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(N-1) contingency planning in radial distribution
networks using genetic algorithms
Alexandre Mendes, Natashia Boland, Patrick Guiney, and Carlos Riveros

Abstract—(N-1) contingency planning has been object of study and branches. Distribution networks in Energy Australia’s con-
in the area of distribution networks for several decades. Energy cession area operate a radial topology. Such radial networks, as
distribution companies have to reconnect areas affected by the name says, have no cycles and each load is served by only
an outage within a very short time, and observe operational

one feeder. When designing a distribution network, though,constraints, to avoid the possibility of severe financial penalties
by regulatory bodies. Distribution networks are often operated companies create robustness by adding excess connectivity,

with a radial topology, but, ideally, should have more than one allowing power to follow different paths to reach the same
route to deliver energy to any node of the network. Switches in customer, if needed. Together with the excess connectivity,
the network are opened to create the radial topology used in switches are positioned in strategic points of the network and
normal operation, and, in the case of an outage, alternate routes

can be set either as closed or opened. Specific switching con-are activated by opening or closing switches located at specific
points of the network. Given an outage situation (in our case figurations will create the radial topology of the power flow,

represented by the disconnection of a single branch), the choice assigning each load to a generator or feeder. Redundancy in
of which switches should change their state is a combinatorial the distribution network is particularly critical in situations of
optimisation problem, with a search space of 2k, where k is the (n-1) contingency, in which a cable becomes faulty, affecting
number of switches. Because of the exponential complexity, exact

the supply for all customers located after it. In this case, anmethods are prohibitively time-consuming. This work presents
a genetic algorithm that provides a rapid answer to network alternate path to supply power to the affected area can be

managers in terms of a switching strategy to reconnect the activated by a series of switching states changes.
affected area. The method takes into account the radial topology The problem of finding alternate routes for the power
of the power flow and the operational limits of voltage and cable supply, given an outage scenario, is very complex and has been
load. Computational tests were conducted on a real network with

studied for several decades. Alternate routes are determined96 buses and 16 switches, located within the operational area of
Energy Australia. This paper describes the genetic algorithm in by searching the solution space of switches states. That is,

detail, presents thorough computational tests, and a complete if there are k switches present in the network, the search
contingency plan for the test network. space has a size 2k, corresponding to each switch being either

closed or open. Because of the exponential nature of the search

space, distribution networks with a few dozen switches or
I. I

T
NTRODUCTION more will render exhaustive search approaches prohibitively

HIS paper describes the application of a genetic al- time-consuming. In that case, the use of heuristics becomes

gorithm to the problem of network reconfiguration via justified. Furthermore, the need to solve power flow equations

switching operations. Network reconfiguration arises in a num- for each possible switched state to determine its feasibility and

ber of situations faced by electricity distribution companies. quality particularly motivates the use of metaheuristics such as

Two of the most common applications are power loss mini- genetic algorithms [9][10], which can optimise over a “black

mization coupled with load balancing [1][2][3][4], and power box” power flow solver. This convenience is not available

outage restoration [5][6][7], but there are several others, as in traditional mathematical programming based optimisation

pointed to in reference [8]. This study deals with the problem methods.

of network reconfiguration for power restoration in an (n-1) In this study we implemented a genetic algorithm that,

contingency scenario – in our case, represented by a single given the loss of a specific branch, searches though the

cable fault. space of possible switching configurations for a solution that

The distribution network considered in this study can be rep- restores power to the affected area without violating specified

resented by sets of generators, feeders, buses, loads, switches operational limits, i.e. provides a contingency plan based on

a switching strategy. Tests were carried out in a real network
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puter Science, Faculty of Engineering and Built Environment, The Uni-
versity of Newcastle, Callaghan, NSW, 2308, Australia. e-mail: (see Faults on each cable (i.e. branch) were simulated and a

http://www.cs.newcastle.edu.au/∼mendes). contingency strategy for the entire network was produced with
N. Boland is with the School of Mathematical and Physical Sciences, the union of the contingency plans for each individual fault.

