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Abstract— The present paper deals with a switching control
scheme for a plant with multiple estimator-controller-actuator
pairs. The scheme has to deal with specific problems originated
by the switching between the different feedback loops and
accommodate to faults in the observation channels (sensors
outputs). The main contribution is a fault tolerant switching
scheme with stability guarantees assured by a pre-imposed
dwell-time. The detection and the fault tolerance capabilities
are assured through set separation for the residual signals
corresponding to healthy and faulty functioning. Another con-
tribution of the paper resides in a recovery technique for faulty
sensors which makes use of a virtual sensor whose estimation,
based on an optimization procedure, minimizes recovery time.

I. INTRODUCTION

In [1] a comprehensive result for fault tolerant stability
of multisensor switching feedback control systems was pre-
sented upon the use of a common feedback gain matrix
for all the sensor-estimator pairs. The main contribution of
the present paper resides in the use of a switch feedback
with different gains, thus making the assessment of global
stability a nontrivial task, even in the absence of faults. It is
noteworthy to mention that within this line of research, in [2],
different feedback gains are used and stability is guaranteed
under normal (fault free) operation conditions by imposing
a switching rule based on the decrease of each individual
Lyapunov function for the tracking error subsystems. In the
present paper, a different switching condition, based on the
calculation of a dwell time, will not only guarantee stability
in the fault free case but also will offer concrete fault tolerant
guarantees based on set separation. For determining robust
positive invariant (RPI) sets used through the paper, we
employ a construction based on outer approximations similar
to the ones in [3]. In addition, an explicit separation method
and a novel recovery mechanism that acknowledges healthy
sensors through the use of a so-called virtual sensor are
presented. The following notation will be used: N denotes
the set of non negative integers; N+ denotes the set N \{0}.
Whenever time is unspecified, a variable x stands for x(k) for
some (unspecified) k ∈ N, and x+ stands for the successor
variable, i.e. x(k + 1). The Minkowski sum of two sets is
defined as A⊕B = {a+ b : a ∈ A and b ∈ B}.
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Fig. 1: Switching control scheme

II. PLANT DYNAMICS AND FAULT SCENARIO

The present paper considers a linear discrete-time state
space model of the plant:

x+ = Ax+ u+ Ew (1)

where x ∈ Rn and x+ ∈ Rn are, respectively, the current
and successor system states, u ∈ Rn is the input, and
w ∈ W ⊂ Rr is a bounded process disturbance. The input
consists of a switching between N different actuator combi-
nations, each of them characterized by a matrix Bl, such that
each of the pairs (A,Bl) is controllable for l = 1, . . . , N .
The information provided by each sensor can be used for
estimation and control purposes, but it closes the feedback
loop individually, with a particular actuation matrix gain Kl.
This makes, in fact, the multisensor scheme to function as a
switching mechanism between different feedback loops.

The control objective is for the state of the plant (1) to
track a reference signal xref that satisfies

x+ref = Axref + uref (2)

The state reference is considered to be bounded by a closed
polyhedral set Xref defined as:

xref ∈ Xref =
{
x0ref

}
⊕∆ref (3)

with x0ref the analytic centre of the set.
Figure 1 depicts the switching scheme with plant (1), sen-

sors Si, estimators Fi, feedback gains Ki, actuator matrices
Bi, i = 1, . . . , N and switching law SW .
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A. Sensor and estimator dynamics

The state vector x is not directly measurable, but linear
combinations of it, Cix, i = 1, . . . , N can be measured
via N sensors (under the assumption that each pair (A,Ci)
is detectable). The sensors have output signal:

yi = Cix+ ηi (4)

The sensor faults considered in this paper are of the type
of total sensor outage. The failure is then represented by the
following switching on the observation equation:

yi = Cix+ ηi
FAULT−−−−−−−−−→ yi = 0 · x+ ηFi

yi = Cix+ ηi
RECOV ERY←−−−−−−−−− yi = 0 · x+ ηFi (5)

The noise occurring during the fault, ηFi , may be different
from the one during healthy functioning, ηi.

