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Abstract

We study a predictive control formulation for uncertain discrete-time non-linear uniformly continuous plant models where controller
output data is transmitted over an unreliable communication channel. The channel introduces Markovian data-loss and does not provide
acknowledgments of receipt. To achieve robustness with respect to dropouts, at every sampling instant the controller transmits packets of
data. These contain possible control inputs for a finite number of future time instants, and minimize a finite horizon cost function. At
the actuator side, received packets are buffered, providing the plant inputs. Within this context, we adopt a stochastic Lyapunov function
approach to establish stability results of the networked control system. A distinguishing aspect of this work is that it considers situations
where the maximum number of consecutive packet dropouts has unbounded support.
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1 Introduction

Motivated by both practical and also theoretical aspects, sig-
nificant research has concentrated on Networked Control
Systems (NCSs), as documented, e.g., in [1]. In a NCS, plant
and controller communicate via a network which may be
shared with other applications. This simplifies the cabling
(especially if the network is wireless) and, thus, increases
overall system reliability. However, since general purpose
network platforms were not originally designed for applica-
tions with critical timing requirements, their use for closed-
loop control presents some serious challenges. The network
itself is a dynamical system that exhibits characteristics
which traditionally have not been taken into account in con-
trol system design. In addition to being quantized, transmit-
ted data may be affected by time delays and data-dropouts.
Thus, in a NCS links are not transparent, often constituting
a significant performance bottleneck. Various models have
been utilized to describe time-delays and packet dropouts
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in NCSs. For example, suitable deterministic boundedness
assumptions can be used to derive sufficient conditions for
deterministic stability [2–8]. A simple stochastic approach
considers network effects as independent and identically dis-
tributed (i.i.d.) random variables [9–22]. However, fading
communication channel gains and network congestion levels
are, in general, correlated [23–25]. This motivates the adop-
tion of, more general, (finite) Markov chain models [26–33].

An important feature of many communication protocols is
that data is sent in large time-stamped packets. This opens
the possibility to conceive NCS architectures in which pack-
ets of data containing finite sequences are sent through the
network. Through buffering and appropriate selection logic
at the receiver node, time delays and packet dropouts can
to some extent be compensated for [34–36]. Here, model
predictive control (MPC) [37] becomes a natural choice for
tackling controller to actuator links, since potential plant in-
put values over a finite horizon are readily available [38].
Deterministic stability results of such packetized predictive
control (PPC) schemes have been obtained in [39–41] for
cases where the maximum number of consecutive packets
dropouts is bounded, and in [42] for networks with bounded
time-delays. Despite the widespread use of stochastic mod-
els in the communications community, to date only our own
papers [43, 44] have studied stochastic stability of PPC.
Whilst [43] focuses on quantized control of perturbed LTI
systems with i.i.d. dropouts, [44] considers nonlinear sys-
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Fig. 1. NCS Architecture with Packet Dropouts and Buffering

tems without disturbances in the presence of i.i.d. dropouts.

In the present work we study a PPC formulation for discrete-
time non-linear plant models with disturbances, where op-
timizing sequences are transmitted over an unreliable com-
munication channel, see Fig. 1. The controller is designed
without knowledge of the packet dropout distribution and
does not require acknowledgments of receipt. We combine
elements of the PPC model of [40] with stochastic stabil-
ity analysis [45,46] to establish sufficient conditions for the
optimal MPC value function to constitute a stochastic Lya-
punov function of the NCS at the successful transmission
instants. We then show how this property ensures stochas-
tic stability of the NCS. Our stability results apply to NCSs
with Markovian packet dropouts and nonlinear plant models
with disturbances. Disturbances and times between success-
ful transmissions are allowed to have unbounded support.

Notation We write R for the real numbers, R>0 for (0,∞),
N for {1, 2, . . .}, and N0 for N∪{0}. The p×p identity matrix
is denoted via Ip; 0p , 0 · Ip; {y}K = {y(`) : ` ∈ K}, and

{y}`2
`1

=
{
{y(`1), . . . , y(`2)} if `1 ≤ `2,

{ } if `1 > `2.

We adopt the convention
∑`2

k=`1
ak = 0, if `1 > `2 and

irrespective of ak. The norm of a vector x is denoted |x|.
To denote the probability of an event Ω, we write Pr{Ω}.
The conditional probability of Ω given Γ is denoted via
Pr{Ω |Γ}. The expected value of a random variable ν given
Γ, is denoted by E{ν |Γ}, whereas for the unconditional
expectation we will write E{ν}. We use the same notation
for random variables and their realizations.

2 NCS Architecture

We consider (possibly unstable) systems with state x ∈ Rn

and constrained input u ∈ U ⊆ Rp, 0 ∈ U, described via:

x(k + 1) = f(x(k), u(k), w(k)), k ∈ N0, (1)

where f(0, 0, 0) = 0. The initial state x(0) is arbitrarily dis-
tributed (with possibly unbounded support) and the distur-
bance {w}N0 is i.i.d., but otherwise arbitrarily distributed. 1

1 Note that our disturbance model serves to describe a class of
NCSs with quantized inputs [43]. Our results in Section 5 require
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Fig. 2. Markov Packet Dropout Model

Network effects Our interest lies in clock-driven networks
situated between controller output and plant input. All data
to be transmitted is sent in large time-stamped packets. The
network is affected by transmission errors (for example, due
to channel fading and congestion), which are in general cor-
related in time and introduce packet-dropouts [23–25]. This
motivates us to model the network as an erasure channel and
to characterize transmission effects via the following time-
homogeneous binary Markov process {d}N0 :

d(k) ,

{
1 if packet-dropout occurs at instant k,

0 if packet-dropout does not occur at instant k,
(2)

where the transition probabilities are given by, see Fig. 2:

Pr{d(k + 1) = 0 | d(k) = 0} = q

Pr{d(k + 1) = 1 | d(k) = 0} = 1− q

Pr{d(k + 1) = 1 | d(k) = 1} = p

Pr{d(k + 1) = 0 | d(k) = 1} = 1− p.