Faculty of Science and Information Technology, The University of Newcastle,
Callaghan, NSW, 2308, Australia. This paper is organized as follows. In Section II we describe

P. Guiney is with Energy Australia, Wallsend, NSW, 2287, Australia. the reconfiguration problem, the operational constraints and
C. Riveros is with the School of Electrical Engineering and Computer the test network. The solution approach via genetic algorithms

Science, Faculty of Engineering and Built Environment, The University of
Newcastle, Callaghan, NSW, 2308, Australia. is then thoroughly described in Section III. Section IV shows

Manuscript received April 19, 2005; revised January 11, 2007. the computational tests, which determine how the genetic

290 2010 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America

978-1-4577-0487-1/10/$26.00 ©2010 IEEE



2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Diagram of the test network used in this study. There are four feeders located on the top of the diagram and represented by the numbers 7490,
7486, 7491 and 7487. Three switches are opened in the original configuration (indicated by an ‘O’): 21889, 12553 and 43398. The other 13 switches are
closed. This configuration creates the radial topology of the distribution network. Notice that, for example, if switch 21889 was closed, there would be a
cycle connecting feeders 7491 and 7487. Switching reconfiguration becomes clear as a way of redirecting power to regions affected by outages. For instance,
suppose that the branch between 17566 and 10246 (middle-right of the diagram) becomes faulty. In this case, the entire region between load 10246 and the
switch 21889 will suffer an outage. A simple reconfiguration strategy would be to close switch 21889 – however, it is still necessary to run a power flow
simulation model to check whether or not feeder 7491 becomes overloaded because of the expansion of its supply area.

algorithm parameters affect its performance. In Section V the

results are assessed in terms of reliability and limitations,

mostly from the practical standpoint, i.e. their use by distribu-

tion manager professionals in real outage recovery scenarios.

Finally, in Section VI we present the conclusions and some

future research paths related to this study.

II. THE PROBLEM OF NETWORK RECONFIGURATION IN

PRACTICE

Distribution networks generally operate a radial topology,

with power flowing from the substation/generator, located at

the root node of the tree, towards the leaf nodes and supplying

the intermediate loads. However, when we analyse the diagram

of a real network, the radial topology only exists because of

switches that are opened in specific locations, otherwise there

would be cycles in the power flow. As mentioned before,

the existence of cycles in the physical network topology

allows alternate routes for the power supply and increases the

robustness of the energy distribution to outages.

In Figure 1 we show the diagram of the test network used

in this work. It has four feeders on the top of the figure,

and 16 switches represented by an open switch symbol. Note

that all switches are closed, except the three marked with

‘O’, and that most regions of the network have alternate

supply routes available. For instance, any load in the rightmost

branch (feeder 7487) is reachable from feeder 7491 if switch

21889 (bottom-right) is closed. In such a small network,

visual inspection suffices to determine the switching changes

required, and thus the network manager simply needs to run

a power flow model to verify if the new configuration will

be within operational limits. However, this situation changes

dramatically when larger networks are considered. In that

case, visual inspection is painstakingly slow and inaccurate,

requiring some degree of automation in the decision making

process.

In our implementation, the genetic algorithm receives as

input the physical network, as shown in Figure 1, including the

current state of the switches. Then, a given branch is removed

from the network (i.e. all references to it in the network model

are removed). This simulates an outage in which the branch

containing the fault has been identified and isolated from the

network. Finally, the genetic algorithm does the search and

communicates the best solution (switching state) found at the

end. In this problem, the majority of the switching states will

be infeasible, because either they leave sections of the network

still disconnected or they introduce cycles; or because the

load on the cables or the voltage limits are not within the

operational bounds. The criteria we use to define a switching
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state to be feasible are:

• Connection/topology: All sections of the network are

connected and the network has radial topology.

• Load: The load on any cable does not exceed its opera-

tional limit.

• Voltage: The voltage in any section of the network lies

between 0.95 and 1.05 (measured as per-unit).

It is worth mentioning that because the test network is 11kV,

distances are relatively small and loads are predominantly

active, there is no need to account for variations in the angle,

but that restriction could be easily added to the model in the

future.

If the solution (switching state) is infeasible, the objective

function is penalized proportionally to the degree of infeasi-

bility, as given in the penalty function P (s) defined below.

