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Abstract

The proficiency of humanoid robot movement, which is currently quite elementary,
needs to be improved if humanoid robots are to fulfil most of their intended appli-
cations. Two of the more essential motor skills of a humanoid robot are related to
its ability to stand and walk. Enhancement of these abilities is the focus of the work
presented in this thesis.

We first investigate the use of the proprioceptive sense, in particular the joint
velocities, to perceive and quantify external perturbations to a standing humanoid
robot. A system consisting of an optimised threshold detector, a Support Vector
Machine and a pair of orthogonal Support Vector Regression models is developed to
utilise this proprioceptive sense. We demonstrate, through the implementation on a
physical robot, that the proposed system is able to detect, locate and estimate the
magnitude and direction of any given impact.

Next we consider improvements to humanoid robot walking through the enhance-
ment of walk optimisation techniques. To this end, in simulation, a meta—optimisation
is performed to determine: an appropriate set of tuning parameters for three different
optimisation algorithms, the most suitable optimisation algorithm, a relevant fitness
function and a pertinent parameter space. The optimisation algorithms we consider
include: Evolutionary Hill Climb with Line Search, Particle Swarm Optimisation
and Policy Gradient Reinforcement Learning (PGRL). We evaluated fitness functions
based on the walk speed, efficiency and Froude—number. The parameter space for the
walk engine was assessed with and without additional joint stiffness parameters. We
found that the best walk optimisation technique consisted of PGRL with an efficiency
based fitness function utilising additional joint stiffness parameters.

We achieved further improvements on the walk optimisation by applying the
safe redundancy concept to extend PGRL. PGRL is a local optimisation algorithm,
whereby incorporating safe redundancy allows the algorithm to escape from local ex-
trema. We also expanded the parameter space to include gait—phase dependent joint
stiffnesses. Furthermore, to facilitate a trade—off between the optimisation and the
stress placed on the physical hardware, a measure of the wear experienced by the
robot during the optimisation was introduced.

To verify the generality of the systems developed for the walk optimisation, they
are evaluated on several different humanoid robot platforms: a simulated NAO, a phys-
ical NAO and a DARWIN-OP. The effectiveness of the proposed systems are demon-
strated through their implementation in physical humanoid robot hardware and ap-
plication to the RoboCup soccer competitions.
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