(3)

The associated failure rate is 1 − q ∈ (0, 1), whereas the
recovery rate is given by 1−p ∈ (0, 1). The values q ≈ 1 and
p ≈ 0, thus, describe a more reliable network; q ≈ 0 and p ≈
1 refer to a network more prone to dropouts. The model (3)
incorporates temporal correlations of network conditions. It
is therefore more general and realistic than i.i.d. Bernoulli
models. In fact, the i.i.d. dropout model corresponds to the
special case where q = 1− p, in which case:

Pr{d(k) = 1} = p, Pr{d(k) = 0} = 1− p, (4)

where p is the dropout-rate. In practice, p and q are not
known exactly. Accordingly, in the present work our focus is
on situations where the controller does not have knowledge
about p and q. (Of course, closed loop stability will depend
upon these parameters, see Sections 5 and 6.)

As foreshadowed in the introduction, at each time instant k
and for plant state x(k), the packetized predictive controller
sends a control packet, say ~u(x(k)), to the plant input node.
To achieve good performance despite unreliable communi-
cation, ~u(x(k)) contains constrained tentative control inputs

that E{|x(0)|s} and E{|w(k)|s} be bounded for some s > 0.
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for a finite number of N future time instants, i.e., we have

~u(x(k)) =


u0(x(k))

u1(x(k))
...

uN−1(x(k))

 ∈ UN ⊆ RpN . (5)

At the actuator side, the received packets are buffered, pro-
viding the plant inputs, see Fig. 1.

Buffering The buffering mechanism amounts to a parallel-
in serial-out shift register, which acts as a safeguard against
dropouts. The buffer state, b(k) ∈ UN , is overwritten when-
ever a valid (i.e., error-free and undelayed) control packet
arrives. Actuator values are sequentially passed on to the
plant until the next valid control packet is received. Thus,

b(k) = d(k)Sb(k − 1) + (1− d(k))~u(k),
u(k) = eT

1 b(k)
(6)

where b(0) = 0 and where S and e1 are defined via:

S ,



0p Ip 0p . . 0p

...
. . . . . . . . .

...

0p . . . 0p Ip 0p

0p . . . . . . 0p Ip

0p . . . . . . . . . . 0p


, e1 ,


Ip

0p

...

0p

. (7)

Remark 1 (Holding the control input) The choice of the
matrix S in (7) corresponds to setting the buffer state to zero
if no data is received over N consecutive instants. Alterna-
tively, if one wished to hold the latest value, one could set
the “last” element of S equal to Ip; see also [27, 47]. �

Remark 2 (Dropouts of State Measurements) Our ideas
can be readily extended to also encompass dropouts of the
state measurements. In fact, if the controller only calculates
control packets whenever state measurements are success-
fully received, then our subsequent analysis still holds. The
only modification needed is that the dropout process {d}N0

include both links, i.e., we set d(k) = 0 if and only if both
x(k) and ~u(k) are successfully transmitted; c.f., (2). �

3 Packetized Predictive Control

Plant inputs are designed without knowledge on the dropout
distributions and on whether previous packets were success-
fully transmitted. The control packets ~u(x(k)) in (5) are
formed by adapting the ideas underpinning MPC. More pre-
cisely, at each time instant k, the following cost function is

minimized:

J(~u ′, x(k)) , F (x′(N)) +
N−1∑
`=0

L(x′(`), u′(`)). (8)

The cost function in (8) examines predictions of the plant
model (1) over a finite horizon of length N , which is taken
equal to the buffer size. To provide a method with manage-
able computational complexity, the predicted state trajecto-
ries do not take into account packet-losses or disturbances
and are, thus, generated by the nominal model

x′(`+ 1) = f(x′(`), u′(`), 0), ` ∈ {0, 1, . . . , N − 1}

starting from x′(0) = x(k) and where the constrained en-
tries in ~u ′=

[
(u′(0))T . . . (u′(N − 1))T

]T ∈ UN are the
associated tentative plant inputs. Predicted quantities are pe-
nalized via the per-stage weighting function L(·, ·) and the
terminal weighting F (·). These design variables allow one
to trade-off control performance versus control effort. As in
control loops without dropouts [37], the choices made for
L(·, ·), F (·) and N influence closed loop stability. This is-
sue will be further examined in Sections 5 and 6.

The control packet ~u(x(k)) is set equal to the optimizer

~u(x(k)) , arg min
~u′∈UN

J(~u ′, x(k)) (9)

and is sent through the network to the buffer, see Fig. 1.
Following the receding horizon optimization idea, at the next
sampling step and given x(k+ 1), the horizon is shifted by
one and another optimization is carried out, providing

~u(x(k + 1)) = arg min
~u′∈UN

J(~u ′, x(k + 1)),

sequence, which is transmitted to the buffer. This proce-
dure is repeated ad infinitum. Note that ~u(x(k)) in (9) con-
tains constrained tentative plant input values for instants
{k, . . . , k +N − 1}. If ~u(x(k)) is received at time k, then
these values are written into the buffer and implemented se-
quentially until some future (valid) control packet arrives.
Whilst ~u(x(k)) is found by evaluating open-loop predictions
(and not closed-loop policies), the resultant control policy
is a closed-loop one. Indeed, the loop is closed at all suc-
cessful transmission instants, i.e., where d(k) = 0.