In general, all the noises presented are considered to be
bounded. As such, w ∈ W , ηi ∈ Ni and ηFi ∈ NF

i for
i = 1, . . . , N where the polyhedral sets W ⊆ Rr, Ni ⊆
Rni , NF

i ⊆ Rni are considered to be bounding boxes.
The estimators are designed such that they will have an

adequate dynamic behavior for the plant state estimate:

x̂+i = Ax̂i + u+ Li (yi − Cix̂i)
= (A− LiCi)︸ ︷︷ ︸

ALi

x̂i + u+ Li (Cix+ ηi) (6)

with the gains Li chosen such that matrices ALi are strictly
stable (always possible by the detectability assumption).

Using (1) and (6) one can define the estimation error
affecting the sensor:

x̃+i = x+ − x̂+i = ALi (x− x̂i)︸ ︷︷ ︸
x̃i

+
[
E −Li

] [w
ηi

]
(7)

The plant tracking error is given by the difference between
the state (1) and its respective reference signal (2):

z+ = x+ − x+ref = A (x− xref )︸ ︷︷ ︸
z

+ (u− uref )︸ ︷︷ ︸
v

+Ew (8)

Update estimations, intended to enhance the dynamic
performance of the system and the fault detection process
are also provided:

x̂UPi = x̂i +Mi (yi − Cix̂i)
ẑUPi = x̂UPi − xref (9)

with matrices Mi determined from AMi = Li and where
ẑUPi are the update tracking estimation errors.

B. Closed loop dynamics

The fault tolerant scheme works under the condition that
only healthy sensors will be used in the control law design.
This condition is guaranteed by a fault detection and isolation
(FDI) algorithm, which is fully developed in Section V
below.

As such, let there be a partition of the sensors i ∈ I =
{1, . . . , N} into the sets:

• IH, all the sensors acknowledged healthy
• IF , all the sensors acknowledged faulty

so that IH ∪ IF = I and IH is assumed to never be empty
along the closed loop functioning. The partition is updated
through an FDI mechanism, detailed in Subsection V-A.
This means that we are able to identify and select only
the healthy, i ∈ IH sensors (understood as a sensor with
a healthy functioning in the sense of (4) and for which the
estimation error (7) is confined to a safety region developed
in Section III) and from them, the minimizer of a given cost
function is obtained1:

ẑ∗ = argmin
ẑ∈Zi

J (ẑ) (10)

with Zi =
{
ẑUPi : i ∈ IH

}
. Using the minimizer ẑ∗ =

ẑUPl , for some l ∈ IH, the control action has the form:

u = uref + v∗ = uref −BlKlẑ
∗ (11)

We remark here that each sensor-estimator-actuator loop
will have a different feedback matrix gain Kl. The gains
can be, for example, computed as independent solutions
to Riccati equations for the pairs (A,Bl) and weighting
matrices (Ql, Rl). Henceforth it will be assumed that all
matrices (A−BlKl) have all their eigenvalues inside the
unit circle.

As a consequence of the selection of a healthy sensor,
that is, a sensor with the update estimated tracking error
ẑ∗ = ẑUPl , for some l ∈ IH, by using (4), (7), (8) and (9),
we have

ẑ∗ = z − (I −MlCl) x̃l +Mlηl (12)

and, the control action (11) can be expressed as

u = uref −BlKl (z − (I −MlCl) x̃l +Mlηl) (13)

III. STABILITY OF SWITCHED SYSTEMS AND INVARIANT
SET CONSTRUCTION

A. Switched systems with dwell time

Consider a discrete-time switched system

x+ = Aσ(k)x (14)

where σ(k) : k ≥ 0 → M = {1, . . . ,M} is the switching
index between the linear systems Ai, i ∈M.

We denote the set of all switching policies with dwell
time2 equal to a given positive integer constant τ ∈ N+:

Tτ = {σ(·) : tj+1 − tj ≥ τ} (15)

where tj+1 and tj are successive switching times, for all
j ∈ N. The following theorem is useful in this context [4]:

1Within the scope of this paper, no particular choice of the cost function
is prescribed but we point to [1] for the use of a quadratic index weighting
the reference tracking performance and the control energy.

