speed and
efficiency. This demonstrates that the careful design of the functions FS , FC
and FF to have similar numerical properties has enabled the algorithms to use
each function effectively without repeating the meta–optimisation.



109 6.9. Comparison of Fitness Functions

Figure 6.13: The evolution of the median walk speed and efficiency achieved
with each of the three fitness functions.

Figure 6.13 shows the evolution of the median speed and efficiency of the
walk performance for each fitness function as a function of expense. The fig-
ure shows that the evolution of the speed–based (FS) and Froude–based (FF )
fitness functions are almost identical. The efficiency–based fitness (FC) per-
forms better at improving the speed in the early stages of the optimisation and
performs significantly better in reducing the cost of transport.

Table 6.4 shows the median speed, efficiency and fall percentage of the final
optimised walks for each fitness function. The results in the table demonstrate
that the efficiency–based fitness function (FC) outperforms the other two in ev-
ery respect. Interestingly, it even outperforms the speed based fitness function
at improving the walk speed. The nao has a high idle energy consumption,
so the efficiency can be significantly improved by simply completing the path
faster. This property makes optimising the efficiency particularly effective at
simultaneously improving the speed. Furthermore, humans also have a high
basal energy consumption [87], and there is evidence to support the proposi-
tion that human evolution has used a cost of transport based fitness function
[120].

The cost of transport based fitness function also selects gaits that are signif-
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Table 6.4: Comparison of Fitness Functions

Function Speed (cm/s) Cost of Transport (J/Nm) Falls (%)
Speed 18.3 (0.8) 4.23 (0.34) 15.4

Efficiency 18.9 (0.6) 3.88 (0.19) 8.0
Froude 18.7 (0.8) 4.19 (0.24) 13.7

Table 6.5: Comparison of Parameter Spaces

Space Speed (cm/s) Cost of Transport (J/Nm) Falls (%)
Wp ∪Ws 18.1 (0.7) 4.07 (0.29) 9.7
Wp 19.3 (0.8) 4.14 (0.22) 15.1

icantly more stable. The gaits are forced to exploit the natural dynamics of the
robot so as to become more efficient. Additionally, the walks become smoother
as unnecessary jerk is reduced to conserve energy. Both these features make
the walks inherently more stable.

6.10 Comparison of Parameter Spaces

Figure 6.14 and Table 6.5 compare the median speed and efficiency from all
of the combinations. Table 6.5 shows that the gaits produced with additional
stiffness parameters (Wp ∪ Ws) are slower. However, they are more efficient
and more stable. Lowering the stiffness in each joint through the optimisation
process has the effect of reducing both the maximum torque exerted by the
motor and the controller gain. This allows the robot to ‘settle’ into a more effi-
cient gait, rather than attempting to rigidly follow joint trajectories produced
by an imperfect walk engine.

We found in Section 6.8 that PGRL was the most suitable algorithm, and
in Section 6.9 that FC was the best fitness function. If we consider only this
combination we find that the median speed of the final select walks drop from
19.3cm/s to 18.1cm/s when the joint stiffness parameters are added. However,
adding the stiffness parameters improves the median fall percentage from 2.1%
to a perfect zero. That is, the 12 final optimised walks selected by each simu-
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Figure 6.14: The evolution of the median walk speed and efficiency achieved
using the parameter spaces Wp ∪Ws and Wp.

lation instance with PGRL, FC and the additional stiffness parameters, had a
zero fall percentage when tested over a 20 minute period.

This is an important result and means that if this combination is used to
perform the optimisation process only a single time, it is highly probable that
the final optimised walk will never fall. This is ideal for real hardware where
it is only practical to run the optimisation process a single time.

The reader may recall that a significant improvement in speed was achieved
in Chapter 5 when the additional stiffness parameters were added to the opti-
misation on a physical nao. This is in contrast to the small reduction in speed
observed here in simulation. This discrepancy is primarily due to limitations
of the simulation itself, and not due to the differences in walk engines.

The physical nao uses very high controller gains. Similarly high gains
in the simulator result in simulation–instability, consequently the initial set
of joint stiffness parameters used for optimisation were much lower than the
default values used in hardware. Furthermore, the accuracy of the simulation
of the joint stiffness is limited, the low–level controllers are simply proportional
and the simulated motors have 100% efficiency at all speeds. Thus, the effect
of a reduction in stiffness is not as significant in simulation.
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The simulated robot is only an approximation of the actual robot, where
the physical modelling in the simulator is not ideal. In particular, there are no
self–collisions and each joint is connected together via a lightly damped. The
effect is that it is much easier to perform the walk optimisation in simulation as
the simulated robot appears to be much more stable. Thus, the use of reduced
stiffness is not required to improve the speed of the walk in simulation, the
opposite of that observed on the physical robot.

Combining the improvement in stability and efficiency observed in simu-
lation in this section with the improvements in speed, efficiency and stability
observed previously, in hardware, in Chapter 5 a strong case for the use of ad-
ditional joint stiffnesses in the walk optimisation can be made. Consequently,
the additional stiffness parameters (Wp ∪Ws) are included in the final meta–
optimised walk optimiser in the next section.

6.11 Application to the Physical NAO

In summary, Sections 6.6–6.10 used a simulator to design a general walk op-
timiser for application to physical robots. In Section 6.6 we selected the best
parameters for the optimisation algorithm. In Section 6.8 we selected PGRL
as the best algorithm on the basis of the superior speed, efficiency and stabil-
ity of the optimised walks. In Section 6.9 an efficiency based fitness function
performed best in every aspect considered. Finally, in Section 6.10 we saw
that additional stiffness parameters improved stability and efficiency, and in
Chapter 5 we saw a significant improvement in speed in hardware.

Based on these results, the combination of PGRL with FC and the addi-
tional stiffness parameters was applied to a physical nao to verify the effec-
tiveness of the meta–optimised walk optimisation system. Additionally, the
optimisation path designed in the simulator, shown in Figure 6.2, and the
stress measure (6.1) were used for the optimisation on the physical robot.

Recall that the physical nao uses the walk engine provided by Aldebaran
and that the default walk parameters were used as a starting point for the
optimisation.

The results of the optimisation process are shown in Figure 6.15. The
optimiser significantly improves the performance of the walk compared to the
default settings. The average speed was improved from 7.0cm/s to 11cm/s,
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Figure 6.15: The results for the meta–optimised PGRL with efficiency based
fitness function FC and additional stiffness parameters (Wp∪Ws) on a physical
nao. The thick lines represent the best speed and efficiency. The thin lines
indicate the individual speed and efficiency for each set of walk parameters
trialled. The short sections where the speed of an individual trial is low are
the result of the robot falling and a penalty being applied.

an improvement of 57%. The efficiency is also improved, from 16.9J/Nm to
11.8J/Nm, an improvement of 30%. Furthermore, the selected walk is very
stable, having a zero fall percentage over 30 iterations of the optimisation
path.

There is a large difference between the optimised walk speed on the physical
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robot and in the simulator. In addition to the limitations of the simulator
discussed previously, we note that the load on the simulated joints does not
effect their maximum speed. Thus, the simulated robot is capable of moving
its limbs much faster than the physical robot, resulting in a higher walking
speed.