4 NCS Model at successful transmission instants

Our subsequent analysis extends the approach of [40] to a
stochastic setting. 2 We denote the time instants where there
are no packet-dropouts (i.e., where d(k) = 0) via

K = {ki}i∈N0 ⊆ N0, ki+1 > ki, ∀i ∈ N0 (10)

2 Our ideas are also related to methods used to study randomly
sampled systems [32,48], and to the averaging technique of [7,8].
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and define ∆(i) , ki+1 − ki, where i ∈ N0. For ease of
exposition, we will assume that the first successful transmis-
sion instant occurs at k = 0, thus, k0 = 0 and ∆(0) = k1.
Consequently, {∆}N0 is i.i.d. with distribution

Pr{∆(i) = j} =

{
q if j = 1,

(1− q)(1− p)pj−2 if j ≥ 2,
(11)

see also [32]. As a particular case of (11), if the dropout
process is i.i.d. Bernoulli distributed as in (4), then we have:

Pr{∆(i) = j} = (1− p)pj−1, ∀j ∈ N. (12)

It is convenient to introduce the iterated open-loop mapping:

f j
ol(x, {$}

j−1
0 ) , f(f j−1

ol (x, {$}j−2
0 ), 0, $(j − 1))

for j ∈ N, and where f0
ol(x, {$}

−1
0 ) , x. We also define

the iterated mappings with inputs 3 {$}j−1
0 :

f j(x, {$}j−1
0 ) , f(f j−1(x, {$}j−2

0 ), uj−1(x), $(j−1)),
(13)

for j ∈ {1, . . . , N}, and where we set f0(x, {$}−1
0 ) , x.

Given the buffering mechanism, see (6), (9) and (5), it is
easy to see that the plant state at ki ∈ K is characterized via:

x(ki+1) =


f∆(i)

(
x(ki), {w}ki+1−1

ki

)
if ∆(i) ≤ N,

f
∆(i)−N
ol

(
x(ki +N), {w}ki+1−1

ki+N

)
if ∆(i) ≥ N.

(14)
where x(ki +N) = fN

(
x(ki), {w}ki+N−1

ki

)
.

It is important to emphasize that, since {w}N0 and {∆}N0 are
i.i.d., the system state sequence, at the instants of successful
transmission {x}K, is Markovian. ({x}N0 is in general not
Markovian.) This observation is fundamental for the stability
analysis of Section 5.

Remark 3 (Relationship to previous works) A key differ-
ence between the current situation and that studied in arti-
cles such as [20, 21, 28, 36, 39, 40] is that the results in the
latter works require that ∆(i) be bounded, for all i ∈ N0.
In the present work, we remove this assumption by allow-
ing the maximum number of consecutive packet dropouts
to have unbounded support, see (12). For that purpose, we
extend our recent work documented in [43] to encompass
non-linear plant models and Markovian dropouts. �

3 For example, we have f1(x, $(0)) = f(x, u0(x), $(0)) and
f2(x, {$}1

0) = f(f(x, u0(x), $(0)), u1(x), $(1)).

5 Stochastic Stability of the NCS

Due to disturbances and packet dropouts, the system state
{x}N0 becomes a random process. To establish closed loop
stability results, we will adopt the stochastic Lyapunov ap-
proach, as described in [45], and study the optimal costs
V (x) , J(~u(x), x). These are based upon predictions which
use the nominal plant model (1) without disturbances and
with inputs taken from ~u(x), see (9). In fact, we have:

V (x) = F
(
f̄N (x)

)
+

N−1∑
`=0

L
(
f̄ `(x), u`(x)

)
, (15)

where, see (13),

f̄ `(x) , f `
(
x, {0, . . . , 0}

)
, ∀` ∈ {0, 1, . . . , N}. (16)

To derive our results, we will make some assumptions on the
cost function and on the class of plant models considered.

Assumption 1 There exist αF , αL, b, c ∈ R>0, such that,
for all (x, u) ∈ Rn × U,

αF |x|b ≤ F (x), F (0) = 0, (17a)
αL|x|c ≤ L(x, u), L(0, 0) = 0. (17b)

Assumption 2 The plant model and weighting functions are
uniformly continuous, i.e., ∃λx, λw, λL, λF , s ∈ R>0 :

|f(x, u, w)− f(z, u, 0)|s ≤ λx|x− z|s + λw|w|s, (18a)
|L(x, u)− L(z, u)| ≤ λL|x− z|s, (18b)
|F (x)− F (z)| ≤ λF |x− z|s. (18c)

for all (x, z, u, w) ∈ Rn × Rn × U× Rm. �

Assumption 3 There exists a constrained control law
κf : Rn → U such that for the nominal plant model:

F
(
f(x, κf (x), 0)

)
− F (x) + L(x, κf (x)) ≤ 0, (19)

for all x ∈ Rn. �

Assumptions 1 to 3 (and variations thereof) have been ex-
tensively used for establishing stability of predictive control
loops (without dropouts); see, e.g., [37]. The policy κf (·)
in (19) can be regarded as a stabilizing law for the nomi-
nal plant model, which is not necessarily implemented. As-
sumption 4, stated below, is specific to the NCS architecture
studied. It amounts to an upper bound of p, see (3), for a
given plant model, or, conversely, to an upper bound on the
rate of growth of x when left in open loop, for a given p.