2The notion of dwell time, understood as the minimal time interval
between consecutive switches in a system that can switch between a finite
set of linear dynamics, is employed in order to guarantee global stability
(details can be found in [4]).
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Theorem 1: Assume that, for a given τ ≥ 0 and ∀i ∈M
there exist Pi such that

Pi > 0, A′iPiAi < Pi, A
′
i
τ
PjAi

τ < Pi ∀j 6= i (16)

Then, the system (14) with a switching policy in Tτ is
globally stable with an associated Lyapunov function

v(x, k) = x′Pσ(k)x (17)

�
An upper bound for the minimal stabilizing dwell time can

be computed by taking the minimum value of τ satisfying
the conditions of Theorem 1. This can be calculated through
a linear search with the optimization problem

min
s.t. (16) are feasible

τ > 0 (18)

The previous results consider a nominal switching system
(14) in the disturbance free case. In the following subsection
we will use these results to derive invariant sets when the
system is affected by bounded disturbances.

B. Invariant sets
1) Basic definitions for set invariance [3]: We consider a

discrete-time switched system with linear dynamics subject
to bounded disturbances:

x+ ∈ D(x,A,W)

D(x,A,W) = {Ax+ w : A ∈ A, w ∈W}
A =

{
Ai ∈ Rn×n, i = 1 . . .M

}
W ⊂ Rn (19)

We assume that the autonomous system x+ ∈
D(x,A, {0}) is absolutely asymptotically stable, that
is, there exists a Lyapunov function V (x) such that

V (x+)− V (x) < 0 (20)

The one step forward set for the switched system (19)

D(X,A,W) = {Ax+ w : x ∈ X, A ∈ A, w ∈W} (21)

can be used to define the set sequence {Dk}:
Dk+1 = D(Dk,A,W), k ∈ N+, D0 = {0} (22)

Definition 1: RPI set. The set Ω ⊂ Rn is a robust
positively invariant (RPI) set of (19) if D(x,A,W) ⊆ Ω
for all x ∈ Ω, i.e. if and only if D(Ω,A,W) ⊆ Ω. �

2) Construction of RPI approximations:
Theorem 2 (Theorem 2 of [3]): For a system (19) that

satisfies (20) there exists a finite integer s ∈ N+ and a scalar
α ∈ [0, 1) such that

Rs ⊆ αW (23)

where Rs is defined by the following set recursion

Rk = D(Rk−1,A, {0}), k ∈ N+, R0 = W (24)

Moreover, given any pair (α, s) ∈ [0, 1)×N+ such that (23)
is true, the set D(α, s) defined by

D(α, s) = (1− α)−1Ds (25)

is a compact RPI set for system (19) such that D∞ ⊆
D(α, s), with Ds and D∞ obtained from the recur-
sion (22). �

3) Invariant sets for a switched system with dwell time:
Let τ be the value computed from (18) for system (14), then
the system is asymptotically stable under any switching law
in (15). We denote:

Dτ (x,A,W) =

D(D(D . . .︸ ︷︷ ︸
τ iterations

D(x,A,W), A,W), A ∈ A


(26)

Using (26) we can define the dynamic system

x+ ∈ Dτ (x,A,W) (27)

The above system considers a switch every τ time instants
and represents a particular case of switching strategy which
is asymptotically stable with associated piecewise quadratic
Lyapunov function (17) for the disturbance free case (W =
{0}). It follows then that condition (20) is verified for
the disturbance free case and we can proceed with the set
constructions detailed in Theorem 2 for the dynamics (27),
leading to an invariant set Dτ (α, s).