The improvement on the physical robot is also much smaller than that
observed in the simulator. The default walk parameters for the Aldebaran
walk have presumably been optimised in some sense before the release of the
walk engine. In contrast, the starting point used for the simulated walk was
selected quickly and not optimised in any manner.

It is informative to compare the results of this chapter to those in Chapter
5. In Chapter 5 we optimised only the forward walk along a straight path,
achieving a speed of 13.9cm/s. In this chapter, we optimise an omnidirectional
walk over a complex path and achieved an average speed of 11.0cm/s. The
peak forward speed of the optimised walk from this chapter was 20cm/s, when
this speed is compared to the speed from the previous chapter, the effectiveness
of the proposed system becomes clear. Similarly, the efficiency while forward
walking achieved in this chapter was 4.9J/Nm, compared to 5.8J/N in the
previous chapter.

The significant improvement in performance compared to Chapter 5 also
demonstrates the utility of the simulation results. An optimiser was designed
in Sections 6.6–6.10 in simulation then, without modification, the optimiser
was applied to the physical robot. It appears that the general conclusions
drawn from the results in the simulator apply to the physical robot, including
the selection of algorithm parameters and the selection of algorithm, fitness
function and parameter space. Furthermore, the use of the optimisation path
also resulted in an optimised walk with excellent omnidirectional capabilities
and the stress measure appears to have reduced the number of falls during the
optimisation procedure.

The two best walk engines for the nao circa 2010 were the nao Devils’
engine [55] and B–Human’s engine [56]. Both of these walk engines are much
more advanced than the Aldebaran walk engine optimised throughout this the-
sis, the walk engines produce dynamically stable gaits and use sensor feedback
to respond to external perturbations.
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The nao Devils’ walk reached speeds close to 45cm/s [167], however, this
speed was not achievable during a game due to problems with overheating. One
of the advantages of optimising the efficiency of the walk is that it reduces the
energy consumption of the motors, thereby reducing their operating tempera-
tures. The optimised walk presented in this chapter is capable of continuous
walking without overheating.

The B–Human walk had a forward walk speed of approximately 25cm/s
in competition [168]. The forward walk speed achieved in this Chapter was
20cm/s, despite the more limited walk engine. Furthermore, here we optimise
the walk over a complex path and achieve an average speed of 11.0cm/s. It is
unclear what the average speed of the b–human walk would be over a similar
path, however, their robot’s rarely reach there maximum speed during a match
as they constantly slow to change directions. Thus, the optimised walk of this
chapter should compare favourably.

6.12 Conclusion

The Policy Gradient Reinforcement Learning algorithm performed better in
terms of improving the walk speed and efficiency and does so more consistently.
Furthermore, the PGRL algorithm significantly outperforms the EHCLS and
GPSO in selecting gaits which are stable.

The cost of transport based fitness function outperformed both the speed
and Froude–number based functions in every respect, especially in terms of
the selected gait stability. The addition of joint stiffnesses to the parame-
ter space also improved the efficiency and stability of the selected gaits. The
results demonstrate that a significant improvement in walk stability can be
achieved through careful selection of an algorithm, fitness function, and pa-
rameter space.

From the results we conclude that the best algorithm–fitness–space com-
bination for a humanoid robot walk optimisation system is PGRL with an
efficiency based fitness function and a parameter space with additional stiff-
ness parameters. In the simulator, all of the walks selected by this combination
had a zero fall percentage, while being extremely fast and efficient.

To support the results from the simulator we applied the proposed walk
optimisation system to a physical nao, without modification. The optimiser



116 6.12. Conclusion

successfully improved the walk speed by 57% and walk efficiency by 30%. The
walk selected using this procedure was used at the 2010 RoboCup competition.
We found the walk to have a comparable performance to many other teams
who were using more advanced walk engines. This was especially true when
the robots were required to walk in an omni–directional manner. Furthermore,
throughout the competition the walk was observed to be exceptionally stable,
only falling after repeated contact with other robots.
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7.1 Introduction

This chapter discusses an extension of the PGRL algorithm to include the use
of redundant fitness functions to improve convergence speed and assist in the
escape from local extrema. The PGRL algorithm is also modified such that the
policies used to estimate the gradient are generated in opponent pairs. The
improved algorithm is validated using a simulated humanoid robot and two
physical robots, the nao and the darwin-op. Two different physical humanoid
robots are used to demonstrate the generality of the proposed improvements.

In Section 6.8 we found PGRL to be the best performing optimisation
algorithm of those considered. However, the PGRL algorithm is only a local
optimiser and is consequently prone to getting trapped in local extrema. One
strategy to deal with local extrema is to reset the algorithm using a new starting
point. This approach is difficult to apply to humanoid walk optimisation,
because another set of stable parameters is generally difficult to find. Frequent
resets result in the algorithm reducing to a random search.

An alternative approach is to use the concept of safe redundancy [169, 74],
where instead of restarting the algorithm, the fitness function is modified to
escape the local extremum. In particular, the fitness function is replaced by a
different fitness function, that shares the same global extremum, each time the
optimisation process reaches a local extremum. The concept of safe redundancy
can be used in the more general case where a set of fitness functions have
similar global extrema. The differences in local extrema between each of the
different fitness functions still help local optimisers to move toward a more
global extremum.

In Section 6.4 we proposed three fitness functions specifically designed to
have similar numerical properties. This design allows the fitness functions to
be interchanged without adjusting the algorithm. The three fitness functions
were compared in Section 6.9, where each performed well at improving the
walk speed and efficiency. This suggests that the fitness functions have similar
global extrema and are suitable for use in the application of the safe redundancy
concept to the PGRL algorithm.

The second modification to the PGRL algorithm is to incorporate opposition–
based machine learning, which involves evaluating a particular policy and also
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evaluating its ‘opposite’ [170, 171]. This idea can be applied to extend many
existing optimisation algorithms to improve convergence speed.

The remainder of this chapter, firstly describes the additional robot plat-
form used for validation of the proposed improvements. Next, the improved
algorithm is presented, followed by the results of its application to three hu-
manoid robot platforms.

7.2 Equipment and Method

The equipment and method used here is identical to that used in the previous
chapter with the addition of an extra physical robot platform, the darwin-op

[26]. The reader is referred to Section 6.2 for more details on the simulated
and physical nao (v3.2), and the optimisation process.

Figure 7.1 shows the darwin-op alongside the nao robot platform. The
darwin-op was selected as the second physical platform due to its availability
from the 2012 NUbot humanoid soccer team. The two robots have similar
sizes, both being kid–sized humanoid robots, and have comparable degrees of
freedom. However, for their heights, the robots have different sized feet, the
darwin-op having feet 25% smaller, and different Body Mass Indexes, the
darwin-op being 15% lower.

The walk engine used on the darwin-op was the open–source walk engine
of Robotis [172] supplied with the robot. The initial walk parameters were
manually selected as the default walk parameters were unstable, hence the
robot was unable to complete the optimisation path. Table 7.1 shows the walk
parameters for the darwin-op walk engine. For comparison, the table also
shows the parameters for the walk engines of the physical and simulated nao.