Assumption 4 There exist γ ∈ [1, 1/p) and η, v ∈ R>0

such that
F (f(x, 0, w)) ≤ γF (x) + η|w|v, (20)

for all (x,w) ∈ Rn × Rm. �
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Before proceeding, we make the following observations:

Lemma 4 Suppose that Assumption 3 holds. Then:

L(x, u0(x)) ≤ V (x) ≤ F (x), ∀x ∈ Rn. (21)

PROOF. Lemma 2.15 in [37] establishes V (x) ≤ F (x).
The other inequality in (21) follows directly from (15). �

Lemma 5 Suppose that Assumptions 1 and 2 hold with b =
s and that

p <
αF

λFλx
. (22)

Then Assumption 4 is satisfied with γ = λFλx/αF , η =
λFλw and v = s.

PROOF. Since f(0, 0, 0) = 0, we can use (18) to ob-
tain F

(
f(x, 0, w)

)
=

∣∣F (
f(x, 0, w)

)∣∣ ≤ λF |f(x, 0, w)|s =
λF |f(x, 0, w)− f(0, 0, 0)|s ≤ λFλx|x|s + λFλw|w|s. The
result follows from using (17a) and (21). �

A particular case of (22) results when the plant model is
scalar LTI with system pole a and F (x) = |x|, the abso-
lute value. Here, one can choose λF = αF = s = b = 1,
and λx = |a|. Thus, (22) becomes |a|p < 1, which is nec-
essary and sufficient for mean-square stabilizability in the
case where dropouts are i.i.d. as in (4); see, e.g., [15,33,49].

Our first results, stated as Proposition 6 and Corollary 7,
establish sufficient conditions for exponential convergence
of

{
E{|x(ki)|c}

}
for ki ∈ K. This property is then used,

in Theorem 8, for establishing asymptotic convergence of{
E{|x(k)|c}

}
at all time instants k ∈ N0. In both cases,

convergence is to a bounded set containing the origin, whose
size is proportional to the moment E{|w(k)|s}. To formulate
our results, we define the following quantities:

ψ` ,
1− pγ

p`−1(1− q)(γ − 1)
, ` ∈ N

φ(x) , L(x, u0(x))− ψ−1
N F (f̄N (x)), x ∈ Rn.

(23)

Proposition 6 Suppose that Assumptions 2 to 4 hold with
v = s. Then there exists σ ∈ R>0 such that, at k1 ∈ K,

E
{
V (x(k1))

∣∣x(0)
}
− V (x(0))
≤ σE{|w(k)|s} − φ(x(0)). (24)

PROOF. See Section 7. �

Corollary 7 Suppose that (17b) and Assumptions 2 to 4
hold with v = s, that

E{|x(0)|s} <∞, E{|w(k)|s} <∞

and that there exists ρ ∈ (0, 1] such that

L(x, u0(x))−ψ−1
N F (f̄N (x)) ≥ ρF (x), ∀x ∈ Rn. (25)

Then the expectation of |x(ki)|c, ki ∈ K converges expo-
nentially to a bounded set, i.e., for all ki ∈ K,

E{|x(ki)|c} ≤
λF (1− ρ)i

αL
E{|x(0)|s}+

σ

ραL
E{|w(k)|s},

with σ ∈ R. Here, αL is given in (17b) and λF , in (18c).

PROOF. Proposition 6 establishes that V (x(ki)) is a
stochastic Lyapunov-like function for the closed loop at the
time instants ki ∈ K. In fact, if (25) holds, then Lemma 4
gives that φ(x(ki)) ≥ ρV (x(ki)), ∀ki ∈ K, so that, by (24),

E{V (x(k1)) |x(0)}−V (x(0)) ≤ σE{|w(k)|s}−ρV (x(0)).

Given (17) and since {x}K is Markovian, we can use [46,
Prop. 3.2] to conclude that:

E
{
V (x(ki))

∣∣x(0)
}
≤ (1− ρ)iV (x(0))

+ σE{|w(k)|s}
i−1∑
`=0

(1− ρ)`, ∀i ≥ 1. (26)

The result now follows from using (17b), (18c), Lemma 4
and taking expectation; see, e.g., [50, p.341]. �

Whilst Corollary 7 examines only {x}K, i.e., the plant state
at the instants of successful transmission, the following the-
orem establishes boundedness of E{|x(k)|s} for all k ∈ N0.

Theorem 8 Suppose that (25) and Assumptions 1 to 4 hold
with b = c = v = s. Then there exist C1, C2 ∈ R>0 such
that, for all i ∈ N0,

max
k∈{ki,k1+1...,ki+∆(i)−1}

E{|x(k)|s}

≤ C1(1− ρ)iE{|x(0)|s}+ C2E{|w(k)|s}. (27)

PROOF. See Section 8. �

Theorem 8 constitutes the main result of the present work. It
gives a sufficient condition for stochastic stability of the NCS
in the presence of disturbances and Markovian dropouts.
Our result establishes that, if the conditions of the theorem
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are met, then E{|x(k)|s} is bounded for all k ∈ N0. Fur-
thermore, by taking i→∞, the bound in (27) provides:

lim
k→∞

E{|x(k)|s} ≤ C2E{|w(k)|s}. (28)

Thus, if E{|w(k)|s} = 0, then one obtains that 4

lim
k→∞

E{|x(k)|s} = 0. (29)

The condition (25) involves the upper bound of the plant
growth rate, γ, the dropout distribution parameters p and q,
and the cost function parameters N , F (·) and L(·, ·). The
result confirms that, it is desirable that q ≈ 1, p ≈ 0, γ ≈ 1
and N be large. More details on how to choose the design
parameters are given in the following section.