Otherwise, the algorithm looks at two characteristics that a

good quality switching state should have:

• Low number of switch changes: solutions which require

fewer switch changes are better.

• Voltage deviation: voltage should be as close as possible

to 1.0 in all sections of the network.

The first criterion is important from an operational stand-

point because most switches in the network are manually

operated and require a crew to drive to their exact location

to perform a change. If there are too many changes to be

made, it might take too long to restore power to the affected

region. The second criterion is also important, as legislation

protects consumers from being supplied electricity that is

outside certain voltage boundaries, and which could either

damage equipment or make them not work properly. These

two criteria are put together with the infeasibility penalty in

the objective function as:

obj(s) = P (s) + swtchanges(s) +

nbuses∑
i=1

∣∣vdev(i, s)
∣∣ (1)

P (s) =

⎧⎨
⎩

∞, if the network given by s contains a cycle;

M1 ∗ nbusesout(s) +

M2 ∗
[
nvoltout(s) + nloadout(s)

]
, otherwise.

(2)

Where:

• s → a solution (i.e. a switching configuration);

• obj(s) → the objective function to be minimized;

• P (s) → the infeasibility penalty of solution s;

• swtchanges(s) → the number of switches that change

state in solution s;

• nbuses → the number of buses in the network;

• vdev(i, s) → the voltage deviation from 1.0 at bus i in

solution s;

• nbusesout(s) → the number of buses still without power

supply in s (positive if the network is disconnected);

• nvoltout(s) → the number of buses with voltage outside

the operational boundaries in s;

• nloadout(s) → the number of branches with load above

the operational limit in s;

• M1,M2 → large numbers (M2 < M1 � ∞).

For a given failure in the network, the genetic algorithm

will test different switch configurations (switching states) in its

search for the optimum solution. Some of these intermediate

configurations will have buses or branches not fulfilling the

feasibility criteria above. The only feasibility condition being

penalised with an infinite penalty value is the radial topology

condition; the purpose of the two large constants M1,M2

is to allow the differentiation between distinct “degrees of

unfeasibility”, penalising disconnected buses (M1) more than

sections exceeding the operational limits (M2).

The power flow model calculation is critical to any power

distribution-related problem, and this work is no exception.

This calculation needs to be reliable and fast. For this appli-

cation in particular, we decided to use the Matlab package

MATPOWER [11], which has a 10-year development history

and has appeared in hundreds of scientific publications in the

last few years. Tests with the network used in this study indi-

cate no difference between the results from MATPOWER and

the well-known ASPEN Power Flow1 (the licensed software

currently used by Energy Australia in its daily operations),

apart from rounding errors.

III. GENETIC ALGORITHM APPROACH

This study proposes a genetic algorithm-based search

method to find a switching strategy for power restoration

after a branch of the network is lost. Genetic algorithms are

population-based search methods that use analogies of the

Evolution Theory to find high quality solutions for complex

computational problems. The method starts with a population

of low quality solutions, usually randomly generated, and then

‘evolves’ this population via genetic operators, i.e. crossover,

mutation and selection, towards better quality individuals, cor-

responding to solutions with better objective function values.

The genetic algorithm used in this study is described next.

A. Pseudocode

The genetic algorithm has a standard structure. The first

part of the method creates an initial random population of solu-

tions. Then, in the main loop section, solutions are created via

crossover and mutation, and then inserted (or not, according

to an acceptance criteria) back into the population, replacing

one of their “parent” solutions if accepted. This process con-

tinues until a convergence checking procedure detects that the

population lost its diversity and no new individuals are being

accepted for insertion. When that happens, the population is

reset by replacing all individuals, except the currently best

one, by random individuals. The main loop continues until a

user-specified time limit is reached. Next we will describe the

main elements of the genetic algorithm.

B. Fitness function

The fitness function will verify whether or not a solution

is feasible, and measure its quality according to Equation 1.