In addition to the optimisation process discussed in Section 6.2, the same
meta–optimised parameters for the PGRL algorithm found in Section 6.6 are
used in this chapter. Furthermore, the fitness function selected in Section
6.9 and the parameter space selected in Section 6.10 are also used without
modification. Thus, the results of this chapter serve as a validation of the
improved PGRL algorithm and also demonstrate the generality of the walk
optimiser designed in the previous chapter.
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Figure 7.1: The simulated nao robot, the physical nao robot and the darwin-
op robot. The two physical robots are pictured with overhead vision markers
attached.

Table 7.1: Walk Parameters

Sim. nao Phys. nao darwin-op
Parameter Min Max Min Max Min Max

Velocities (cm/s) [0,0,0] [70,70,2] [0,0,0] [30,30,2] [0,0,0] [30,20,2]
Accelerations (cm/s/s) [0,0,0] [140,140,4] [0,0,0] [140,140,4] [0,0,0] [140,140,6]
StepFrequency (Hz) 1 5 1.6 4.5 1.6 4.0
StepHeight (cm) 0 8 0.5 6 1.0 4

ZMPStatic 0 1 - - - -
ZMPOffset (cm) 0 7 - - - -

SwayLeftRight (cm) - - - - 1.5 3.5
SwayUpDown (cm) - - - - 0 0.8

SensorGain [0,0] [0.2,0.2] - - [0,0,0,0] [1,1,1,1]
SensorSpring [0,0] [1000,1000] - - - -
DSFraction 0.1 0.8 - - 0.1 0.5

HipHack (rad) 0 0.3 0 0.2 - -
FootLift (rad) -0.4 0.4 - - - -

TorsoPitch (rad) -0.2 0.4 -0.15 0.15 -0.15 0.15
TorsoHeight (cm) 25 32 27 32 18 24
HipStiffness (%) [30,30] [100,100] [30,30] [100,100] [30,30] [100,100]
YawStiffness (%) 30 100 30 100 30 100
KneeStiffness (%) 30 100 30 100 30 100
AnkleStiffness (%) [30,30] [100,100] [30,30] [100,100] [30,30] [100,100]
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7.3 Opposition–based PGRL with Redundant
Fitness Functions

7.3.1 Opposition–based Policy Generation

To extend PGRL to include opposition–based learning we need only define
what constitutes an opponent policy. We define an opponent policy as being a
policy with opposite perturbations in each dimension. For example, given the
policy

{θ0 + ε, θ1 + 0, θ2 + ε, θ3 − ε},

the opponent policy would be

{θ0 − ε, θ1 + 0, θ2 − ε, θ3 + ε},

where the sign of the perturbation has been changed in each dimension. This
modification is implemented by first generating N/2 policies in the usual man-
ner and then generating the remaining policies to be their opponents.

One of the motivations for the inclusion of opponents in the policy gen-
eration was to balance the number of perturbations in each direction. In the
original formulation the expected number of policies with θi− ε, θi or θi+ ε are
equal. However, with a small number of policies per iteration the number in
each direction is frequently unbalanced and occasionally a particular direction
will have no policies. The opposition–based policy generation guarantees that
the number of policies with θi − ε and θi + ε are equal in each iteration.

7.3.2 Use of Redundant Fitness

To incorporate the concept of safe redundancy into the PGRL algorithm, the
three fitness functions outlined in Section 6.4 are used. The number of trials
between improvements is used as an indicator for when a local maximum is
reached. When there are no improvements for a fixed iteration count, the
fitness function is switched.

Figure 7.2 sketches an example of how the three different fitness functions
are used together in a single dimensional case. The figure shows the fitness
of the parameter as measured by each of the three fitness functions. In this
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Figure 7.2: An example of a one–dimensional hill climb algorithm operating on
three fitness functions. Local maximums reached for each each fitness function
are shown with a circular marker.

example, the three fitness functions have similar, but not identical, global
maxima. The results of Section 6.9 suggest that this situation is the case with
the three fitness functions proposed in Section 6.4.

Assume, the algorithm begins from the left and moves right, following the
gradient of the fitness in the first function (FS). As the parameter is changed
from left to right a local maximum is reached, indicated by the circular marker.
The optimiser detects that it has stalled and switches to the next available
fitness function (FC) to escape from the local extremum. Similarly, the second
fitness function is used until another local maximum is reached and then the
fitness function is switched again. This process is repeated until a cycle is
reached where the optimiser is trapped in local extrema in all of the available
fitness functions.

Algorithm 4 shows the improved PGRL algorithm, incorporating
opposition–based learning and redundant fitness functions. The improved
PGRL algorithm has one additional parameter, L, specifying the iteration
count at which a stall is detected and the fitness function is switched. The
same meta–optimisation procedure described in Section 6.6 was used to select
L = 25, with the remaining PGRL parameters left unchanged.
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Algorithm 4 Opponent–based PGRL with Redundant Fitness Functions
θ = InitialParameters
loop
{θ}N1 = generatePolicies(θ, ε)
F = calculateFitness({θ}N1 )
for i = 0 to D do
Avgi+ε ← average fitness for all θk that have

a positive perturbation in dimension i
Avgi0 ← average fitness for all θk that have

no perturbation in dimension i
Avgi−ε ← average fitness for all θk that have

a negative perturbation in dimension i
if Avgi0 > Avgi+ε and Avgi0 > Avgi−ε then
Ai = 0

else
Ai = Avgi+ε −Avgi−ε

end if
end for
A = η tanh(A) · range(θ)
θ = θ +A
if improvement() then
StallCount = 0

else
StallCount+ = 1

end if
if StallCount > L then

calculateFitness← next redundant fitness function
end if

end loop

where

{θ}N1 = set of N walk parameter sets
D = dimension of θ
generatePolicies(a,b) = generates N walk parameter sets such
that θk = {θ1 + δk1 , . . . , θD + δkD}. The first N/2 δki are chosen
randomly from {−εi, 0, εi} where εi = ε · range(θi). The remaining
N/2 are chosen such that δki = δ

k−N/2
i .

A = adjustment vector range(θ) = {θmax − θmin}D1 the size of the
parameter space for each dimension D

with the following parameters previously meta–optimised

η = specified the step size
ε = size of the perturbation applied to each dimension
N = number of policies

and the following additional parameter to be meta–optimised

L = limit at which a stall is detected
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7.4 Applications of the Improved PGRL Algorithm

The performance of the standard and improved PGRL algorithms were com-
pared on both the simulated and physical nao. Figures 7.3 and 7.4 show the
results for the simulated and physical robots, respectively. The improved al-
gorithm was also applied to the darwin-op to validate the effectiveness of the
algorithm on a different humanoid robot platform. The results of the applica-
tion to the darwin-op are shown in Figure 7.5.

In simulation we are able to run the experiment repeatedly to measure the
variation between trials of each algorithm. Figure 7.3 shows the median speed
and efficiency over 12 simulations, as well as the 25th and 75th percentiles. It
is clear from the figure that the PGRL with redundant fitness functions per-
forms significantly better. The speed and efficiency are improved 15% and 9%,
respectively, over the standard PGRL algorithm and have much less variation
between trials.