Remark 9 Since (19) is a global condition (see also [8]),
Assumption 3 will, in general, not be satisfied if (1) is open-
loop unstable outside a bounded region and U is bounded;
cf., [22]. To examine such situations and also to incorporate
state constraints, it would be desirable to replace (19) by a
local condition, which needs to hold only in some bounded
set, say Xf ⊂ Rn; see, e.g., [51] and also [39,40], which use
similar ideas for NCSs where ∆(i) and the disturbances are
uniformly bounded. In the present case, where disturbances
and consecutive dropouts are unbounded, the situation is
significantly more difficult to handle. In fact, to prove bound-
edness of E{|x(k)|s} following along the lines adopted in
the present work, one would require that Xf be a robust in-
variant set of {x}K, see (14). Since the maximum number
of consecutive dropouts is unbounded, for plants which are
open-loop unstable outside a bounded region, this will in
general not hold. We conclude that the issue of formulating
local conditions deserves further study. �

6 Choice of Design Parameters

The stability result in Theorem 8 suggests that one may in-
corporate (25) as an additional constraint on f̄N (x) in the
minimization of the cost function. The following corollary
shows how to design the cost function parameters in (8) such
that stochastic stability can be guaranteed without requiring
additional constraints in the optimization. Our result also
sheds some light into closed loop performance by quantify-
ing the convergence factor 1− ρ in (27).

Corollary 10 If the assumptions of Theorem 8 hold and

F (x) < (1 + ψN )L(x, u0(x)), ∀x ∈ Rn, (30)

then {x}N0 satisfies (27) for all ρ ∈ (0, ρ?
N ], where

ρ?
N ,

L(x, u0(x))
F (x)

+ ψ−1
N

(
L(x, u0(x))

F (x)
− 1

)
> 0. (31)

4 As shown in [44], if there are no disturbances, then Assump-
tion 2 is not needed to establish (29).

PROOF. If (30) is satisfied, and since ψN > 0, for
all ρ ∈ (0, ρ?

N ] and all x ∈ Rn, we have F (x) ≤
(1 + ψN )L(x, u0(x))/(1 + ρψN ), which is equivalent to

ρF (x) ≤ ψ−1
N (L(x, u0(x))− F (x)) + L(x, u0(x)). (32)

On the other hand, (21) and (15) provide the bound
F

(
f̄N (x)

)
≤ F (x)−L(x, u0(x))−

∑N−1
`=1 L

(
f̄ `(x), u`(x)

)
≤ F (x) − L(x, u0(x)), which upon substitution into (32)
implies (25). The result follows from Theorem 8. �

Corollary 10 allows us to conclude that the NCS will be sta-
ble if the weighting functions F (·) and L(·, ·) are chosen
to be compatible with Assumptions 1 to 4 and the bound
in (30). To further elucidate this result, we observe that
ψ`+1 ≥ ψ`, ∀` ∈ N, and lim`→∞ ψ` = ∞. Thus, choosing
larger horizon lengths N is beneficial for fulfilling (30) and
hence guaranteeing stability, in the sense of (27). Moreover,
for any design which satisfies Assumptions 1 to 4, stability
can be ensured if a sufficiently large horizon length is used.
In fact, {x}N0 satisfies (27) if N ∈ N is chosen such that

N > 1+log
(
τ(1− pγ)L(x, u0(x))
F (x)− L(x, u0(x))

)/
log(p), ∀x ∈ Rn,

where τ−1 , (1− q)(γ − 1). Note that (23) gives that

1− ρ?
N =

(
1− L(x, u0(x))

F (x)

) (
1 +

pN

τp(1− pγ)

)
. (33)

Thus, the bound on the convergence factor 1 − ρ?
N in (31)

is exponentially decreasing in N with limiting value

lim
N→∞

1− ρ?
N = 1− L(x, u0(x))/F (x).

Example 1 (Adapted from [52, Example 2.3]) Consider
an open-loop unstable plant model of the form (1), where

f(x, u, w) =

[
x2 + u1

−sat(x1 + x2) + u2

]
+

[√
w2 + 5−

√
5

0

]
,

(34)
with

x =

[
x1

x2

]
, u =

[
u1

u2

]
, sat(ν) =


−1, if ν < −1,
ν if ν ∈ [−1, 1],
1, if ν > 1.

We fix | · | as the Euclidean norm. The second component of
the plant input is constrained via

|u2(k)| ≤ 0.8, ∀k ∈ N0.

The network introduces Markovian packet dropouts with
failure rate 1 − q = 0.4 and recovery rate 1 − p = 0.45.
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To control this NCS, we wish to use the PPC formula-
tion of Section 3. The weighting functions are chosen as
F (x) = 2|x|, L(x, u) = |x|, which satisfy (17) and (18)
with αF = λF = 2, and αL = λL = b = c = s = 1. Since∣∣∣∣∣ d

√
w2 + 5
dw

∣∣∣∣∣ ≤ 1, ∀w ∈ R

and by proceeding as in [52, p.73], we obtain that (34)
satisfies (18a) with s = 1, λx = 1.618 and λw = 1 uni-
formly. Since p = 0.55 < 1/λx ≈ 0.618, Lemma 5 gives
that Assumption 4 holds with η = 2, v = 1 and open-loop
rate of growth bounded by γ = 1.618. Assumption 3 is also
satisfied, since for κf : R2 → R × [−0.8, 0.8] chosen as
κf (x) =

[
−x2 0.8sat(x1 + x2)

]T
, we have

F
(
f(x, κf (x), 0)

)
− F (x) + L(x, κf (x))

= 0.4|sat(x1 + x2)| − |x| ≤ 0.4|x1 + x2| − |x|
≤ 0.8 max{|x1|, |x2|} −max{|x1|, |x2|} ≤ 0.