This construction will guarantee that any trajectory of
a system switching every τ steps, starting inside the set
will remain inside it at the switching instants. However, it
tells nothing about the trajectory’s behavior in between the
switching instants. The set D̄(α, s), which adds to Dτ (α, s)
the sets corresponding to transitions from moment tj + 1 to
tj + τ − 1 will be considered:

D̄(α, s) = Dτ (α, s)
⋃

l=1,...,M
k=1,...,τ−1

Θl
k (28)

where Θl
k is defined by the following set recursion

Θl
k = D(Θl

k−1, Al,W), k ∈ N+, Θl
0 = Dτ (α, s) (29)

Proposition 1: By construction, the set D̄(α, s) is cyclic
invariant for the set Dτ (α, s) and the switching dynamics

x+ ∈ D
(
x,Aσ(k),W

)
with switching policy σ(·) such that tj+1 − tj = τ , where
tj , tj+1 are successive switching times (in particular, σ(·) ∈
Tτ in (15)). This means that ∀x(0) ∈ Dτ (α, s) we have
that x(k) ∈ D̄(α, s),∀k ≥ 0, and x(tj) ∈ Dτ (α, s) for all
switching instants tj . �

IV. INVARIANT SETS FOR THE MULTISENSOR SCHEME

The fault tolerant approach for the system described
in Section II requires the construction of an invariant set
associated to the plant tracking error (8).

Using (1), (2), (8) and (13) we have:

z+ = Az,lz +Bz,lδz,l (30)

with Az,l = A−BlKl, Bz,l =
[
E BlKl −BlKl

]
and

δz,l =
[
w′ (I −MlCl) x̃

′
l Mlη

′
l

]′
(31)
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Note that term x̃l is not a priori known but an invariant
set containing it may be computed as described in Subsec-
tion III-B.2. For further use we will denote such a set3

S̃l , RPI set under dynamics (7) (32)

Let the τ -step successor system dynamics associated with
(30), assuming no switching has occurred, be defined as:

z+τ = Aτz,lzτ +Aτ−1z,l Bz,lδ
−τ+1
z,l + · · ·+Bz,lδ

0
z,l (33)

where δ−kz,l denotes the noise affecting system (30) k instants
prior to the current time. These dynamics describe the evolu-
tion of system (30) observed every τ samples as introduced
in (26) and constitute a first step for the construction of the
invariant sets Sτz of Theorem 2 and cyclic invariant sets for
the switched system as described in Proposition 1. The set
S̄z (constructed as a special case of (28)), which adds the
intermediate sets from the instant after the switch tj + 1 to
tj + τ − 1 is computed as:

S̄z = Sτz
⋃

l=1,...,N
k=1,...,τ−1

Akz,lS
τ
z ⊕Ak−1z,l Bz,l∆⊕ · · · ⊕Bz,l∆

(34)
where ∆z,l = W × (I −MlCl)S̃l×MlNl are bounding sets
for δz,l in (31) and ∆ = ConvexHull{∆z,l, l ∈ I} covers
all the possible realisations of estimation errors from healthy
sensors and corresponding measurements noises.

V. FAULT TOLERANT SCHEME

In the following subsections we will discuss a fault tolerant
scheme implementation for system (1). Before entering into
the details of the FDI and recovery mechanisms we introduce
the partition into healthy and faulty indices for the set I =
IH ∪ IF = {1, . . . , N}:

IH =
{
i : yi = Cx+ ηi and x̃i ∈ S̃i

}
IF = I \ IH (35)

A. FDI based on set separation

An FDI (fault detection and isolation) mechanism analyzes
the transition IH → IF . A signal called a residual, sensitive
to fault occurrences and presenting a manageable dependence
on the disturbances, has to be defined for the detection of
faults. Indeed, the presence of faults implies, through the
structural changes (5), a modification in the inputs affecting
the corresponding estimator which thus carries information
on the fault signature.

As such, for the multisensor scheme considered in the
present paper we propose the residual signal ri

ri = ẑUPi − (I −MiCi) ẑi (36)

where ẑi = x̂i − xref . Note that the residual, ri, is a linear
combination of measurable quantities associated to the ith

3The invariant set S̃l will actually have the form (1 + ε)D(α, s), with
ε > 0 arbitrarily small, to facilitate the computation of convergence times
to this set (see Proposition 2 in Section V below).

sensor. From (4), (5) and (9) one can distinguish between
the healthy and the faulty cases

healthy functioning: ri = MiCiz +Miηi (37)
faulty functioning: ri = −MiCixref +Miη

F
i (38)

These residuals can be used to identify the faults if the
sets containing (37) and (38) are separated. The separation
reduces then to the study of the sets SHi and SFi of all the
possible values in the healthy, respectively faulty, case of the
residual signal:

SHi = MiCiS̄z ⊕MiNi

SFi = (−MiCi)Xref ⊕MiN
F
i

(39)

Remark 1: The membership of residual (36) to either set
in (39) is an indicator of the current condition of the sensor
in question. Note also that the change (5) is detected at the
actual instant of occurrence due to the updated term (9) that
takes into account the current output of the sensor. �

Remark 2: The separation between the sets (39) is
achieved by means of the reference signal offset x0ref in (3).
Indeed, for a given ∆ref , one can find a minimal value of
x0ref for which the separation (in the sense (40), see below)
is valid. �

Depending on the trade-off sought between computational
load and accuracy of the FDI mechanism, various methods
to check set separation can be employed. In the present
work we concentrate on the explicit separation based on the
assumption that:

SHi ∩ SFi = ∅, ∀i ∈ I (40)

The online FDI test then reduces to the verification of the
inclusion of the residual (36) in one of the sets (39).

B. Recovery

The recovery procedure of the FDI has to validate the
transition IF → IH. It decides if a previously faulty sensor
respects the conditions defining it as healthy:

ri ∈ SHi , x̃i ∈ S̃i (41)

In [5], [6] a set membership test of the estimation errors
for the sensor in question was employed, but the duration
of the recovery was dependent on the convergence of the
trajectories to their invariant sets and the recovery process
itself was not guaranteed to succeed for all combinations of
faulty/healthy sensors.

By definition, the estimation error (7) is not directly
measurable and as such only an indirect information can be
manipulated. The solution proposed here is to verify for each
sensor under recovery if healthy functioning has been verified
for a predefined number of steps (recall that healthy sensor
functioning can be directly acknowledged by checking the
residual signal (36) against the sets (39)). After a number
of iterations with output equation (4) the estimation error
(7) will converge to its invariant set (32) thus satisfying the
second condition in (41). An upper bound on the number
of steps can be obtained with any suitable algorithm that
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computes in how many iterations all trajectories starting from
an initial set will converge inside the associated invariant set.
Using the notation from Section III we define, for a given
initial set Ω0 and destination set Ω, the convergence time as:

θ∗ = argmin
k

{Xk ⊆ Ω, Xi = D(Xi−1,A,W), X0 = Ω0}
(42)

As an additional element, as long as the sensor has a
faulty functioning, an artificial estimation (based on the
information provided by the rest of the healthy sensors) will
be provided, thus creating a so called virtual sensor. If the
sensor starts to exhibit a healthy functioning the estimation
is again provided by the dynamics (6). This is useful in
increasing the speed of the eventual recovery by “keeping”
the updated tracking estimation error (9) near its healthy
functioning region.

Remark 3: Note the distinction between the notions of
healthy/faulty functioning and the acknowledgment of a
sensor as being healthy. The first refers to the actual behavior
of the sensor at a given time instant according to (5)
(and leading to the residual values (37) or (38)), whereas
the second notion refers to both conditions in (41) being
satisfied. As such, it is entirely possible for a sensor to be
considered faulty even with a healthy functioning (4) if the
signals of interest are not (yet) inside their invariants sets
(that is, x̃i /∈ S̃i). �

We are able to analyze the plant tracking error as a
combination of measured values from healthy sensors, and
uncertain but bounded variables, as follows (see (12)):

z(k) = ẑUPl (k)︸ ︷︷ ︸
measured value

+ (I −MlCl)x̃l(k)−Mlηl(k)︸ ︷︷ ︸
uncertainties

(43)

Each healthy sensor proposes a set of possible values for
the plant tracking error. Thus, the tracking error estimation
can be enhanced by considering the values (43) proposed by
all the healthy sensors:

z(k) ∈
⋂

l∈IH(k)

[{
ẑUPl (k)

}
⊕ (I −MlCl)S̃l ⊕ (−Ml)Nl

]
︸ ︷︷ ︸

IIH
(44)