Because the genetic algorithm aims at maximizing the fitness,

but the objective function is to minimize Equation 1, the fitness

1http://www.aspeninc.com/aspen/index.php
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Method GeneticAlgorithm
begin
do

initializePopulation(pop);
do % main loop

updatePopStructure(pop);
while(populationNotConverged(pop))

for j = 1 to numind ∗ xoverrate % generation loop
newSolution = generateOffspring(pop);
newSolution = mutate(mutrate, newSolution);
acceptNewSolution(pop, newSolution);

endFor
checkPopulationConvergence(pop);

endWhile
restartPopulation(pop);

while(cpuTime < limit)
end

Fig. 2. Pseudo-code of the genetic algorithm implemented. Initially, a
population of random switching strategies is created; and then the algorithm
enters the main loop. The main loop creates numind ∗ xoverrate new
individuals (switching strategies) in each generation, which can either be
accepted or not into the population. For every generation loop completed,
the algorithm verifies whether the population has converged. Population
convergence triggers a restart procedure, where all individuals are replaced by
randomly generated ones, except for the currently best solution. This process
is repeated until a time limit is reached.

of an individual becomes simply the inverse of the objective

function. There is no need to consider the case obj(s) = 0

because either the solution corresponds to a new switched

state, so swtchanges(s) will be positive, or the solution is

the original state, which is known to have positive voltage

deviation.

C. Representation and initialization

Solutions for the problem of switching reconfigurations have

a binary representation. That is, an array of bits of size n
will represent the states of the n switches, with 0 and 1

indicating opened and closed, respectively. The population

initialization occurs within the procedure initializePopulation,

which creates a population of random solutions by assigning

values 0 or 1 to each switch, uniformly at random. The

probability is 20% for any given switch to be open, and 80%

for it to be closed, which very closely matches the proportions

of open and closed switches in the original switching state.

These proportions aim at reducing the likelihood of creating

solutions with cycles or disconnected sections.

D. Population structure

In our implementation, populations have a structure that

organizes individuals according to their quality and constrains

how parent solutions are chosen to produce new solutions. The

structure follows a ternary tree as seen in Figure 3.

The population structure is enforced by the updatePop-
Structure method, which performs a sorting on the tree. The

sorting procedure simply compares each node with its children,

and whenever a child has a better fitness than its parent node,

they swap solutions. At the end of the sorting, the best solution

of the population will be positioned at the root node, and the

worst solutions will tend to be placed in the lower layers.

This structure is interesting from the evolutionary point of

view, as it induces parallel sub-populations within each branch.

That is, since crossover can only occur between solutions in

nodes connected by an edge, the three branches that emanate

from the root node will evolve almost independently, as three

separate populations, receiving the influence only from the

current best individual at the root node. This reduces premature

convergence, and improves the exploration of the search space.

This structure has been compared to non-structured popula-

tions and to other types of structured populations, and has been

used in other combinatorial optimisation problems [12][13]. It

has consistently outperformed other approaches, providing a

good trade-off between population size and convergence rate.

E. Recombination – selection, crossover and mutation

Selection of parents follows the approach described above,

dictated by population structure. Whenever a new solution is

to be created, an internal node is chosen uniformly at random,

and one of its three child nodes is selected as the second

parent.

The implementation in this study uses the Uniform

Crossover (UX) [9], where the value of each switch state in

the child solution is chosen uniformly at random from one of

its parents. Therefore, if both parents have the same state for a

specific switch (either 0 or 1), the child will inherit that state.

If each parent has a different value, then the value inherited

can be 0 or 1, with equal probability.

As the representation is an array of bits, the logical choice

for mutation is the bit-swap [9]. If a solution is selected to

go through mutation (according to a probability mutrate), a

switch is chosen uniformly at random, and its state is swapped,

either 0 → 1 or 1 → 0.

F. Acceptance policy, convergence checking, and population
restart

When a new solution is created, it might be inserted

into the population or not, depending on its quality. In our

implementation, the acceptance policy determines that new

solutions are accepted if their objective function value is better

than at least one of its parents. In this case, the new solution

will replace the worst parent. This policy guarantees that the

average fitness of the population increases over time, up to a
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Fig. 3. Diagram of the population structure based on a ternary tree. The
figure depicts a population with 13 individuals, corresponding to a tree with
three levels. Better solutions are positioned in the upper layers of the tree,
whereas worse solution go to the bottom layers. Recombination is restricted
to pairs of parents chosen from nodes connected by an edge.
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point where all individuals have very good fitness values, and

are probably very similar.