Given that Assumptions 1 to 4 hold with b = c = v = s,
the results established in the present work can be readily
applied. In fact, direct calculations give that ψ` = 0.245/p`,
see (23), and condition (30) becomes

2|x| <
(
1 + 0.245/pN

)
|x|, ∀x ∈ R2 ⇐⇒ pN < 0.245.

Thus, if the horizon and buffer length satisfy N ≥ 3, then
Corollary 10 establishes that the NCS is stable in the sense
of (27). For example, if one chooses N = 3, then the conver-
gence factor provided by (33) is given by 1− ρ?

3 ≈ 0.84. �

7 Proof of Proposition 6

Throughout this section, we will write x instead of x(0), ∆
for ∆(0), and u` for u`(x(0)), see (5). To prove Proposi-
tion 6, we will first state, and prove, some technical lemmas.

Lemma 11 If (18a) holds, then:

E
{
|x(`)− f̄ `(x)|s

∣∣x} ≤ λw

`−1∑
j=0

λj
x E{|w(k)|s} (35)

for all ` ∈ {1, 2, . . . ,∆}, with ∆ ≤ N .

PROOF. Since x(`) = f `(x, {w}`−1
0 ), (18a) gives that∣∣f `(x, {w}`−1

0 )− f̄ `(x)
∣∣s

=
∣∣f(f `−1(x, {w}`−2

0 )), u`−1(x), w(`− 1))

− f(f̄ `−1(x), u`−1(x), 0)
∣∣s

≤ λx

∣∣f `−1(x, {w}`−2
0 )− f̄ `−1(x)

∣∣s + λw|w(`− 1)|s.

The result follows from noting that {w}N0 is i.i.d. �

Lemma 12 Define

β∆,` , λwλ
`−∆
x

∆−1∑
j=0

λj
x, λ̃∆,N , λFβ∆,N+λL

N−1∑
`=∆

β∆,`.

(36)
If ∆ ≤ N , and Assumptions 2 and 3 hold, then:

E
{
V (x(k1))

∣∣x}− V (x)

≤ λ̃∆,NE{|w(k)|s} −
∆−1∑
`=0

L(f̄ `(x), u`(x)). (37)

PROOF. We adapt the approach of [40, Lemma 1]. We
focus on time instant k1 = ∆ and introduce the sequence{

x]
}N+∆

∆
,

{
x]

∆, x
]
∆+1, . . . , x

]
N , x

]
N+1, . . . , x

]
N+∆

}
.

(38)
Its first N −∆ + 1 elements are defined recursively via:

x]
j+1 = f

(
x]

j , uj(x), 0
)
, j ∈ {∆, . . . , N − 1}, (39)

with x]
∆ = x(k1); the remaining ∆ elements are given by

x]
j+1 = f

(
x]

j , u
]
j , 0

)
,

u]
j = κf (x]

j), j ∈ {N, . . . , N + ∆− 1},
(40)

where κf (·) is chosen such that (19) holds. We next consider

~u] =
{
u∆(x), u∆+1(x), . . . , uN−1(x),

u]
N , u

]
N+1 . . . , u

]
N+∆−1

}
,

whose first N −∆ elements are taken from ~u(x), whereas
the remaining ∆ elements are provided by (40). It follows
from (8) that the associated cost satisfies:

J(~u], x(k1)) = F (x]
N+∆) +

N−1∑
`=∆

L(x]
`, u`(x))

+
N+∆−1∑

`=N

L(x]
`, u

]
`).

(41)

Since V (x(k1)) ≤ J(~u], x(k1)), for ∆ < N we can bound

E
{
V (x(k1))

∣∣x}− V (x) ≤ E
{
J(~u], x(k1))

∣∣x}− V (x)

=
N−1∑
`=∆

(
E

{
L(x]

`, u`(x))
∣∣x}− L(f̄ `(x), u`(x))

)
− F (f̄N (x))−

∆−1∑
`=0

L(f̄ `(x), u`(x))

+ E
{
F (x]

N+∆)
∣∣x} +

N+∆−1∑
`=N

E
{
L(x]

`, u
]
`)

∣∣x},
(42)
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where we have used (15). On the other hand, (18a), (39) and
Lemma 11 provide that, for ` ∈ {∆,∆ + 1, . . . , N},

E
{
|x]

` − f̄ `(x)|s
∣∣x} ≤ β∆,` E{|w(k)|s}, (43)

where β∆,` are defined in (36). By rearranging terms and
using (18b), (42) can be rewritten as:

E
{
V (x(k1))

∣∣x}− V (x) ≤ λL

N−1∑
`=∆

β∆,` E{|w(k)|s}

−
∆−1∑
`=0

L(f̄ `(x), u`(x)) + E
{
F (x]

N )
∣∣x}− F (f̄N (x))

+
N+∆−1∑

`=N

E
{
L(x]

`, u
]
`) + F (x]

`+1)− F (x]
`)

∣∣x}.
Use of (40), (19) and (18c) provides (37).