The sensor under recovery is replaced by a virtual sensor
in the sense that its state estimation is discarded and an
artificial one, x̂∗j , will be provided. To this artificial estimate
we associate an update tracking estimation error ẑUP,∗j .
Using (43) and (44) (i.e., “giving” to the under recovery
sensor the characteristics of the healthy sensors) the set of
all possible values of the associated estimation error x̃∗j is
reduced to:

S̃jIH(k)

(
ẑUP,∗j

)
=

(I −MjCj)
−1
[{
−ẑUP,∗j (k)

}
⊕MjNj ⊕ IIH

]
(45)

The set (45) is parameterized by the values ẑUPl , l ∈ IH
(see (44)) and ẑUP,∗j . Since ẑUP,∗j can be arbitrarily chosen,
a suitable value, that minimizes the convergence time (42)

(with destination set S̃j in place of Ω and with initial
conditions in the set (45)) will be computed when the sensor
j changes from faulty to healthy functioning, thus resetting
its estimation dynamics. In order to provide a constructive
procedure for the choice of ẑUP,∗j , the following proposition
is presented.

Proposition 2: Consider the invariant set D(α, s) of the
form (25) with respect to the dynamics x+ = Ax+ w,w ∈
W. Given a polytope P ⊂ Rn and a scalar ε > 0 there
exists a minimum integer θ(P, ε) ∈ N+ and an associated
δ ∈ Rn such that ∀x(0) ∈ P ⊕ {δ} we have x(k) ∈ (1 +
ε)D(α, s),∀k ≥ θ(P, ε). An upper approximation θ̄(P, ε)
can be obtained from the minimization

{δ∗, θ̄(P, ε)} = arg min
(δ,θ)

subject to:

θ

P⊕{δ}⊆Ds⊕A−θ·εD(α,s)

(46)

where Ds is obtained from the recursion (22).
Proof: The proof is based on standard manipulations

with (minimal) RPI sets (see, e.g., [3]) and it is omitted for
space reasons.

Let S̃j in (32) be constructed as S̃j = (1+ε)D(α, s), with
ε > 0 and D(α, s) as in Theorem 2. Let Ds be the associated
set obtained by the recursion (22). Then Proposition 2 can
be applied to estimate the convergence time to S̃j from the
set (45) (where (I −MjCj)

−1)(−ẑUP,∗j (k)) takes the role
of the variable δ being optimized) as follows:{
ẑUP,∗j , θ̄j

}
= arg min

(ẑUP,∗j ,θ)
subject to:

θ

S̃jIH (ẑUP,∗j )⊆Ds⊕A−θLj εD(α,s)

(47)

Resetting the parameter ẑUP,∗j to the optimal value found
in (47) we assure an optimal convergence time θ̄j in the
sense of (42).

The final step of the reconfiguration is the construction
of the estimation for the virtual sensor coherent with (47).
Rewriting (43) one obtains that any x̂∗j verifying

x̂∗j (k) ∈ (I −MjCj)
−1
[{
ẑUP,∗j (k) + (I −MjCj)

xref (k)} ⊕ (−MjCj)IIH (k)⊕ (−Mj)Nj ]

(48)

is a valid choice.
Finally, if the recovery mechanism acknowledges the

healthy functioning (4) of the sensor and the convergence
time θ̄j computed with (47) has elapsed, the next value of
its estimation is no longer discarded. Indeed the estimator is
allowed again to use the information provided by the sensor.

Algorithm 1 implements a reconfiguration procedure that
diagnoses the healthy and faulty sensors (steps 11 and 17).
Each sensor under recovery has an associated convergence
time θ̄i computed from (47) that will be decreased (step 9) if
the subsequent dynamic is healthy and is reinitialized when
the sensor first recovers (step 6). Finally, a counter associated
to the dwell time τ computed in (18) (step 20) will signal if
switches can be performed (k = tj + τ ).
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Algorithm 1: Fault tolerance scheme
Input: I = IH(0) ∪ IF (0); IH(0) 6= ∅