On the physical nao, the difference observed between the two PGRL vari-
ants was smaller. The PGRL with redundant fitness functions improved the
speed and efficiency 4% and 8%, respectively, as compared to the standard
PGRL. The overall improvement in speed and efficiency achieved by the im-
proved PGRL algorithm compared to the default walk parameters was 61%
and 38%, respectively.

Figure 7.4(b) shows the locations where the optimisation algorithm detects
progress has stalled and switches to another fitness function. There is a sub-
sequent improvement in the speed and efficiency of the walk after each fitness
function switch. Furthermore, it appears the stall threshold of 25 iterations
is set low enough that the redundant fitness functions also improve the con-
vergence speed of the PGRL algorithm. When the algorithm is temporarily
stalled, in an area that has an approximately flat gradient, switching to a
different fitness function quickly improves the optimisation.

One of the major differences between the simulated and physical systems is
that the amount of noise in the physical system is greater. Noise can have the
tendency to assist optimisers to escape from local extrema and may explain the
smaller improvement observed in hardware as compared to that in simulation.

The PGRL with redundant fitness functions was also applied to the walk
optimisation on the darwin-op platform. Figure 7.5 shows that the optimiser
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(a) The standard PGRL algorithm

(b) The PGRL algorithm with redundant fitness functions

Figure 7.3: The median speed and efficiency as a function of expense for the
two PGRL variants in simulation. The shaded regions are bounded by the
25th and 75th percentiles for the speed and efficiency.
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(a) The standard PGRL algorithm

(b) The PGRL algorithm with redundant fitness functions

Figure 7.4: The results of the walk optimisation on the physical nao using
the two PGRL algorithms. The thick lines are the best speed and efficiency as
a function of expense. The thin lines are the values for each individual trial.
The current fitness function in use is indicated in (b).
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Figure 7.5: The results of the walk optimisation on the darwin-op using the
PGRL with redundant fitness functions. The thick lines are the best speed
and efficiency as a function of expense. The thin lines are the values for each
individual trial. The fitness function labels indicate the current function being
used.

performs well, improving the speed and efficiency of the walk by 65% and
40% from the starting point, respectively. The improvement in performance
achieved on the darwin-op is slightly higher than that achieved on the physical
nao.

The forward walking speed of the nao achieved in this chapter was 20.5cm/s.
This value is approximately the same as that achieved in Chapter 6. It is
insightful to note that this speed appears to approach the maximum speed
possible using the Aldebaran walk engine on the nao. Further attempts at
small increases in maximum speed result in the walk engine entering a fault
state, where motion patterns are no longer produced, rendering the nao un-
able to walk. This limitation highlights the impact of the walk engine on the
performance of the optimised walk.

Through the application of the optimiser presented in this chapter the
darwin-op achieved a maximum forward speed of 23cm/s. As the darwin-
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op is quite a new humanoid robot there are few examples of optimised walks
in the literature. Robotis quote the darwin-op having a forward walking
speed of 24cm/s [149]. However, as mentioned previously, the Robotis set of
walk parameters failed to complete the optimisation path and appeared to be
unstable. To date the fastest walk for the darwin-op appears to be 36cm/s
[173]. This higher speed was achieved with a much more advanced walk engine
than that which was optimised in this chapter.

The significant difference in performance achieved on the two humanoid
robots in this chapter highlights the influence of the robot hardware. The
darwin-op is equipped with a very simple walk engine when compared to that
of the nao, lacking a formal method for walk pattern generation. However,
the darwin-op is significantly lighter, especially in the legs, allowing a higher
speed and efficiency to be achieved.

The successful application of the optimiser to another physical robot demon-
strates the platform independence of the proposed improvements to the PGRL
algorithm. Furthermore, the optimiser from Chapter 6 has been used unmod-
ified, apart from the improved PGRL algorithm, in this chapter. Thus, the
favourable results on the second physical robot also demonstrate the generality
of the design in Chapter 6 and further suggest the principles developed in the
simulator are generally useful.

Additionally, the same meta–optimised algorithm parameters selected in
Section 6.6 and the three fitness function proposed in Section 6.4 are used
on all three platforms, demonstrating their generality. The additional joint
stiffness parameters are also used successfully on the darwin-op to improve
the efficiency and stability of the walk. The same optimisation path shown
in Figure 6.2 is also used for all three robot platforms and produces stable
omnidirectional walks in each case.

The procedure for using redundant fitness functions outlined in this chapter
is general enough to be applied to any local optimisation algorithm. The only
requirement is the availability of a set of fitness functions that have similar
global extrema, but different local extrema. For example, the fitness function
switching could be applied to the EHCLS algorithm by replacing the reset
phase in that algorithm with the fitness function switching proposed here.
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7.5 Conclusion

An improved PGRL algorithm was proposed that includes opposition–based
learning and redundant fitness functions. The standard and improved PGRL
algorithms were applied to the optimisation of existing walk engines in both
simulation and hardware. It was found that the improved PGRL algorithm
performed better in both cases.

In simulation a further improvement of 15% in speed and 10% in efficiency
was achieved using the improved PGRL over that of the standard algorithm.
On the physical nao the improvements were smaller, a further 4% in speed and
8% in efficiency as compared to the standard PGRL algorithm. This gives an
overall improvement, as compared to the default settings, of 61% and 38% in
speed and efficiency, respectively. The additional noise in the physical system
is likely to be the cause of the smaller improvement in hardware.

The improved algorithm was also applied to the darwin-op robot. An im-
provement in speed and efficiency of 65% and 40%, respectively, over the initial
walk parameters was achieved. The successful application of the optimiser to
the new platform demonstrates the effectiveness of the improved algorithm, as
well as the generality of the optimiser designed through meta–optimisation in
Chapter 6.
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8.1 Introduction

In this chapter we extend the results of Chapters 5 and 6 with respect to the
optimisation of joint stiffnesses. In the earlier chapters we specified the stiffness
for each joint individually. Here, in addition to specifying the stiffnesses for
joints individually, we specify stiffnesses for each phase of the gait cycle.

The specification of stiffness as a function of gait phase is a form of gain
scheduling. In the literature gain scheduling has been applied to the control
of a humanoid robots. In simulation, Kim et al. [174] used the location of the
Zero Moment Point to modify PID gains for hydraulically actuated joints to
improve trajectory tracking. In another example, two sets of PD gains for each
joint have been used to reduce vibration and improve tracking accuracy of a
forward walk [175, 176]. In this example the two sets of feedback parameters
were interchanged depending on whether the leg was supporting the weight of
the robot or not.

The research presented in this chapter extends the literature described
above in several ways. Firstly, the gait cycle is split into four phases: stance,
push, swing and impact. The gait phase is measured in real–time and used to
specify the stiffness for each of the four phases. Secondly, the stiffness param-
eters are selected through a rigorous optimisation process to improve the more
practical performance measures of walk speed and efficiency. Furthermore, we
apply the gait–phase dependent stiffness to an omnidirectional walk engine on
a physical robot.

The remainder of this chapter is organised as follows; first, the phases of
the humanoid robot gait cycle and the system used to measure the current
phase are discussed. Next, two applications of gait–phase dependent stiffness
are presented. Section 8.2 presents the first application where phase dependent
joint stiffnesses were used with a walk engine whose traditional walk parame-
ters were fixed, hence illustrating the benefits of modifying only the stiffness
parameters. This first application was prior to the introduction of the overhead
ssl–vision tracking system, consequently a custom laser–scanner based system
was employed which is also briefly described.