For ∆ = N , we consider

~u] =
{
u]

N , u
]
N+1 . . . , u

]
2N−1

}
,

where all N elements of ~u] are calculated via (40), but with
initial value x]

N = x(k1). The bound in (37) then follows
as in the case ∆ < N studied above. �

Lemma 13 Suppose that ∆ > N , that (18a), (18c) and
Assumptions 3 and 4 hold with v = s. Furthermore, define

Γ`,N , η

`−N−1∑
j=0

γj , η̃∆,N , Γ∆,N + γ∆−NλFβN,N ,

(44)
where βN,N is as in (36) with ∆ = ` = N . Then:

E
{
F (x(`))

∣∣x} ≤γ`−NE
{
F (x(N))

∣∣x}
+ Γ`,NE{|w(k)|s},

(45)

for all ` ∈ {N + 1, . . . ,∆}, and

E
{
V (x(k1))

∣∣x}− V (x) ≤ η̃∆,NE{|w(k)|s}

+ (γ∆−N − 1)F
(
f̄N (x)

)
−

N−1∑
`=0

L(f̄ `(x), u`(x)). (46)

PROOF. With ` ∈ {N + 1, . . . ,∆}, (20) gives:

E
{
F (f(x(`− 1), 0, w(`− 1)))

∣∣x(`− 1)
}

≤ γF (x(`− 1)) + ηE{|w(`)|s}.
(47)

Since ∆ > N , by (14), {x}k1
N is Markovian. We thus have:

E
{
F (x(`))

∣∣x(`− 1)
}

= E
{
F (x(`))

∣∣ {x}`−1
N

}
≤ γF (x(`− 1)) + ηE{|w(`)|s},

where we have used (47). By taking conditional expectation
in the above and using the Markov property, we obtain:

E
{
E

{
F (x(`))

∣∣ {x}`−1
N

} ∣∣x(N)
}

= E
{
F (x(`))

∣∣x(N)
}

≤ γE
{
F (x(`− 1))

∣∣x(N)
}

+ ηE{|w(`)|s}.

The above recursion can be applied ` − N times to give
Γ`,NE{|w(`)|s}+γ`−NF (x(N)) ≥ E

{
F (x(`))

∣∣x(N)
}

=
E

{
F (x(`))

∣∣x(N), x
}

; thus, [45, Eq. 1.28], establishes (45).

To prove (46), we set ` = ∆ in (45) and use Lemma 4:

E
{
V (x(k1))

∣∣x}− V (x)

≤ γ∆−NE
{
F (x(N))

∣∣x} + Γ∆,NE{|w(k)|s} − V (x)

= Γ∆,NE{|w(k)|s}+ γ∆−NE
{
F (x(N))

∣∣x}
− F (f̄N (x))−

N−1∑
`=0

L(f̄ `(x), u`(x))

≤ Γ∆,NE{|w(k)|s}+ (γ∆−N − 1)F (f̄N (x))
+ γ∆−N

(
E

{
F (x(N))

∣∣x}− F (f̄N (x))
)

−
N−1∑
`=0

L(f̄ `(x), u`(x)).

Lemma 11 and Equation (18c) now provide (46). �

Having established the above results, Proposition 6 can now
be proven by using (11) and conditioning upon ∆ as follows:

E
{
V (x(k1))

∣∣x} = E
{
E

{
V (x(k1))

∣∣x,∆}}
= qE

{
V (x(k1))

∣∣x,∆ = 1
}

+ (1− q)(1− p)
∞∑

i=2

pi−2E
{
V (x(k1))

∣∣x,∆ = i
}

= qE
{
V (x(k1))

∣∣x,∆ = 1
}

+ (1− q)(1− p)
N∑

i=2

pi−2E
{
V (x(k1))

∣∣x,∆ = i
}

+ (1− q)(1− p)
∞∑

i=N+1

pi−2E
{
V (x(k1))

∣∣x,∆ = i
}
.
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If we now utilize (37) and (46), then:

E
{
V (x(k1))

∣∣x}− V (x)

≤ q
(
λ̃1,NE{|w(k)|s} − L(x, u0(x))

)
+ (1− q)(1− p)

N∑
i=2

pi−2
(
λ̃i,NE{|w(k)|s}

−
i−1∑
`=0

L(f̄ `(x), u`(x))
)

+ (1− q)(1− p)
∞∑

i=N+1

pi−2
(
η̃i,NE{|w(k)|s}

+ (γi−N − 1)F (f̄N (x))−
N−1∑
`=0

L(f̄ `(x), u`(x))
)
.

We next define

σ , qλ̃1,N + (1− q)(1− p)
N∑

i=2

pi−2λ̃i,N

+ (1− q)(1− p)
∞∑

j=N+1

pi−2η̃j,N , (48)

which is finite, since, by Assumption 4, pγ < 1. Therefore,

E
{
V (x(k1))

∣∣x}− V (x)
≤ σE{|w(k)|s} − qL(x, u0(x))

− (1− q)(1− p)
N∑

i=2

pi−2
i−1∑
`=0

L(f̄ `(x), u`(x))

+ (1− q)(1− p)
∞∑

i=N+1

pi−2(γi−N − 1)F (f̄N (x))

− (1− q)(1− p)
∞∑

i=N+1

pi−2
N−1∑
`=0

L(f̄ `(x), u`(x)),

which gives:

E
{
V (x(k1))

∣∣x}− V (x) ≤ σE{|w(k)|s}

−
(
q + (1− q)(1− p)

∞∑
i=2

pi−2

)
L(x, u0(x))

+ (1− q)(1− p)
∞∑

i=N+1

pi−2(γi−N − 1)F (f̄N (x))

− (1− q)(1− p)
∞∑

i=N+1

pi−2
N−1∑
`=1

L(f̄ `(x), u`(x))