1 k ← the current sampling time;
2 tj ← time of the last switch (tj < k);
3 lj ← index of last estimator selected by the switching;
4 foreach sensor i ∈ IF (k − 1) do
5 if ri(k − 1) ∈ SF

i and ri(k) ∈ SH
i then

6 compute (45), (47) and (48);
7 end
8 if ri(k − 1) ∈ SH

i and ri(k) ∈ SH
i then

9 θ̄i = θ̄i − 1;
10 if θ̄i = 0 then
11 label sensor as healthy;
12 end
13 end
14 end
15 foreach sensor i ∈ IH(k − 1) do
16 if ri(k) ∈ SF

i then
17 label sensor as faulty;
18 end
19 end
20 if k = tj + τ then
21 select a sensor l ∈ IH(k) that minimizes (10);
22 tj = k; lj = l;
23 else
24 if lj ∈ IH(k) then
25 ẑ∗ = ẑUP

lj
;

26 else
27 choose ẑ∗ ∈ ConvexHull

{
ẑUP
l , l ∈ IH(k)

}
;

28 end
29 end
30 construct control law u as in (11);

Remark 4: Once an actuator-control pair has been se-
lected by the switching criterion (10) to implement the
control law (11), Algorithm 1 does not allow to discard it
before the required dwell time τ has elapsed. If the imposed
τ period of selection for the given actuator-control pair
has not elapsed and the associated sensor is acknowledged
faulty during this period, an artificial updated tracking error
estimate taken as a convex sum of the updated tracking
estimation errors of the remaining healthy sensors will be
provided to the control loop (step 27). The cyclic invariance
is ensured since the construction of the set S̄z uses the convex
hull of the disturbances from all possible combinations of
healthy sensors affecting (30). �

VI. EXAMPLE

A plant, with dynamics given by the model:

x+ =

[
1 0.1
0 1

]
x+ u+

[
0

0.1

]
w (49)

with
∣∣w∣∣ ≤ 0.02 and a set of actuators Bi =[

1.5 0
0 0.1

]
,

[
0.5 0.5
0 0.2

]
and

[
2 0
1 0.2

]
will be used as an

example in this section.
We use three sensors described by:

C1 =
[
0.30 0.25

]
and |η1| ≤ 0.1, |ηF1 | ≤ 1

C2 =
[
0.25 0.10

]
and |η2| ≤ 0.1, |ηF2 | ≤ 0.25

C3 =
[
0.25 0.25

]
and |η3| ≤ 0.1, |ηF3 | ≤ 1 (50)

The estimators for each sensor are constructed as in (6)

using the gains: Li =

[
0.83

3

]
,

[
3.25

2

]
and

[
1.20

1

]
.

The feedback gains are determined as solutions of Ri-
catti equations for common tuning parameters (Q =
diag(

[
0.1 5

]
) and R = diag(

[
1 0.1

]
)):

Ki =

[
0.25 0.04
0.01 5.00

]
,

[
0.27 −0.61
0.17 3.35

]
,

[
0.15 0.44
−0.67 2.12

]
(51)

For ∆ref =

{
x : |x| ≤

[
12

5.04

]}
fixed, a minimal offset

x0ref =
[
50 −4.96

]′
assures condition (40).

Using the procedure described in Subsection III-B.3 the
invariant sets (34) that satisty condition (40) were determined
for a computed dwell time of τ = 2 with s = 4 iterations,
for an α = 0.23.

To verify the significance of the choice of the artificial
estimation we propose two modalities of implementing the
recovery: using the set (48) as a provider for the artificial es-
timation, on the one hand, and using the estimation provided
by some healthy sensor, l say, on the other hand. In the first
case we obtain (45) as a starting set for the estimation error
convergence when the sensor switches to healthy functioning
while in the latter case, the set will be S̃l of the form (32).
We obtained that the use of set (45) averaged a recovery time
of 27.5s and set (32) a recovery time of 57s, thus justifying
the use of an artificial estimate satisfying (48).

VII. CONCLUSIONS

This paper has proposed an effective method for fault
tolerant switching with a dwell-time mechanism for a plant
with multiple sensor-estimator-actuator loops. The selected
sensor-estimator-actuator triplet provides the control action
for a pre-determined period of time (larger than the dwell-
time) thus ensuring nominal stability. Additionally, a novel
recovery acknowledgment mechanism that uses a virtual
sensor has been proposed.
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