To avoid wasting CPU time when the population converges

to individuals that are too similar, and thus new incumbent

solutions are less likely to be found, a convergence checking

criteria is used. The criteria checks whether in the last gener-

ation, any of the numind ∗ xoverrate new individuals created

was accepted for insertion in the population (numind repre-

sents the number of individuals in the population; xoverrate
is the crossover rate of the population). If no individuals

created were accepted, then it is fair to assume that the

population has evolved for a reasonable number of generations,

and is composed of highly similar solutions, making any

improvement very unlikely.

When the convergence checking criteria is satisfied, it

triggers a population restart. That is, all individuals except the

best one are replaced by randomly generated solutions and the

evolutionary process resumes.

IV. COMPUTATIONAL TESTS

In this section we will detail the tests and results for the

test network. The genetic algorithm was run with several

alternative parameter settings, which aimed at examining the

influence of the parameters on the quality of the solutions

obtained. The parameters tested were:

• Size of population (numind): 13, 40 and 121, correspond-

ing to ternary trees with 3, 4 and 5 levels.

• Crossover rate (xoverrate): 1.0, 2.0 and 3.0.

• Mutation rate (mutrate): 0.1, 0.3 and 0.5, corresponding

to 10%, 30% and 50% of the new individuals going

through one bit-swap mutation.

• CPU time limit: 5, 10 and 30 seconds per removed

branch.

For each run, all possible failures in the network are tested

by removing the corresponding branch and searching for a fea-

sible solution using the given parameters and within the CPU

time limit. Branches are labelled either non-critical or critical
if the algorithm does (or does not) find a feasible solution when

that particular branch has been excluded from the network

(i.e. simulating the failure of the branch). The performance for

each parameter set is evaluated by the counting the number of

non-critical branches. The higher the number of non-critical

branches, the better the method is in finding alternate feasible

network reconfigurations.

All tests were conducted in a PC computer, with an Intel

Centrino Duo 3.0GHz processor and 2Gb RAM; and to

produce statistically stronger results, each configuration was

tested 10 times. The parameter with the strongest impact on

the performance of the genetic algorithm was the CPU time.

Although still important, numind, xoverrate and mutrate had

a much smaller impact. Results are summarized in Table I,

which shows the worst, average and best number of non-

critical branches for each parameter set configuration. As

expected, results improve quickly as more CPU time is given

to the algorithm, going from averages around 46-47 non-

critical branches when the GA runs for 5 seconds per removed

branch, up to 58-59 non-critical branches for 30 seconds. The

best results were obtained with 40 individuals, xoverrate =

1.0 and mutrate = 0.3; and with 121 individuals, xoverrate
and mutrate = 1.0/0.3, 3.0/0.1 and 3.0/0.3, in a CPU time of

30 seconds. With those configurations the genetic algorithm

obtained 59 non-critical branches in all ten runs.

Note that of the 97 branches in the network, it is easily

calculated that 34 of them will disconnect the network, ir-

respective of switching state. Although not provable, of the

remaining 63, it is likely that the 4 other critical branches

cannot supply load within operational limits for any switching

state, and that the best switching states found for the 59 non-

critical branches yields the optimal contingency plan for the

network. The value of 59 non-critical branches was reached

at least once in all tests with 30 seconds in Table I, no matter

the values of the other parameters.

In Figure 4, we show the diagram of the contingency plan

for the test network with 59 non-critical branches. The two

rectangles on the top and bottom of the figure represent gen-

erators; hexagons are switches (solid/dashed borders indicate

closed/open switches in the original network configuration,

respectively); and ellipses indicate buses. Critical branches are

painted in red; non-critical branches are in black. Branches

connected to the three opened switches are dashed, to indi-

cate that no power is flowing through them in the original

configuration. All non-critical branches have their switching

strategies indicated next to them, along with the final state of

each switch, either open (0) or close (1). All critical branches

have either no alternate physical path to reconnect them, or

their reconnection will violate the operational limits imposed

by Energy Australia.