= σE{|w(k)|s} − (1− q)pN−1
N−1∑
`=1

L(f̄ `(x), u`(x))

− L(x, u0(x)) + (1− q)pN−1

(
γ − 1
1− pγ

)
F (f̄N (x)),

since pγ < 1. This completes the proof of Proposition 6. �

8 Proof of Theorem 8

We will denote x(0) by x, and ∆(0) by ∆. By Corol-
lary 7, (26) holds for all ki ∈ K. We next examine instants
k /∈ K. For that purpose, we condition upon ∆ to obtain:

k1−1∑
j=0

E
{
|x(j)|s

∣∣x} =
∆−1∑
`=0

E
{
|x(`)|s

∣∣x}
= qE

{
|x|s

∣∣x,∆ = 1
}

+ (1− q)(1− p)
∞∑

i=2

pi−2
i−1∑
`=0

E
{
|x(`)|s

∣∣x,∆ = i
}

= qE
{
|x|s

∣∣x,∆ = N
}

+ (1− q)(1− p)
N∑

i=2

pi−2
i−1∑
`=0

E
{
|x(`)|s

∣∣x,∆ = N
}

+ (1− q)(1− p)
∞∑

i=N+1

pi−2
i−1∑
`=0

E
{
|x(`)|s

∣∣x,∆ = i
}

≤ q

N−1∑
`=0

E
{
|x(`)|s

∣∣x,∆ = N
}

+ (1− q)(1− p)
∞∑

i=2

pi−2
N−1∑
`=0

E
{
|x(`)|s

∣∣x,∆ = N
}

+ (1− q)(1− p)
∞∑

i=N+1

pi−2
i−1∑
`=N

E
{
|x(`)|s

∣∣x,∆ = i
}

=
N−1∑
`=0

E
{
|x(`)|s

∣∣x,∆ = N
}

+ (1− q)(1− p)
∞∑

i=N+1

pi−2
i−1∑
`=N

E
{
|x(`)|s

∣∣x,∆ = i
}
.

Expression (17a), then provides the bound:

k1−1∑
j=0

E
{
|x(j)|s

∣∣x}
≤

N−1∑
`=0

E
{
|x(`)− f̄ `(x) + f̄ `(x)|s

∣∣x,∆ = N
}

+
(1− p)

αF /(1− q)

∞∑
i=N+1

pi−2
i−1∑
`=N

E
{
F (x(`))

∣∣x,∆ = i
}
.

On the other hand, for all y, z ∈ Rn and all s ∈ R>0,

|y + z|s ≤ |2 max(|y|, |z|)|s + |2 min(|y|, |z|)|s

= 2s
(
|y|s + |z|s

)
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Lemmas 11 and 13 then give that

k1−1∑
j=0

E
{
|x(j)|s

∣∣x} ≤ 2sλw

N−1∑
`=0

`−1∑
j=0

λj
x E{|w(k)|s}

+ 2s
N−1∑
`=0

E
{
|f̄ `(x)|s

∣∣x,∆ = N
}

+
1− p

αF /(1− q)

∞∑
i=N+1

pi−2
i−1∑
`=N

γ`−NE
{
F (x(N))

∣∣x}
+

1− p

αF /(1− q)

∞∑
i=N+1

pi−2
i−1∑
`=N

Γ`,NE{|w(k)|s}.

By Assumption 4, pγ < 1. Therefore, it is easy to see that
all sums above are convergent. Furthermore, (18c) provides

F (x(N)) ≤ λF |x(N)− f̄N (x)|s + F (f̄N (x)).

Having established the above, we can use Lemma 11
to conclude that there exist finite constants C ′1 and C3,
which are independent of x and provide the bound∑k1−1

j=0 E
{
|x(j)|s

∣∣x} ≤ C ′1V (x) + C3E{|w(k)|s}. In a
similar manner, it can be shown that ∃C ′1, C3 ∈ R such that

ki+1−1∑
j=ki

E
{
|x(j)|s

∣∣x(ki)
}
≤ C ′1V (x(ki))+C3E{|w(k)|s},

for all ki ∈ K. Since {x}K is Markovian, by taking condi-
tional expectation and using (26), we have

ki+1−1∑
j=ki

E
{
|x(j)|s

∣∣x} ≤ C ′1(1− ρ)iV (x)+C2E{|w(k)|s},

for all ki ∈ K, and where

C2 , σC ′1

i−1∑
`=0

(1− ρ)` + C3 ≤
σC ′1
ρ

+ C3 <∞.

As a consequence, it holds that

max
j∈{ki,ki+1,...,ki+∆(i)−1}

E
{
|x(j)|s

∣∣x}
≤ C ′1(1− ρ)iV (x) + C3E{|w(k)|s},

which gives

max
j∈{ki,ki+1,...,ki+∆(i)−1}

E{|x(j)|s}

≤ C ′1(1− ρ)iE{V (x)}+ C2E{|w(k)|s}
≤ C ′1(1− ρ)iλF E{|x|s}+ C2E{|w(k)|s},

where we have used (18c) and (21). Setting C1 = C ′1λF ,
establishes (27).

9 Conclusions

This work has studied a NCS architecture where a pack-
etized predictive controller uses an unreliable network af-
fected by Markovian packet-dropouts to control a nonlinear
plant with unbounded disturbances. It has been shown that,
provided that the plant and network satisfy suitable condi-
tions, stochastic stability of the closed loop can be ensured
by appropriate choice of tuning parameters. Future research
could include the study of more general NCSs, including
where the controller does not have access to the plant state.
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