The second application of gait–phase dependent stiffness is presented in
Section 8.3 and involved the simultaneous optimisation of both the traditional
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walk parameters and the phase dependent stiffnesses. This later application
made use of the improved optimisation system developed in Chapters 6 and 7.

Finally, the results of both applications of gait–phase dependent stiffness
are discussed and a comparison of the two robot tracking systems is presented.

8.1.1 Phases of the Gait Cycle

The gait cycle of each leg is split into four phases; stance, push, swing and
impact. Essentially, the stance phase is the period when the foot is on the
ground and the swing phase is the period when the foot is in the air. The
push and impact phases are the transitions from stance to swing and from
swing to stance, respectively. These four phases were selected because they
are frequently used during human gait analysis [177, 178].

Figure 8.1 illustrates the four phases of gait using a simulated nao. Figure
8.1(a) shows the push phase where the weight is transferred to the left leg
and the right foot is lifted off the ground. Figure 8.1(c) shows the impact
phase where the right foot regains contact with the ground and the weight is
transferred back from the left leg. The swing phase is the period between the
push and impact phases as shown in Figure 8.1(b), and the stance phase is the
period between the impact and push phases as shown in Figure 8.1(d).

In the literature on human gait phase measurement several different types
of sensors are often employed, including sensors to measure ground reaction
forces and the orientation of the foot [179]. In contrast to humans, robots
typically walk in such a way that both feet are parallel to the ground at all
times, hence the foot orientation is approximately constant. Thus, here we
use only the ground reaction forces of each foot, measured using the pressure
sensors on the soles of the nao, to determine the gait phase in real–time.

The simple state machine shown in Figure 8.2 is used to observe the weight
transitions between each foot. Essentially, the ratio of force between each foot
determines the current gait phase. A separate state machine is used for each
leg.

Gait–phase dependent stiffness can also be applied using phase information
from the walk engine. A walk engine typically has an open–loop gait phase
signal used to generate the motion patterns required for walking. However, for
OEM and closed source walk engines this information is not always accessible,
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(a) Push (b) Swing (c) Impact (d) Stance

Figure 8.1: An image sequence of a walking simulated nao illustrating the
four phases of gait.

Figure 8.2: The state machine used to measure the gait phase. F is the force
on the leg and O is the gait phase of the other leg.
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which is the case for the nao. Furthermore, the measurement of the gait phase
if preferred because it makes the system more robust. The feet may come into
contact with the ground earlier or later than expected, according to the internal
phase signal, due to small trips and stumbles, or external perturbations.

Recall that in Chapters 6 and 7 the traditional walk parameter space was
defined as

Wp = {p1, p2, . . . , pN}

where N is specified by the walk engine, and the joint stiffness parameter space
was defined as

Ws = {s1, s2, . . . , sM}

where M is the number of joints.
In this chapter the joint stiffness parameter space is expanded to become

gait–phase dependent via the following modification

Wg = {{g1, . . . , gL}1, {g1, . . . , gL}2, . . . , {g1, . . . , gL}M}

where M is the number of joints and L is the number of phases of gait. In
this application M = 6 and L = 4, increasing the total number of stiffness
parameters to 24.

The parameter space for the first application of gait–phase dependent stiff-
ness in Section 8.2 is Wg. Whereas, the second application in Section 8.3
makes use of the parameter space Wp ∪ Wg, simultaneously optimising both
the traditional parameters and the gait–phase dependent joint stiffnesses.

8.2 Phase Dependent Stiffness with Fixed
Traditional Walk Parameters

8.2.1 Equipment and Method

The investigation of gait–phase dependent joint stiffnesses on a walk engine
with fixed traditional walk parameters was performed on a 2009 nao (v3.0)
robot. The walk engine available for this version of nao was very similar to
that described in Section 5.2.1, however, the engine was modified to provide
pseudo–omnidirectional capabilities and the ability to change direction without
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stopping. Additionally, the foot sensors were used to reset the gait phase each
time the feet came into contact with the ground. The reader is referred to the
NUbot’s team report for a description of the modifications [180], as well as the
source and documentation [181] for the software written to undertake the work
in this section.

The modifications to the walk engine to provide pseudo–omnidirectional
walking [180] removed the ability to vary the traditional walk parameters.
However, the joint stiffnesses remained real–time tuneable, thus the available
walk parameter space for optimisation was Wg. The fixed traditional walk
parameters used throughout this section were those reported in Chapter 5.
The initial joint stiffness parameters were also those reported in Chapter 5
where the joint stiffnesses were initially the same for each gait phase.

As previously discussed the research presented in this section was performed
prior to the development of the optimisation system presented in Chapters 6
and 7. Thus, the optimisation system used in this section differs significantly.
Firstly, the optimisation algorithm used in this section is the EHCLS described
in Section 6.3. Secondly, the only available fitness function was the average
cost of transport measured over a 20s period of forward walking. Finally, a
laser–scanner based robot tracking system was implemented to provide the
robot with an accurate estimate of its location and orientation.

The implementation of the laser–scanner tracking system required a sig-
nificant amount of development in order to obtain sufficient accuracy. Fur-
thermore, the system represents a novel method of tracking a humanoid robot
without additional attachments. Consequently, the system is briefly reported.

Robot Position Measurement

The position of the robot is determined through edge detection. Pairs of adja-
cent far–near and near–far edges, that are less than the maximum size of the
robot, form candidate robots. Figure 8.3 shows the edges as purple (far–near)
and yellow (near–far) dots. When the system is initialised, the candidate robot
closest to the centre is selected to be the actual robot. Following initialisation,
a nearest neighbour approach is used to select the actual robot from the can-
didate edge pairs. The centroid of the data between the two edges is used as
the position of the robot.
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Figure 8.3: Screenshots of the tracking system showing the detected position
of the robot. The laser–scanner is at the origin and the blue line represents the
distances captured by the the laser–scanner. The yellow and purple markers
indicate the position of the detected edges. The red line is the path travelled
by the robot over the last 20s.

Several heuristics are applied to make the tracking system more robust. As
the humanoid robot consists of arms and a torso it may appear as several edges
in the laser scanner image. In this case the cluster of edges are merged into
a single robot candidate. When the robot falls, it disappears from the laser
scanner image. To ensure the system does not jump to the nearest candidate
robot in the image, constraints are placed on the maximum velocity of the
robot.

Robot Orientation Measurement

Figure 8.4 shows an example of the two different methods employed to measure
the orientation of the robot. The panel on the left is an example of the robot
being predominantly front–on to the laser–scanner. In this instance, the robot
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Figure 8.4: Screenshots of the tracking system showing the measured orien-
tation of the robot. The blue markers represent the sequence of distances
measured by the laser scanner, the blue line indicates the ambiguous orienta-
tion measurement, and the red line indicates the orientation estimate provided
by the particle filter. For comparison the true robot orientation is indicated
by the shaded regions.

image is sufficiently ‘wide’ and the normal to a linear least squares fit is used as
a measurement for the robot’s orientation. As the nao looks the same from the
front and the back, when viewed through a laser scanner, only an ambiguous
measurement of the orientation is possible. This measurement is shown with
the blue line in Figure 8.4, indicating that the robot could be either facing
toward or away from the scanner.