The four feeders present in Figure 1 are indicated by the

arrows in Figure 4. Feeder 1 is the longest one, extending from

Generator A to bus 59 and towards the right and bottom of

the figure, until it reaches Generator B. Notice, though, that

Generator B is disconnected from the rest of the network, as

switch P41 is open. All non-critical branches in this feeder

require at least the closing of switch P41 to redirect power.

Interestingly enough, though, is that the only branches that

clearly require the closing of P41 are those located between

bus 27 and generator B. For those, closing switch S12553F

alone will not suffice; the only way to redirect power to the

affected area is through P41. Additional switch changes in

those branches are due to branch overloading and voltage

bounding constraints.

Feeder number 2 is very short, extending from Generator
A to bus 93 and towards bus 65. It is connected to feeder 1

by switch S12553F and has a critical section with one switch

and three buses, extending from bus 61. All branches located

before that bus are non-critical, requiring the closing of switch

S12553F to redirect power, and a few other operations to

improve operational parameters.

Finally, feeders 3 and 4 constitute a single distribution

loop with an open switch (S21889C) to produce the radial

topology. All switching operations in these two feeders require

the closing of S21889C (except for the two branches connected

to the switch itself). In addition, the closing of P41 is present

in all switching strategies for these two feeders again due to

branch overloading constraints.
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TABLE I
PARAMETER TESTING FOR CPU TIME = 5, 10 AND 30 SECONDS PER REMOVED BRANCH. FOR EACH CPU time, WE TESTED DIFFERENT VALUES OF

number of individuals, xoverrate AND mutrate . THE TABLE DEPICTS THE WORST, AVERAGE AND BEST VALUES OBTAINED IN 10 RUNS FOR number of
non-critical branches. THE AVERAGES VALUE OBTAINED FOR EACH CONFIGURATION OF CPU TIME AND NUMBER OF INDIVIDUALS IS SHOWN ON THE

RIGHTMOST COLUMN OF THE TABLE. NOTICE THE IMPROVEMENT OF THE SOLUTIONS AS CPU TIME INCREASES, STARTING AT AN AVERAGE OF 46-47
NON-CRITICAL BRANCHES FOR 5 SECONDS; 54-55 IN 10 SECONDS; AND 58-59 IN 30 SECONDS. THE BEST CONFIGURATIONS WERE FOR 40
INDIVIDUALS, xoverrate = 1.0 AND mutrate = 0.3; AND 121 INDIVIDUALS, xoverrate = 1.0/3.0 AND mutrate = 0.3. ALSO, IT IS WORTH

MENTIONING THAT FOR 30 SECONDS CPU TIME, THE METHOD ALWAYS REACHES A SOLUTION WITH 59 NON-CRITICAL BRANCHES, NO MATTER THE

VALUES OF xoverrate AND mutrate .

CPU time: 5 seconds

13 individuals
mutrate → 0.1 0.3 0.5 Average 13 indiv. / 5 sec.

xoverrate ↓ worst average best worst average best worst average best worst average best
1.0 42 46.4 50 41 47.0 51 39 44.9 50 40.8 46.2 50.9
2.0 41 46.1 50 42 46.8 51 41 45.7 53
3.0 36 44.2 50 40 45.5 49 45 49.5 54

40 individuals
mutrate → 0.1 0.3 0.5 Average 40 indiv. / 5 sec.

xoverrate ↓ worst average best worst average best worst average best worst average best
1.0 42 48.2 53 42 46.0 51 39 46.8 53 42.4 47.3 52.1
2.0 42 46.0 51 46 48.7 52 44 47.9 52
3.0 42 47.7 52 43 46.1 52 42 48.6 53

121 individuals
mutrate → 0.1 0.3 0.5 Average 121 indiv. / 5 sec.

xoverrate ↓ worst average best worst average best worst average best worst average best
1.0 44 47.7 51 42 47.9 52 47 50.5 54 43.0 47.9 52.2
2.0 42 47.1 51 47 50.0 55 37 42.0 47
3.0 41 48.0 53 45 49.1 54 42 48.9 53

CPU time: 10 seconds

13 individuals
mutrate → 0.1 0.3 0.5 Average 13 indiv. / 10 sec.