The right panel of Figure 8.4 shows an example of an image captured
when the robot is side–on to the scanner. In this instance, the robot image is
‘narrow’. If we proceeded to fit a line to the data, we would erroneously predict
that the robot was facing towards or away from the scanner. Hence, we use a
threshold on the size of the image to detect that the robot image is ‘narrow’
and that the robot is side–on to the scanner. When a narrow image is detected,
the line normal to the line between the robot’s centroid and the scanner, is used
as the measurement for the orientation. Again the measurement is ambiguous
being modulo π.
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Figure 8.5: A screen shot of the robot tracking and control software. The
upper left panel shows the current laser image of the environment along with
the history of the robot’s path. The upper right panel shows the current
measurement of the robot’s position and orientation, along with the current
estimate from the particle filter. The lower three panels show the last ten
seconds of the the measured velocities in the x, y and forward directions.

Robot Localisation

The complete robot tracking tool is shown in Figure 8.5. A Sampling Impor-
tance Resampling (SIR) particle filter [182] is used to both smooth the position
estimate, improving the velocity measurement required for optimisation, and
to resolve the ambiguity in the orientation measurements of the robot. The
estimated state of the robot includes the velocities as they are used to measure
performance, as well as to resolve the orientation ambiguity; (x, y, θ, ẋ, ẏ, θ̇).

The certainty in the measurement for the position, orientation, and ve-
locity is estimated based on the input image. This certainty is then used in
the particle filter to appropriately weight the particles. For the position, the
uncertainty is proportional to the distance from the scanner, where as the
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uncertainty in the orientation is inversely proportional to the ‘width’ of the
robot’s image.

The prediction step of the particle filter has two parts. The first part
estimates the new states of each particle based on their previous state using
the equations:

ẋ = ẋ+N (0, σẋ)

ẏ = ẏ +N (0, σẏ)

θ̇ = θ̇ +N (0, σθ̇/2)

x′ = x+ ẋdt cos(θ̇dt)− ẏdt sin(θ̇dt)

y′ = y + ẏdt cos(θ̇dt) + ẋdt sin(θ̇dt)

θ′ = θ + θ̇dt

ẋ′ = ẋ cos(θ̇dt)− ẏ sin(θ̇dt)

ẏ′ = ẏ cos(θ̇dt) + ẋ sin(θ̇dt)

θ̇′ = θ̇ +N (0, σθ̇/2),

where σẋ,ẏ,θ̇ are the estimated uncertainties in the velocities, N (c, σ) is a ran-
dom value from a normal distribution with mean c and variance σ, and dt is
the time since the previous prediction.

The second part of the prediction step takes advantage of the fact that the
control for the robot is known to the particle filter. The expected effect of the
control is estimated to be a constant acceleration over a one second interval
after the initial issue of the command. This constant acceleration is applied
to each particle’s velocity states. A one second time interval is used because
the robot has a gait cycle of approximately one second and on average it
takes approximately this time for the robot to start moving in the commanded
direction. This second part to the prediction step allows the resolution of the
ambiguous orientation measurement. For example, consider the case where
the measured orientation of the robot is either facing away from or toward
the laser scanner and the control commands the robot to walk forward. We
can compare the measured velocity of the robot with the expected velocity to
determine which way the robot is actually orientated.



140 8.3. Optimisation of Phase Dependent Stiffness and Traditional Walk Parameters

When the system is initialised, particles facing in both directions are cre-
ated based on an initial measurement. The states and weights of the particles
are not updated until the robot starts moving. The system is hard–coded to
command that the robot walk forward for the first 2 seconds, in which time,
the particle filter locks onto the correct orientation.

8.2.2 Results

Recall that the walk parameters from Chapter 5 had a forward speed of
13.9cm/s and a cost of transport of 5.8J/Nm. The modifications to the walk
engine to provide omnidirectional walking and foot pressure based gait phase
resetting mechanism improved the speed to 14.5cm/s, but increased the cost
of transport to 6.2J/N·m. It is this gait that was used as the starting point
for the optimisation routine.

A selection of the evolution of the speed and the cost of transport during
the optimisation procedure is shown in Figure 8.6. The figure spans only the
first 35 minutes of the optimisation process, 35 minutes being the length of
time before the battery is discharged. The figure shows that the walk speed
improves to 16.1cm/s and the energy consumption reduces to 5.3J/Nm. The
optimisation process is continued after the battery is replaced to achieve a
final walk speed of 16.25cm/s while the efficiency remained at 5.3J/Nm. This
represents an improvement in speed of 12% and an improvement in efficiency
of 15% when compared to the initial walk parameters.

The particular joint stiffnesses selected by the optimisation procedure are
shown in Table 8.1. The initial joint stiffnesses are also shown for comparison.

8.3 Optimisation of Phase Dependent Stiffness and
Traditional Walk Parameters

8.3.1 Equipment and Method

The equipment and optimisation process used in this section are identical to
that described in Chapter 6. That is, the optimisation was performed over the
compact omnidirectional path shown in Figure 6.2 with the expense, E , used
in place of an iteration count. The PGRL algorithm with redundant fitness
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(a) Speed

(b) Cost of transport.

Figure 8.6: The improvement in speed and cost of transport over the first 35
minutes of the optimisation procedure. The grey lines indicate the speed and
efficiency of each walk tested and the blue line represents the current best
values including the effect of the EHCLS resetting phase.
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Table 8.1: Joint Stiffnesses Before and After Optimisation
(a) Before Optimisation

Phase Joint Stiffness
HipYaw HipRoll HipPitch Knee AnklePitch AnkleRoll Average

All 0.70 0.26 0.55 0.25 0.24 0.28 0.38

(b) After Optimisation

Phase Joint Stiffness
HipYaw HipRoll HipPitch Knee AnklePitch AnkleRoll Average

Stance 1.00 0.15 0.70 0.49 0.26 0.36 0.49
Push 0.59 0.06 0.30 0.22 0.27 0.16 0.27
Swing 0.56 0.19 0.45 0.14 0.37 0.22 0.32
Impact 1.00 0.29 0.50 0.26 0.24 0.45 0.46
Average 0.79 0.18 0.49 0.28 0.29 0.30 0.38

functions is used from Chapter 7, including the meta–optimised parameters
and fitness functions from Chapter 6.

Here we apply the phase dependent stiffness to the 2010 nao (v3.2) which
has a significantly improved walk engine as compared to Section 8.2. In par-
ticular, it is capable of omnidirectional walking and allows the simultaneous
adjustment of both traditional walk parameters and stiffness values.

8.3.2 Results

The results of the application to the nao are shown in Figure 8.7. Figure
8.7(a) shows the application of the optimiser on a parameter space with joint
stiffness fixed over the gait cycle (Wp ∪ Ws), while Figure 8.7(b) shows the
results where the stiffness is gait phase dependent (Wp ∪Wg). Note that the
performance of the final optimised walk in Figure 8.7(a) is significantly better
than that in Figure 7.4(b), despite the optimiser and parameter space being
identical in both cases. The large increase in performance between the two
trials is due to the use of a previously unused nao robot in this section.

It is clear from Figure 8.7 that the addition of the gait–phase dependent
joint stiffness has improved the optimised walk. The speed of the final op-
timised walk improved from 13.7cm/s to 14.5cm/s, an increase of 6%, when
the gait–phase dependent stiffnesses were used in place of phase independent
values. The efficiency was approximately 9.6J/Nm in both cases.
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(a) Fixed stiffness throughout gait cycle

(b) Variable stiffness depending on gait phase

Figure 8.7: The thick lines are the best speed and efficiency as a function of
expense. The thin lines are the values for each individual trial.
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8.4 Discussion

8.4.1 Phase Dependent Stiffness with Fixed Traditional Walk
Parameters

Table 8.1(b) shows that the optimised stiffnesses vary significantly over the
gait phases for all of the joints. Thus, the additional stiffness parameters
appear to be useful in improving the walk. Furthermore, comparing Table
8.1(a) and Table 8.1(b), it is evident that the average values of the optimised
phase dependent values are very similar to the initial values. That is, the
average value over the gait phases for each joint is approximately equal to
the global stiffness selected previously for each joint. This is particularly true
for the average overall stiffness which is the same for both phase–fixed and
phase–dependent sets of parameters.

The stiffness values for the stance and push phases changed the most, with
an increase and decrease of 20% respectively. It is intuitive that high stiffnesses
would be required during stance because the leg needs to support the weight
of the robot. The significant reduction of joint stiffnesses in the push phase
indicates that there is little capacity for this phase to contribute to the forward
motion of the robot. This stems from the inherit trait of the walk engine where
it attempts to keep the foot approximately parallel to the floor, consequently
there is no scope for an actual ‘push’.

There was also a significant reduction in joint stiffness in the swing phase.
The swing leg is not loaded and therefore does not require as much torque
to follow the target trajectories. However, it should be noted that the hip
and ankle pitch joints required a high stiffness. The hip pitch joint requires
a large stiffness as it moves a significant distance in the swing phase, and the
walk speed is detrimentally affected if the joint fails to move this distance. The
ankle pitch joint requires a high stiffness to prevent the toes from dropping and
touching the ground, which can cause the robot to trip and stumble, affecting
both the speed and stability.

The optimised joint stiffnesses for both the stance and impact phases of
the gait had significant increases. Again this is intuitive because in these
phases the leg is supporting the weight of the robot and larger torques are
required. Furthermore, the significant increase, as compared to the initial
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values, suggests that much of the forward movement of the walk comes from
the supporting leg. The significant increase in the ankle roll stiffness in these
two phases also suggests that the supporting leg does most of the work when
transferring the weight between feet.

The hip yaw–pitch joint received the highest stiffness after the optimisation
procedure. In fact, in the stance and impact phases, it received the maximum
possible stiffness. In the nao this joint moves both legs, hence it follows that
the joint should require a higher stiffness. Furthermore, this particular joint
has the most backlash in the nao, and a high stiffness might be attempting to
compensate for that.

The hip roll joints had a 70% reduction in joint stiffness after optimisation.
This suggests that for this walk engine and robot it is much more efficient to
transfer weight between the feet as a single inverted pendulum, that is to have
very little movement of the hips.

8.4.2 Phase Dependent Stiffness with Variable Traditional
Walk Parameters

The addition of the gait–phase dependent stiffness to the parameter space of
the meta–optimised and improved PGRL algorithm from Chapter 7 forms the
final walk optimisation system of this thesis. The average walk speed over
the complex path was improved to 14.5cm/s, with peak forward and sideward
speeds in excess of 20cm/s and 12cm/s, respectively. These speeds are achieved
despite the limited sensor feedback used by the walk engine and the small
number of available walk parameters.

The overall improvement, as compared to the default walk parameters with-
out additional stiffness parameters, was 82% and 43% in speed and efficiency,
respectively. These improvements are quite large, especially considering the
starting point for the optimisation was the presumably partially optimised
walk parameters provided by Aldebaran. Furthermore, the large improvement
demonstrates the effectiveness of the proposed walk optimisation system.

The observed improvement in Section 8.3 when the gait–phase dependent
stiffness was applied to an omnidirectional walk with adjustable walk parame-
ters was 6%. This is significantly smaller than the results achieved when only
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the stiffness could be adjusted in Section 8.2. Recall, that the optimiser em-
ployed for the former case was much more advanced and consequently better
able to gain improvements in performance through the selection of traditional
walk parameters.

Additionally, the walk engine used when only the stiffness could be ad-
justed incorporated a gait phase resetting mechanism, where a new step would
be started when the foot came in contact with the ground. This feedback
is very important for fast bipedal walking [59, 183] and is absent from the
omnidirectional walk engine used to collect the later results. Furthermore, it
was observed that during the optimisation in Section 8.2, of only the joint
stiffnesses, the step frequency was increased and may explain the additional
improvements.

Another major difference between the results of Sections 8.2 and 8.3 is that
the former adjusted the stiffnesses along only a single direction, while the lat-
ter used a path requiring omnidirectional walking. The smaller improvement
for the omnidirectional case, suggests that it may be necessary to have the
stiffnesses dependent on the walk direction. The literature on humans indi-
cates this may be necessary as the stiffness depends on the walk speed [124],
and omnidirectional walking is simply the superposition of different speeds of
forward and sideward walking.

8.4.3 Robot Tracking

Two different types of robot tracking methods were used in Sections 8.2 and
8.3. The laser scanner method provides accurate information about the posi-
tion of the robot without the need to attach a marker. However, the orientation
is difficult to measure due to the shape of the robot. Precise orientation mea-
surements are essential if the robot is to accurately follow a desired path. The
limited information provided by the laser scanner system resulted in the use of
the semi–random optimisation path shown on the left in Figure 8.3. Further-
more, it meant optimisation of omnidirectional walking was not possible.

The overhead ssl–vision tracking requires the attachment of a unique marker
to the robot and an environment with consistent lighting. The unique marker
enables the system to accurately determine the orientation of the robot and
makes the ssl–vision tracking more suitable for walk optimisation. The system
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was able to guide the robot along the complex path with near perfect accuracy.
The marker was easily attached in such a way that it had no effect on the walk
or getup routine.

8.5 Conclusion

In this chapter the joint stiffness was specified in terms of four different gait
phases for each individual joint. These additional joint stiffness parameters
resulted in the improvement of the performance of two walk engines.

When gait–phase dependent stiffness was applied to the forward walk of the
nao with fixed traditional walk parameters, an improvement in the optimised
speed and efficiency of 12% and 15% was achieved, respectively. The results
show that gait–phase dependent stiffness can be used to improve the perfor-
mance of a walk engine even when there are no available walk parameters.

Gait phase dependent stiffness was also used to enhance the optimisation
of an omnidirectional walk engine. Here its use resulted in an improvement
of 6% in speed. This result indicates that gait phase dependent stiffness can
also improve a walk engine when used in conjunction with the traditional walk
parameters.