xoverrate ↓ worst average best worst average best worst average best worst average best
1.0 54 55.5 58 53 55.1 58 53 55.1 58 51.7 54.6 57.4
2.0 50 53.9 57 50 53.9 56 52 55.2 58
3.0 51 54.0 57 50 54.7 57 52 54.3 58

40 individuals
mutrate → 0.1 0.3 0.5 Average 40 indiv. / 10 sec.

xoverrate ↓ worst average best worst average best worst average best worst average best
1.0 53 54.8 56 50 54.7 58 50 55.4 58 51.9 55.2 57.4
2.0 51 54.6 57 53 56.1 58 54 55.8 58
3.0 52 55.0 57 52 55.1 58 52 55.2 57

121 individuals
mutrate → 0.1 0.3 0.5 Average 121 indiv. / 10 sec.

xoverrate ↓ worst average best worst average best worst average best worst average best
1.0 52 54.9 58 54 55.8 58 53 56.0 58 51.8 55.2 57.9
2.0 52 55.0 57 54 56.4 58 50 53.5 56
3.0 49 55.6 59 53 56.1 58 49 53.5 59

CPU time: 30 seconds

13 individuals
mutrate → 0.1 0.3 0.5 Average 13 indiv. / 30 sec.

xoverrate ↓ worst average best worst average best worst average best worst average best
1.0 57 58.6 59 56 58.3 59 58 58.8 59 57.3 58.6 59.0
2.0 56 58.4 59 58 58.7 59 58 58.7 59
3.0 57 58.3 59 58 58.9 59 58 58.6 59

40 individuals
mutrate → 0.1 0.3 0.5 Average 40 indiv. / 30 sec.

xoverrate ↓ worst average best worst average best worst average best worst average best
1.0 58 58.8 59 59 59.0 59 58 58.6 59 57.8 58.7 59.0
2.0 57 58.5 59 57 58.5 59 57 58.4 59
3.0 58 58.7 59 58 58.8 59 58 58.9 59

121 individuals
mutrate → 0.1 0.3 0.5 Average 121 indiv. / 30 sec.

xoverrate ↓ worst average best worst average best worst average best worst average best
1.0 58 58.7 59 59 59.0 59 58 58.9 59 58.2 58.8 59.0
2.0 58 58.8 59 58 58.8 59 58 58.7 59
3.0 59 59.0 59 59 59.0 59 57 58.5 59
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Fig. 4. Diagram of the network showing critical (in red) and non-critical (in black) branches. Next to each non-critical branch, we present the switching
strategy to restore power supply, along with switches IDs and final states (0 = open; 1 = closed). The two rectangles represent generators and hexagons are
switches. Dashed hexagons represent open switches in the original network configuration. The feeders numbered 1-4 correspond to the feeders in Figure 1.

V. DISCUSSION

Operationally, the development of effective switching strate-

gies is essential both for optimisation of the normal system

arrangement and the optimal rearrangement of the electricity

network under (n-1) contingency conditions. A major indicator

of utility performance is supply reliability, which is in turn

determined by the fault rates of the network and the restoration

times for supply. The development of optimal switching strate-

gies which provide supply conditions within acceptable limits

while restoring supply in the minimum number of switchings

(reducing outage times) is paramount.

For network planners, this study has the potential to pro-

vide quasi-optimal switching arrangements for a multiply-

interconnected distribution network. It eliminates the need for

existing ad-hoc analysis methods that use a trial and error

approach to obtaining alternative switching strategies. For a

large distribution network (e.g. Energy Australia has of the

order of 2,000 distribution feeders) this will substantially

reduce the time that network planners will be required to

spend manually carrying out load flow studies to determine

restoration strategies for (n-1) contingency conditions.

Other evident future outcomes derived from this analysis are

the identification of network capacity constraints; and remedi-

ation alternatives based on network augmentation or demand

reduction projects. Further development of this algorithm

could attempt to incorporate optimised augmentation strategies

into its design. In a simplified sense this could involve the

identification of point-to-point augmentation opportunities for

network planners. In a more advanced scheme this could

incorporate geographic data from a utilities GIS system to

identify optimised geographic paths for augmentation.