The combination of meta–optimised PGRL, with redundant fitness func-
tions, and a parameter space with both traditional walk parameters and gait–
phase dependent stiffness is the final walk optimisation system proposed in
this thesis. The overall improvement through optimisation using the proposed
techniques was an 82% increase in speed, from 8.5cm/s to 14.5cm/s, and a
43% increase in efficiency, from 16.9J/Nm to 9.6J/Nm.



Chapter 9

Conclusion

9.1 Conclusions

Humanoid robot movement is an important area of robotics research. A hu-
manoid robot has many potential applications ranging from the replacement
of humans in dangerous environments, to the assistance of hospital patients
and elderly people. A vast improvement in the motion system of a humanoid
robot is required to fulfil these applications.

Research on humanoid robot movement also yields a greater understanding
of the human motion control system. This improved understanding has benefits
in the area of biomechatronics, where for example, improved protheses could
be constructed, and in the treatment of disorders effecting human movement.

The two motors skills that have been the focus of this thesis are the ability
to stand and walk. Studies on human motion control have highlighted several
features that are yet to be applied to humanoid robots. In particular, the
proprioceptive sense appears to be the most important sense for motion control.
Furthermore, not only are the joint trajectories important for walking, but the
joint stiffnesses also play a vital role.

The application of these important features to humanoid robots has been
one of the objectives of the work presented in this thesis. The propriocep-
tive sense was used exclusively to perceive and quantify impacts to a standing
humanoid robot. The stiffness of the joints used during walking were opti-
mised for a humanoid robot, both independently and in conjunction with the
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traditional walk parameters. Finally, performance metrics for walks, inspired
by the literature on human walking, were used for the walk optimisation of a
humanoid robot.

Many of the algorithms developed for humanoid robots are only applied in
simulation, or to a single physical humanoid robot; they are not developed or
verified on a range of humanoid robots. An aim of this thesis was to develop
general techniques that could be applied to any humanoid robot. Thus, the
effectiveness and generality of the techniques proposed in this thesis have been
demonstrated using several physical humanoid robots.

A key consideration for the general applicability of a walk optimiser to
physical humanoid robots is the stress placed on the robot during the opti-
misation process. We have presented several methods to reduce the amount
of wear on the robot hardware. A meta–optimisation of walk optimisation
techniques was performed using a performance metric incorporating the stress
placed on the robot during the procedure. A local optimisation algorithm, for
which the stress placed on the robot was lowest, was extended to use redundant
fitness functions to allow it to escape from local maxima, thus overcoming its
primary limitation.

NUPlatform Software Architecture

The application of the methods proposed in this thesis to different humanoid
robots requires a software architecture that supports multiple robot platforms.
To this end, the NUPlatform software architecture was designed and imple-
mented as part of the work presented in this thesis.

In addition to enabling a stronger multi–platform verification, the strength
of the software architecture itself has been demonstrated through its useful-
ness outside the scope of this thesis. The implementation of such a software
framework requires a significant amount of time. The process is only slightly
lengthened if support for multiple platforms is considered from inception, how-
ever, its utility is greatly magnified. The software framework has served as the
basis for two other projects, the first being the NUbot’s entry in the RoboCup
soccer competitions. The second major project was in the analysis of human
gaze dynamics using physical humanoid robots as simulated pedestrians.
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Proprioception–based Impact Perception

The impact perception system developed using only the proprioceptive sense
is able to perceive and quantify impacts to a humanoid robot. It provides
all of the information, that the literature on humans suggests is necessary, to
generate a postural response. Additionally, the system is also able to emulate
a sense of touch without the use of a tactile skin.

Furthermore, the results of the system appear to agree with the theories
presented in the literature on humans. The system performs extremely well in
localising an impact, and provides a reasonable estimate of the strength and
direction of impacts.

Walk Optimisation

The walk of a humanoid robot can be improved through either better design
of walk engines or refinement of walk optimisation techniques. The significant
improvements in the quality of the walks obtained in this thesis suggest that the
optimisation techniques are just as important as the walk engines themselves.

We found that the stress placed on a robot during the optimisation process
could be significantly reduced without compromising the performance of the
final optimised walk. In this regard, a local optimisation algorithm performed
best as it iteratively searches from an initially stable gait. To extend a local
optimiser to a hybrid optimiser, the safe redundancy concept was applied using
several complementary fitness functions.

We also found that an efficiency based fitness function produced the best
optimised walks. The walks were smoother and exploited the natural dynamics
of the robot, making them more stable and more efficient. The walks were also
faster than those selected by other metrics, even a speed based fitness. These
results agree with the literature on humans, where it has been suggested that
an efficiency based metric is used to select a gait.

Joint Stiffness

The addition of joint stiffness parameters to the traditional trajectory–modifying
walk parameters improved the speed, efficiency and stability of optimised
walks. This was particularly evident on walk engines where the traditional
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walk parameters were fixed or limited. In addition to adjusting the stiffness
individually for each joint, improvements were achieved by adjusting the stiff-
ness as a function of gait phase. These results also agree with the literature on
humans, where it has been observed that the stiffness of each joint is different
and may vary during the gait cycle.

9.2 Future Work

There are several areas for further research on the topics investigated in this
thesis. These areas include extensions of the software architecture, generation
of responses to impacts, and applications to a wider range of humanoid robots.

Software

The applicability of the software architecture developed here could be improved
through the use of a more widely used software framework, such as ROS. The
use of the ROS framework would allow for better collaboration with other
developers and would give access to a host of existing implementations of
common algorithms.

Additionally, the development of a ROS based framework for RoboCup
soccer would be an interesting topic and encourage much more code sharing
between teams and leagues.

Standing

An obvious extension to the work presented on impact perception during stand-
ing is to use the system to generate corrective responses. The system could
be used to supplement an existing control system by providing additional in-
formation in regard to the impact’s location and strength. Alternatively, a
stand–alone control system could be developed making use of a small set of
pre–generated responses, selected based on the perceived impact. Such a sys-
tem is thought to be used by humans.

The impact perception system could also be applied to other humanoid
robots. This would require the collection of training data for the additional
robots and retraining of the SVM and SVR models to fit the new robot.
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Walking

The walk optimisation and the use of joint stiffness proposed in this thesis has
been applied to several robots. However, the techniques could be applied to
the better walk engines that exist in the literature for the relevant robots. In
particular, for the nao there is the highly successful B–Human walk [56] and
the nao Devils walk [54], the fastest available walk. For the darwin-op there
is Team DARwIn’s open–source walk [184].

All of the robots considered here are quite small, the application of the
developed techniques to a full–size humanoid robot could also be the topic of
further work. The techniques proposed in this thesis were careful to consider
the stress placed on the robot during the optimisation procedure. This consid-
eration will become even more important on full–size humanoid robots as the
potential for damage is much greater.

9.3 Summary

This thesis investigated the improvement of two key skills required by hu-
manoid robots; standing and walking. Firstly, a cross–robot and cross–platform
software framework for legged robots was developed to facilitate this investiga-
tion. An impact perception system using only proprioception was successfully
applied to a physical humanoid robot. An improved optimisation technique
using redundant fitness functions, a meta–optimised algorithm–fitness–space
combination was developed and applied over a carefully designed walking path
and stress measure. The generality of the optimisation technique was demon-
strated through its successful application to several different humanoid robot
platforms: a simulated nao, a physical nao and a darwin-op.
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