Typically, network planning aimed at evaluating risk and

augmenting the distribution network utilises a switched (N-

1) criterion, in which load has to be restored within a specific

time frame. This criterion is often evaluated at peak conditions

on all feeders; a situation that does not necessarily reflect

the status of a real network, where fluctuation of loads on

different feeders will not necessarily match their peak loads

in time. This creates the possibility of a stochastic analysis

of peak loading conditions on the network, correlating the

transfer capability with this load fluctuation. This would

require contingency analysis to be performed under a variety

of load scenarios.

For control room operators, this algorithm will provide

them with alternate optimised arrangements to quickly restore

supply in the event of a contingency, reducing outage times

and improving network reliability. To be utilised in this manner

the algorithm needs to become integrated into the existing

Distribution Management System (DMS) of the utility.

A DMS usually utilises an associated network model which

provides the network data for monitoring and analysis. The

software will have to be modified to recognise the edges of a

feeder and the edges of its interconnection area to minimise
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the analysis size and relevance of the solution. This would then

allow a feeder by feeder analysis to be performed, evaluating

the present loads on the network (in contrast to the commonly

used peak load analysis).

A further consequence of this sort of implementation is the

reduction of the time to carry out a solution. The time frame

to obtain a solution needs to be short enough to allow an

operator to restore supply to the network without restricting

their existing activities, such as field operator coordination and

DMS monitoring. The present analysis has been carried out at

a Zone distribution network level. Reducing this to a feeder

by feeder analysis, as would be the case in practice, is also

desirable.

Furthermore, as the electricity network moves towards

‘Smart Grid’ technologies, this algorithm has the potential

to facilitate the uptake of this technology by providing the

alternate switching strategies automatically for use in control

schemes. The time frames for an optimum solution in this

scenario would be required to be able to cater for use on a

‘self-healing’ network.

This is a situation where the network will comprise a large

number of automatically controllable switches in place of the

existing manual air break switches. These devices will allow

for the identification of a fault location, the isolation of this

fault and the initiation of supply restoration automatically.

In this case, the solution routine would need to provide

an optimised solution in real time. If the automation were

designed to suit the present zone and subtransmission sub-

station restoration times, then the time from fault occurrence

to restoration would be required to be less than one minute.

Given the present times of operation of automated equipment

the algorithm would be required to complete its analysis over

the order of a few seconds.

As a final comment, a key element not yet considered

in this approach, but which will be in the near future, is

the switching scheduling associated to each strategy. The

switching scheduling corresponds to the sequence of switching

operations needed to change the distribution network from

original to final state. In real operational scenarios, the se-

quence of switching operations is as important as the network

final state itself. Indeed, that final state might not be reachable

without violating some operational constraints during the

process, causing safety devices to trip, and rendering the

solution infeasible. Research currently underway will address

this issue.

VI. CONCLUSION

This paper presents a new genetic algorithm for the (n−1)
contingency network reconfiguration problem. The results

indicate that the algorithm implemented can quickly produce

a complete (n− 1) contingency plan for a small network (96

buses, 16 switches and 2 generators), under real operational

constraints. The results in this study could be reproduced, apart

from rounding errors, by Energy Australia using the industry

standard package ASPEN Power Flow. The method is very

fast, taking 30 seconds of CPU time to determine a switching

strategy for any given (n−1) network contingency situation. It

also respects operational constraints of voltage and load in all

sections, as well as the radial topology of the network. In terms

of scalability, we expect the CPU time to increase by O(n3) for

larger networks, in the worst case, where n is the number of

buses. The main reason is that the AC power flow calculation

uses Newton’s method to solve a non-linear system. The

package used in our implementation, namely MATPOWER,

takes advantage of Matlab’s sparse matrix library and this

calculation is actually very efficient. Therefore, its impact on

the overall computational time might in practice be much

smaller.

Another delicate topic is the increase in the number of

switches, as larger networks will have more switches. Even

though the search space will grow exponentially, the number

of solutions evaluated until the population converges typically

increases polynomially in genetic algorithms. Therefore, again

the impact on CPU time should be limited. Extensions of this

study currently underway include the parallelization of the

method; testing on a large scale network, with over 1,600 buses

and 100 switches; and the introduction of switching scheduling
considerations.
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